from typing import List import os import fasttext.util class PreTrainedPipeline(): def __init__(self, path=""): """ Initialize model """ self.model = fasttext.load_model(os.path.join(path, 'debate2vec.bin')) def __call__(self, inputs: str) -> List[List[Dict[str, float]]]: """ Args: inputs (:obj:`str`): a string containing some text Return: A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing : - "label": A string representing what the label/class is. There can be multiple labels. - "score": A score between 0 and 1 describing how confident the model is for this label/class. """ preds = self.model.get_nearest_neighbors("dog", k=10) result = [] for distance, word in preds: result.append({"label": word, "score": distance}) return [result]