--- license: apache-2.0 base_model: google/t5-v1_1-large tags: - generated_from_trainer model-index: - name: Sentiment-google-t5-v1_1-large-inter_model-frequency-model_annots_str results: [] --- # Sentiment-google-t5-v1_1-large-inter_model-frequency-model_annots_str This model is a fine-tuned version of [google/t5-v1_1-large](https://huggingface.co/google/t5-v1_1-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2148 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 19.9179 | 1.0 | 44 | 23.0110 | | 15.7039 | 2.0 | 88 | 11.5544 | | 10.0821 | 3.0 | 132 | 9.0299 | | 8.6626 | 4.0 | 176 | 8.7380 | | 8.0831 | 5.0 | 220 | 8.5723 | | 8.0781 | 6.0 | 264 | 8.4705 | | 7.9258 | 7.0 | 308 | 8.3030 | | 7.7266 | 8.0 | 352 | 7.8865 | | 7.2525 | 9.0 | 396 | 7.4655 | | 7.0455 | 10.0 | 440 | 7.2241 | | 6.852 | 11.0 | 484 | 7.0989 | | 6.7656 | 12.0 | 528 | 6.9915 | | 0.9781 | 13.0 | 572 | 0.7604 | | 0.8277 | 14.0 | 616 | 0.7302 | | 0.8107 | 15.0 | 660 | 0.7269 | | 0.7979 | 16.0 | 704 | 0.7203 | | 0.787 | 17.0 | 748 | 0.7190 | | 0.784 | 18.0 | 792 | 0.7176 | | 0.7723 | 19.0 | 836 | 0.7162 | | 0.7689 | 20.0 | 880 | 0.7157 | | 0.7627 | 21.0 | 924 | 0.7137 | | 0.7691 | 22.0 | 968 | 0.7156 | | 0.7728 | 23.0 | 1012 | 0.7139 | | 0.7586 | 24.0 | 1056 | 0.7136 | | 0.7508 | 25.0 | 1100 | 0.7130 | | 0.7754 | 26.0 | 1144 | 0.7096 | | 0.7449 | 27.0 | 1188 | 0.7117 | | 0.769 | 28.0 | 1232 | 0.7073 | | 0.7562 | 29.0 | 1276 | 0.7081 | | 0.7597 | 30.0 | 1320 | 0.7111 | | 0.7649 | 31.0 | 1364 | 0.7072 | | 0.7449 | 32.0 | 1408 | 0.7113 | | 0.7431 | 33.0 | 1452 | 0.7103 | | 0.7448 | 34.0 | 1496 | 0.7066 | | 0.7409 | 35.0 | 1540 | 0.7056 | | 0.7438 | 36.0 | 1584 | 0.7072 | | 0.7545 | 37.0 | 1628 | 0.7041 | | 0.7519 | 38.0 | 1672 | 0.7060 | | 0.7546 | 39.0 | 1716 | 0.7042 | | 0.7585 | 40.0 | 1760 | 0.7031 | | 0.7491 | 41.0 | 1804 | 0.7074 | | 0.7421 | 42.0 | 1848 | 0.7058 | | 0.7471 | 43.0 | 1892 | 0.7108 | | 0.758 | 44.0 | 1936 | 0.7041 | | 0.7291 | 45.0 | 1980 | 0.7049 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.5 - Tokenizers 0.14.1