{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7bdf422304c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bdf42230550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bdf422305e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bdf42230670>", "_build": "<function ActorCriticPolicy._build at 0x7bdf42230700>", "forward": "<function ActorCriticPolicy.forward at 0x7bdf42230790>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bdf42230820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bdf422308b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7bdf42230940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bdf422309d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bdf42230a60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bdf42230af0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bdf42b548c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 10010624, "_total_timesteps": 10000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1712343365825427160, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3T4D3ORN4+kEl2vuMeHL9QVF0+aKpivgAAAAAAAAAAmvnOu/JJLD7SSZ49akcFv3enkbyeAXY9AAAAAAAAAADNx0c9sHOrP5kTIz4Wf/e+Txs8PAtSLD0AAAAAAAAAANoltL1SaP+5+XUIO7zqKjThPS27UnwgugAAAAAAAIA/AFV8vY4ClD+duDG+lZdEv4B5ib3Qut+9AAAAAAAAAADau7M9qdA+vPQPN76GZyC+DTP0POjIYj8AAIA/AACAP2bwSz7e9Ek/Gn6OO5rRJL/APcs+QkJ5vQAAAAAAAAAATW8bvRRuiroN+du6IvojtiiXDzv1UP05AACAPwAAgD+Aixy9XDMMvFwuCj4uQx09AQRjvTOU/z0AAIA/AACAP03qAb2ueaC6xebMO4aP8zcFh6463qmMNgAAAAAAAIA/s3sUPQQwBT5WAoK+GxOzvuB4nL1qHne+AAAAAAAAAACaKcQ6Z0OcP1v+nzvMXiy/SwjduvP5jroAAAAAAAAAAAA7sbysfao/zuKCvu82CL+ZHai8YkHNvQAAAAAAAAAAAHxsvVybWLqI7nw5vDEVsn9aDjlSPJK4AAAAAAAAgD+zDD8+AbWNP4ZEQz4eMCG/CFTAPn1NVz0AAAAAAAAAALOXej1lrbU/zN87P5OgPb0XZUS8QE3NPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0010623999999999079, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHN7UFjd56eMAWyUS82MAXSUR0C7SYEXtShrdX2UKGgGR0Bywao5xR2saAdLx2gIR0C7SYXGS6lMdX2UKGgGR0BxxvK8tf5UaAdLsWgIR0C7SaNL+PzWdX2UKGgGR0BxRjalDWsjaAdLsmgIR0C7SagZ4wAVdX2UKGgGR0BwKjnV5KODaAdLpGgIR0C7Sao0/GEPdX2UKGgGR0Bw3wM/hVENaAdLoGgIR0C7ScoqTbFkdX2UKGgGR0BwuBswco6TaAdLumgIR0C7SdNalk6LdX2UKGgGR0Bzo8wUQCjlaAdLxmgIR0C7Tqtr0rbydX2UKGgGR0BwzpjmSyMUaAdLsGgIR0C7Tqtt/FzddX2UKGgGR0BynM8mrsByaAdLmmgIR0C7Trkq2BrfdX2UKGgGR0BxcyQ/5ckdaAdLx2gIR0C7TufjXFtLdX2UKGgGR0BxyKwdKdxyaAdLvWgIR0C7Tu05p8F7dX2UKGgGR0BvSt0Lc9GJaAdLnmgIR0C7TvYGUwBYdX2UKGgGR0Bxulfx+a0AaAdLtGgIR0C7Twjrqt5ldX2UKGgGR0Bwqx0GNaQnaAdLpGgIR0C7TwfE87p3dX2UKGgGR0BxsxUBGQS0aAdLs2gIR0C7TyhVU+9rdX2UKGgGR0BxQ63MINVjaAdLsGgIR0C7Tyvfj0cwdX2UKGgGR0BxZOiSJTESaAdLy2gIR0C7Tzcpb2UTdX2UKGgGR0BzR7mYBvJjaAdLsWgIR0C7T16MBIWhdX2UKGgGR0BxstFRYRukaAdLsWgIR0C7T2oXsPatdX2UKGgGR0BxtXy7PIGRaAdLn2gIR0C7T3vlZHNHdX2UKGgGR0Bz1sE2YOUdaAdLzGgIR0C7T5D0Dlo2dX2UKGgGR0BwJTu5SWJKaAdLsmgIR0C7T5sp1A7gdX2UKGgGR0BMiAmZ3LV4aAdLcGgIR0C7T51B6a9cdX2UKGgGR0BwPHZ5AyEdaAdLoWgIR0C7T7hG6PKddX2UKGgGR0BzkQLH+6y0aAdLwWgIR0C7T9hZlnRLdX2UKGgGR0BvdKHqNZNgaAdLkmgIR0C7T+IT0xubdX2UKGgGR0BwUFA7gbZOaAdLpWgIR0C7T+qFuejEdX2UKGgGR0Bz9ZmYjSogaAdLp2gIR0C7T/ilBQendX2UKGgGR0Bwb7O6d1+zaAdL5mgIR0C7UAUu6ErYdX2UKGgGR0BTVZHI6r/9aAdLemgIR0C7UBHY6GQCdX2UKGgGR0ByCxXeWOZLaAdLpWgIR0C7UA7lA/s3dX2UKGgGR0B0TKNVBD5TaAdLyWgIR0C7UA/JA+pwdX2UKGgGR0ByTYxrSE13aAdLuGgIR0C7UCLzXjEOdX2UKGgGR0Bw9fSmZVn3aAdLrmgIR0C7UDsvEjxDdX2UKGgGR0BzRq7TUiIMaAdLymgIR0C7UEAumJm/dX2UKGgGR0ByvGejEehgaAdLvmgIR0C7UFDho/RmdX2UKGgGR0Bwcxd8iOebaAdLomgIR0C7UFEExIrfdX2UKGgGR0B0A9ky1uzhaAdLrGgIR0C7UGZUtI07dX2UKGgGR0BxA3nr6ciGaAdLrmgIR0C7UGpEhJRPdX2UKGgGR0BxqSJ+DvmYaAdLvWgIR0C7UJTifg76dX2UKGgGR0BxxjfzjFQ3aAdLmWgIR0C7UJlEJBw/dX2UKGgGR0ByfNcmjTKDaAdLrmgIR0C7UJ/d69kCdX2UKGgGR0By1K9Ba9saaAdLvmgIR0C7UL2CqZMMdX2UKGgGR0ByQGRMewLWaAdLu2gIR0C7UNIk/r0KdX2UKGgGR0Bws4ouwosqaAdLsGgIR0C7UN/qcEvCdX2UKGgGR0BwRPTF2mpEaAdLtWgIR0C7UOXhfjS5dX2UKGgGR0BzZCnuRcNZaAdLv2gIR0C7UPWtEG7jdX2UKGgGR0BxZdd6cAinaAdLsWgIR0C7UPfRqoIfdX2UKGgGR0ByFBrZamoBaAdLomgIR0C7UQCWE9McdX2UKGgGR0B0Axmthd+oaAdL2mgIR0C7UQpd8iOedX2UKGgGR0Bw6x7x/d6+aAdLqWgIR0C7UQ6VMVUNdX2UKGgGR0Bw9OGetjkNaAdLsGgIR0C7USgTqSowdX2UKGgGR0Bw065BkZrIaAdLtGgIR0C7USxwyZa3dX2UKGgGR0By8KkgwGnoaAdLpmgIR0C7UTWhVU++dX2UKGgGR0Bz3juRcNYsaAdLxWgIR0C7UVXYtg8bdX2UKGgGR0BxPEmLLpzLaAdLsWgIR0C7UXPJA+pwdX2UKGgGR0By9bN2TxG2aAdLv2gIR0C7UYEPUaybdX2UKGgGR0BzJ0kqtozvaAdLwmgIR0C7UY7W3BpIdX2UKGgGR0ByLlNYbKigaAdLk2gIR0C7UaTD0lJIdX2UKGgGR0BzW7oA4n4PaAdLw2gIR0C7Ua2AG0NSdX2UKGgGR0BxXVJpWV/uaAdLumgIR0C7UbbMC9ytdX2UKGgGR0BxD7GCI1tPaAdLn2gIR0C7UcwFC9h7dX2UKGgGR0BzVTVwxWT5aAdLxGgIR0C7UcxNM496dX2UKGgGR0BwrP3AVO9GaAdLuGgIR0C7UdKXv6TGdX2UKGgGR0ByHwl8gIQfaAdLtmgIR0C7UdiXD3uedX2UKGgGR0BzKmZmZmZmaAdL2GgIR0C7UehdY4hmdX2UKGgGR0BwamNzbN8maAdLpWgIR0C7Ue2lEZzgdX2UKGgGR0BzPZM7EHdHaAdLyGgIR0C7UfY7eVLSdX2UKGgGR0Bx2xE8aGYbaAdLomgIR0C7UfcJhOQAdX2UKGgGR0Bx1QRODaoNaAdLrmgIR0C7UfvZdv87dX2UKGgGR0ByceEtdzGQaAdLm2gIR0C7Ug1yzXz2dX2UKGgGR0BwPyc9W6siaAdLomgIR0C7UkwnH/96dX2UKGgGR0BxW1AE+xGEaAdLwWgIR0C7UlemWMS9dX2UKGgGR0Bx7G2jO9nLaAdLumgIR0C7UlyGJvYOdX2UKGgGR0BxGIKKHfuUaAdLsmgIR0C7UnhLCemOdX2UKGgGR0BxuWgzxgAqaAdLvWgIR0C7Uo+wxFiKdX2UKGgGR0BwjkkgOjIraAdLo2gIR0C7UpXZ5AyEdX2UKGgGR0BwyoY64lQeaAdLo2gIR0C7Upw8r7O3dX2UKGgGR0Bz7BgjQiRoaAdLwWgIR0C7Up3gxagVdX2UKGgGR0Bx5+4UeuFIaAdLq2gIR0C7UrrrHEMtdX2UKGgGR0Bzw6N2ki2VaAdLyWgIR0C7UryFbmlqdX2UKGgGR0BxIzYwqRU4aAdLlGgIR0C7UsL9uP3jdX2UKGgGR0Byq4kOZssQaAdL1GgIR0C7Usjj3mFKdX2UKGgGR0BzzIi/wiJPaAdLvWgIR0C7UsoIjW07dX2UKGgGR0ByuDX2/SH/aAdLtWgIR0C7UtTfzjFRdX2UKGgGR0Bxe8qmTC+DaAdLwWgIR0C7Ut0bo8p1dX2UKGgGR0BzoBzfaYeDaAdLzWgIR0C7Uut1p0wKdX2UKGgGR0BzgmRyOq//aAdLpmgIR0C7UxI+4b0fdX2UKGgGR0BxM6KWLP2PaAdLomgIR0C7Uxw80UGndX2UKGgGR0BxBjWNFSbZaAdLqmgIR0C7UyEzCUHIdX2UKGgGR0B0KavW6K+BaAdLrWgIR0C7U0LFsHjZdX2UKGgGR0By8k4Qz1sdaAdLqGgIR0C7U13d9Dx9dX2UKGgGR0BwYJQIldC3aAdLu2gIR0C7U2k5yU9qdX2UKGgGR0BwixBt1p0waAdLtWgIR0C7U28VLzwudX2UKGgGR0BxanJFLFn7aAdLqmgIR0C7U4fZh8YydX2UKGgGR0BvHC+10DEFaAdLoWgIR0C7U4WNBF/hdX2UKGgGR0BxXo0l7dBTaAdLtGgIR0C7U4wTAWSEdX2UKGgGR0B0QVCJGe+VaAdLrmgIR0C7U6FbqyGBdX2UKGgGR0BwsJqVQhwEaAdLpmgIR0C7U6EPUaybdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2444, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |