File size: 2,765 Bytes
86e0814
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
license: apache-2.0
base_model: google/t5-v1_1-large
tags:
- generated_from_trainer
model-index:
- name: ghc-google-t5-v1_1-large-intra_model-frequency-human_annots_str
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ghc-google-t5-v1_1-large-intra_model-frequency-human_annots_str

This model is a fine-tuned version of [google/t5-v1_1-large](https://huggingface.co/google/t5-v1_1-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2524

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 200

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.5958        | 1.0   | 345  | 2.2751          |
| 1.9688        | 2.0   | 690  | 2.0758          |
| 1.8217        | 3.0   | 1035 | 1.8429          |
| 0.0765        | 4.0   | 1380 | 0.0461          |
| 0.0683        | 5.0   | 1725 | 0.0501          |
| 0.0545        | 6.0   | 2070 | 0.0452          |
| 0.0515        | 7.0   | 2415 | 0.0417          |
| 0.044         | 8.0   | 2760 | 0.0387          |
| 0.0464        | 9.0   | 3105 | 0.0375          |
| 0.0449        | 10.0  | 3450 | 0.0416          |
| 0.0383        | 11.0  | 3795 | 0.0343          |
| 0.0484        | 12.0  | 4140 | 0.0334          |
| 0.0411        | 13.0  | 4485 | 0.0329          |
| 0.0412        | 14.0  | 4830 | 0.0327          |
| 0.0416        | 15.0  | 5175 | 0.0324          |
| 0.0409        | 16.0  | 5520 | 0.0328          |
| 0.0368        | 17.0  | 5865 | 0.0319          |
| 0.039         | 18.0  | 6210 | 0.0315          |
| 0.0352        | 19.0  | 6555 | 0.0311          |
| 0.0339        | 20.0  | 6900 | 0.0309          |
| 0.0391        | 21.0  | 7245 | 0.0322          |
| 0.0375        | 22.0  | 7590 | 0.0303          |
| 0.036         | 23.0  | 7935 | 0.0304          |
| 0.0322        | 24.0  | 8280 | 0.0302          |
| 0.0289        | 25.0  | 8625 | 0.0297          |
| 0.0296        | 26.0  | 8970 | 0.0300          |
| 0.0327        | 27.0  | 9315 | 0.0302          |
| 0.0331        | 28.0  | 9660 | 0.0300          |


### Framework versions

- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.14.5
- Tokenizers 0.14.1