--- license: apache-2.0 base_model: google/t5-v1_1-large tags: - generated_from_trainer model-index: - name: SChem5Labels-google-t5-v1_1-large-intra_model-frequency-model_annots_str results: [] --- # SChem5Labels-google-t5-v1_1-large-intra_model-frequency-model_annots_str This model is a fine-tuned version of [google/t5-v1_1-large](https://huggingface.co/google/t5-v1_1-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8369 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 19.8258 | 1.0 | 25 | 23.6474 | | 19.0315 | 2.0 | 50 | 22.0370 | | 18.08 | 3.0 | 75 | 19.1087 | | 16.4078 | 4.0 | 100 | 11.6693 | | 14.5372 | 5.0 | 125 | 10.0089 | | 12.1759 | 6.0 | 150 | 9.5651 | | 10.8249 | 7.0 | 175 | 9.2475 | | 9.4751 | 8.0 | 200 | 8.9311 | | 8.801 | 9.0 | 225 | 8.6771 | | 8.1126 | 10.0 | 250 | 8.5237 | | 7.9399 | 11.0 | 275 | 8.4068 | | 7.9146 | 12.0 | 300 | 8.3324 | | 7.9766 | 13.0 | 325 | 8.2182 | | 7.6203 | 14.0 | 350 | 8.0454 | | 7.5088 | 15.0 | 375 | 7.7369 | | 7.2191 | 16.0 | 400 | 7.4618 | | 7.0805 | 17.0 | 425 | 7.2855 | | 6.8971 | 18.0 | 450 | 7.1672 | | 6.8954 | 19.0 | 475 | 7.0791 | | 6.7074 | 20.0 | 500 | 7.0220 | | 6.6851 | 21.0 | 525 | 6.9700 | | 6.6409 | 22.0 | 550 | 6.9230 | | 6.5565 | 23.0 | 575 | 6.8672 | | 6.4106 | 24.0 | 600 | 6.8143 | | 5.2007 | 25.0 | 625 | 2.4787 | | 0.9209 | 26.0 | 650 | 0.7582 | | 0.8058 | 27.0 | 675 | 0.7280 | | 0.7899 | 28.0 | 700 | 0.7278 | | 0.7875 | 29.0 | 725 | 0.7233 | | 0.7813 | 30.0 | 750 | 0.7216 | | 0.7621 | 31.0 | 775 | 0.7209 | | 0.7893 | 32.0 | 800 | 0.7156 | | 0.7727 | 33.0 | 825 | 0.7116 | | 0.7562 | 34.0 | 850 | 0.7143 | | 0.7639 | 35.0 | 875 | 0.7136 | | 0.7553 | 36.0 | 900 | 0.7087 | | 0.7382 | 37.0 | 925 | 0.7072 | | 0.7361 | 38.0 | 950 | 0.7106 | | 0.7469 | 39.0 | 975 | 0.7059 | | 0.7516 | 40.0 | 1000 | 0.7074 | | 0.7478 | 41.0 | 1025 | 0.7051 | | 0.7367 | 42.0 | 1050 | 0.7096 | | 0.7417 | 43.0 | 1075 | 0.7057 | | 0.7434 | 44.0 | 1100 | 0.7056 | | 0.7433 | 45.0 | 1125 | 0.7022 | | 0.7538 | 46.0 | 1150 | 0.7024 | | 0.7246 | 47.0 | 1175 | 0.7004 | | 0.7418 | 48.0 | 1200 | 0.7014 | | 0.7469 | 49.0 | 1225 | 0.7038 | | 0.7184 | 50.0 | 1250 | 0.6997 | | 0.7459 | 51.0 | 1275 | 0.6998 | | 0.716 | 52.0 | 1300 | 0.7008 | | 0.7269 | 53.0 | 1325 | 0.7015 | | 0.7354 | 54.0 | 1350 | 0.6979 | | 0.7209 | 55.0 | 1375 | 0.6976 | | 0.728 | 56.0 | 1400 | 0.6948 | | 0.7201 | 57.0 | 1425 | 0.6986 | | 0.7228 | 58.0 | 1450 | 0.6957 | | 0.7254 | 59.0 | 1475 | 0.6996 | | 0.7252 | 60.0 | 1500 | 0.6961 | | 0.7116 | 61.0 | 1525 | 0.6987 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.6.1 - Tokenizers 0.14.1