orhanxakarsu
commited on
Add new SentenceTransformer model
Browse files- 1_Pooling/config.json +10 -0
- README.md +546 -0
- config.json +25 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +65 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,546 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- tr
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- sentence-transformers
|
7 |
+
- sentence-similarity
|
8 |
+
- feature-extraction
|
9 |
+
- generated_from_trainer
|
10 |
+
- dataset_size:814596
|
11 |
+
- loss:MultipleNegativesRankingLoss
|
12 |
+
base_model: dbmdz/distilbert-base-turkish-cased
|
13 |
+
widget:
|
14 |
+
- source_sentence: Bir adam kitap okuyor.
|
15 |
+
sentences:
|
16 |
+
- Gözlüklü ve mavi gömlekli bir adam dizüstü bilgisayar ekranını okuyor.
|
17 |
+
- Suyun içinde olduğunun farkındasın.
|
18 |
+
- Plajda bir adam yüzüstü yatıp kitap okurken, puantiyeli bikinili bir kadın güneşleniyor.
|
19 |
+
- source_sentence: İki kişi parlak bir şekilde aydınlatılmış bir demiryolu geçidinin
|
20 |
+
yanında duruyor.
|
21 |
+
sentences:
|
22 |
+
- Balık kesen bir adam
|
23 |
+
- Uçakta bir hostes kahve servisi yapar.
|
24 |
+
- Demiryolu raylarının yanında iki kişi duruyor.
|
25 |
+
- source_sentence: Ağzında beyaz bir frizbi olan siyah beyaz köpek için frizbi fırlatan
|
26 |
+
beyaz gömlekli adam.
|
27 |
+
sentences:
|
28 |
+
- Hiçbir kardeşten bahsetmedi.
|
29 |
+
- Adam ve köpek su altında.
|
30 |
+
- Adam köpeğe frizbi atıyor
|
31 |
+
- source_sentence: Natüralist Sorgulamanın Mantığı.
|
32 |
+
sentences:
|
33 |
+
- İnsanlar otobüs bekliyor.
|
34 |
+
- Natüralist Sorgulamayı anlamak zordur.
|
35 |
+
- Natüralist Sorgulamanın anlaşılması kolaydır.
|
36 |
+
- source_sentence: İki kadın, Çin'deki bir markette bir ürüne bakıyor.
|
37 |
+
sentences:
|
38 |
+
- Kadınlar bir spor salonunda çalışıyorlar.
|
39 |
+
- Müzenin en büyüleyici parçaları arasında San Macro'daki Geçit Töreni yer alıyor.
|
40 |
+
- Alışveriş yapan iki kadın
|
41 |
+
pipeline_tag: sentence-similarity
|
42 |
+
library_name: sentence-transformers
|
43 |
+
metrics:
|
44 |
+
- cosine_accuracy
|
45 |
+
model-index:
|
46 |
+
- name: distilbert-base-turkish-case trained on AllNLI Turkish translate triplets
|
47 |
+
results:
|
48 |
+
- task:
|
49 |
+
type: triplet
|
50 |
+
name: Triplet
|
51 |
+
dataset:
|
52 |
+
name: all nli turkish dev
|
53 |
+
type: all-nli-turkish-dev
|
54 |
+
metrics:
|
55 |
+
- type: cosine_accuracy
|
56 |
+
value: 0.9801920038886863
|
57 |
+
name: Cosine Accuracy
|
58 |
+
---
|
59 |
+
|
60 |
+
# distilbert-base-turkish-case trained on AllNLI Turkish translate triplets
|
61 |
+
|
62 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [dbmdz/distilbert-base-turkish-cased](https://huggingface.co/dbmdz/distilbert-base-turkish-cased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
63 |
+
|
64 |
+
## Model Details
|
65 |
+
|
66 |
+
### Model Description
|
67 |
+
- **Model Type:** Sentence Transformer
|
68 |
+
- **Base model:** [dbmdz/distilbert-base-turkish-cased](https://huggingface.co/dbmdz/distilbert-base-turkish-cased) <!-- at revision 8ecd4d034c2612d4c5940795b4f2552a9f3543d6 -->
|
69 |
+
- **Maximum Sequence Length:** 512 tokens
|
70 |
+
- **Output Dimensionality:** 768 dimensions
|
71 |
+
- **Similarity Function:** Cosine Similarity
|
72 |
+
<!-- - **Training Dataset:** Unknown -->
|
73 |
+
- **Language:** tr
|
74 |
+
- **License:** apache-2.0
|
75 |
+
|
76 |
+
### Model Sources
|
77 |
+
|
78 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
79 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
80 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
81 |
+
|
82 |
+
### Full Model Architecture
|
83 |
+
|
84 |
+
```
|
85 |
+
SentenceTransformer(
|
86 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
|
87 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
88 |
+
)
|
89 |
+
```
|
90 |
+
|
91 |
+
## Usage
|
92 |
+
|
93 |
+
### Direct Usage (Sentence Transformers)
|
94 |
+
|
95 |
+
First install the Sentence Transformers library:
|
96 |
+
|
97 |
+
```bash
|
98 |
+
pip install -U sentence-transformers
|
99 |
+
```
|
100 |
+
|
101 |
+
Then you can load this model and run inference.
|
102 |
+
```python
|
103 |
+
from sentence_transformers import SentenceTransformer
|
104 |
+
|
105 |
+
# Download from the 🤗 Hub
|
106 |
+
model = SentenceTransformer("orhanxakarsu/sentence-distilbert-turkish")
|
107 |
+
# Run inference
|
108 |
+
sentences = [
|
109 |
+
"İki kadın, Çin'deki bir markette bir ürüne bakıyor.",
|
110 |
+
'Alışveriş yapan iki kadın',
|
111 |
+
'Kadınlar bir spor salonunda çalışıyorlar.',
|
112 |
+
]
|
113 |
+
embeddings = model.encode(sentences)
|
114 |
+
print(embeddings.shape)
|
115 |
+
# [3, 768]
|
116 |
+
|
117 |
+
# Get the similarity scores for the embeddings
|
118 |
+
similarities = model.similarity(embeddings, embeddings)
|
119 |
+
print(similarities.shape)
|
120 |
+
# [3, 3]
|
121 |
+
```
|
122 |
+
|
123 |
+
<!--
|
124 |
+
### Direct Usage (Transformers)
|
125 |
+
|
126 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
127 |
+
|
128 |
+
</details>
|
129 |
+
-->
|
130 |
+
|
131 |
+
<!--
|
132 |
+
### Downstream Usage (Sentence Transformers)
|
133 |
+
|
134 |
+
You can finetune this model on your own dataset.
|
135 |
+
|
136 |
+
<details><summary>Click to expand</summary>
|
137 |
+
|
138 |
+
</details>
|
139 |
+
-->
|
140 |
+
|
141 |
+
<!--
|
142 |
+
### Out-of-Scope Use
|
143 |
+
|
144 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
145 |
+
-->
|
146 |
+
|
147 |
+
## Evaluation
|
148 |
+
|
149 |
+
### Metrics
|
150 |
+
|
151 |
+
#### Triplet
|
152 |
+
|
153 |
+
* Dataset: `all-nli-turkish-dev`
|
154 |
+
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
|
155 |
+
|
156 |
+
| Metric | Value |
|
157 |
+
|:--------------------|:-----------|
|
158 |
+
| **cosine_accuracy** | **0.9802** |
|
159 |
+
|
160 |
+
<!--
|
161 |
+
## Bias, Risks and Limitations
|
162 |
+
|
163 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
164 |
+
-->
|
165 |
+
|
166 |
+
<!--
|
167 |
+
### Recommendations
|
168 |
+
|
169 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
170 |
+
-->
|
171 |
+
|
172 |
+
## Training Details
|
173 |
+
|
174 |
+
### Training Dataset
|
175 |
+
|
176 |
+
#### Unnamed Dataset
|
177 |
+
|
178 |
+
|
179 |
+
* Size: 814,596 training samples
|
180 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
181 |
+
* Approximate statistics based on the first 1000 samples:
|
182 |
+
| | anchor | positive | negative |
|
183 |
+
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
184 |
+
| type | string | string | string |
|
185 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 18.16 tokens</li><li>max: 91 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.54 tokens</li><li>max: 136 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.73 tokens</li><li>max: 29 tokens</li></ul> |
|
186 |
+
* Samples:
|
187 |
+
| anchor | positive | negative |
|
188 |
+
|:-----------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------|
|
189 |
+
| <code>Beyaz gömlekli ve güneş gözlüklü bir kadın, kucağında bir bebekle dışarıda bir sandalyede oturuyor.</code> | <code>Bebek yerden yukarıda oturuyor</code> | <code>Adam bir top atıyor</code> |
|
190 |
+
| <code>Mavi yakalı gömlek giyen ve kazaklı bir adam ve beyaz gömlek giyen hasır şapka takan bir kadın.</code> | <code>Yan yana bir erkek ve bir kadın var.</code> | <code>Evli bir çift akşam yemeği yiyor.</code> |
|
191 |
+
| <code>Adam içeride.</code> | <code>Siyah fötr şapkalı bir adam bir arenada boğaya biniyor.</code> | <code>Yeşil üniforma giyen beş subayla birlikte taş bir binanın önünde cep telefonuyla konuşan bir papaz; ikisi ayakta, diğerleri oturuyor.</code> |
|
192 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
193 |
+
```json
|
194 |
+
{
|
195 |
+
"scale": 20.0,
|
196 |
+
"similarity_fct": "cos_sim"
|
197 |
+
}
|
198 |
+
```
|
199 |
+
|
200 |
+
### Evaluation Dataset
|
201 |
+
|
202 |
+
#### Unnamed Dataset
|
203 |
+
|
204 |
+
|
205 |
+
* Size: 8,229 evaluation samples
|
206 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
207 |
+
* Approximate statistics based on the first 1000 samples:
|
208 |
+
| | anchor | positive | negative |
|
209 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
210 |
+
| type | string | string | string |
|
211 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 17.91 tokens</li><li>max: 80 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.62 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.01 tokens</li><li>max: 33 tokens</li></ul> |
|
212 |
+
* Samples:
|
213 |
+
| anchor | positive | negative |
|
214 |
+
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------|:-----------------------------------------------------------------|
|
215 |
+
| <code>Patlamanın büyüklüğünün güçlü bir örneği, Haragosha Tapınağı'nda bulunur, burada tapınağın kemerinin üst crosebar'ını görebilirsiniz, geri kalanı sertleşmiş lav tarafından batırılmıştır.</code> | <code>Patlamanın büyüklüğünün sonucu Haragosha Tapınağı'nda görülüyor.</code> | <code>Haragosha Tapınağı bu güne kadar tamamen sağlamdır.</code> |
|
216 |
+
| <code>Arkeolojik kazı yapan iki kişi.</code> | <code>Kazı yapan insanlar var.</code> | <code>Kimse kazmıyor.</code> |
|
217 |
+
| <code>İşçiler, Martins'in ünlü Louisiana sosis satıcısı çadırının önünde sıraya giren müşterilere hizmet veriyor</code> | <code>Müşteriler bir satıcı çadırının önünde sıraya giriyor.</code> | <code>Pamuk şeker yiyen bir grup insan var.</code> |
|
218 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
219 |
+
```json
|
220 |
+
{
|
221 |
+
"scale": 20.0,
|
222 |
+
"similarity_fct": "cos_sim"
|
223 |
+
}
|
224 |
+
```
|
225 |
+
|
226 |
+
### Training Hyperparameters
|
227 |
+
#### Non-Default Hyperparameters
|
228 |
+
|
229 |
+
- `eval_strategy`: steps
|
230 |
+
- `per_device_train_batch_size`: 64
|
231 |
+
- `per_device_eval_batch_size`: 64
|
232 |
+
- `learning_rate`: 2e-05
|
233 |
+
- `num_train_epochs`: 10
|
234 |
+
- `warmup_ratio`: 0.1
|
235 |
+
- `fp16`: True
|
236 |
+
- `batch_sampler`: no_duplicates
|
237 |
+
|
238 |
+
#### All Hyperparameters
|
239 |
+
<details><summary>Click to expand</summary>
|
240 |
+
|
241 |
+
- `overwrite_output_dir`: False
|
242 |
+
- `do_predict`: False
|
243 |
+
- `eval_strategy`: steps
|
244 |
+
- `prediction_loss_only`: True
|
245 |
+
- `per_device_train_batch_size`: 64
|
246 |
+
- `per_device_eval_batch_size`: 64
|
247 |
+
- `per_gpu_train_batch_size`: None
|
248 |
+
- `per_gpu_eval_batch_size`: None
|
249 |
+
- `gradient_accumulation_steps`: 1
|
250 |
+
- `eval_accumulation_steps`: None
|
251 |
+
- `torch_empty_cache_steps`: None
|
252 |
+
- `learning_rate`: 2e-05
|
253 |
+
- `weight_decay`: 0.0
|
254 |
+
- `adam_beta1`: 0.9
|
255 |
+
- `adam_beta2`: 0.999
|
256 |
+
- `adam_epsilon`: 1e-08
|
257 |
+
- `max_grad_norm`: 1.0
|
258 |
+
- `num_train_epochs`: 10
|
259 |
+
- `max_steps`: -1
|
260 |
+
- `lr_scheduler_type`: linear
|
261 |
+
- `lr_scheduler_kwargs`: {}
|
262 |
+
- `warmup_ratio`: 0.1
|
263 |
+
- `warmup_steps`: 0
|
264 |
+
- `log_level`: passive
|
265 |
+
- `log_level_replica`: warning
|
266 |
+
- `log_on_each_node`: True
|
267 |
+
- `logging_nan_inf_filter`: True
|
268 |
+
- `save_safetensors`: True
|
269 |
+
- `save_on_each_node`: False
|
270 |
+
- `save_only_model`: False
|
271 |
+
- `restore_callback_states_from_checkpoint`: False
|
272 |
+
- `no_cuda`: False
|
273 |
+
- `use_cpu`: False
|
274 |
+
- `use_mps_device`: False
|
275 |
+
- `seed`: 42
|
276 |
+
- `data_seed`: None
|
277 |
+
- `jit_mode_eval`: False
|
278 |
+
- `use_ipex`: False
|
279 |
+
- `bf16`: False
|
280 |
+
- `fp16`: True
|
281 |
+
- `fp16_opt_level`: O1
|
282 |
+
- `half_precision_backend`: auto
|
283 |
+
- `bf16_full_eval`: False
|
284 |
+
- `fp16_full_eval`: False
|
285 |
+
- `tf32`: None
|
286 |
+
- `local_rank`: 0
|
287 |
+
- `ddp_backend`: None
|
288 |
+
- `tpu_num_cores`: None
|
289 |
+
- `tpu_metrics_debug`: False
|
290 |
+
- `debug`: []
|
291 |
+
- `dataloader_drop_last`: False
|
292 |
+
- `dataloader_num_workers`: 0
|
293 |
+
- `dataloader_prefetch_factor`: None
|
294 |
+
- `past_index`: -1
|
295 |
+
- `disable_tqdm`: False
|
296 |
+
- `remove_unused_columns`: True
|
297 |
+
- `label_names`: None
|
298 |
+
- `load_best_model_at_end`: False
|
299 |
+
- `ignore_data_skip`: False
|
300 |
+
- `fsdp`: []
|
301 |
+
- `fsdp_min_num_params`: 0
|
302 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
303 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
304 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
305 |
+
- `deepspeed`: None
|
306 |
+
- `label_smoothing_factor`: 0.0
|
307 |
+
- `optim`: adamw_torch
|
308 |
+
- `optim_args`: None
|
309 |
+
- `adafactor`: False
|
310 |
+
- `group_by_length`: False
|
311 |
+
- `length_column_name`: length
|
312 |
+
- `ddp_find_unused_parameters`: None
|
313 |
+
- `ddp_bucket_cap_mb`: None
|
314 |
+
- `ddp_broadcast_buffers`: False
|
315 |
+
- `dataloader_pin_memory`: True
|
316 |
+
- `dataloader_persistent_workers`: False
|
317 |
+
- `skip_memory_metrics`: True
|
318 |
+
- `use_legacy_prediction_loop`: False
|
319 |
+
- `push_to_hub`: False
|
320 |
+
- `resume_from_checkpoint`: None
|
321 |
+
- `hub_model_id`: None
|
322 |
+
- `hub_strategy`: every_save
|
323 |
+
- `hub_private_repo`: False
|
324 |
+
- `hub_always_push`: False
|
325 |
+
- `gradient_checkpointing`: False
|
326 |
+
- `gradient_checkpointing_kwargs`: None
|
327 |
+
- `include_inputs_for_metrics`: False
|
328 |
+
- `eval_do_concat_batches`: True
|
329 |
+
- `fp16_backend`: auto
|
330 |
+
- `push_to_hub_model_id`: None
|
331 |
+
- `push_to_hub_organization`: None
|
332 |
+
- `mp_parameters`:
|
333 |
+
- `auto_find_batch_size`: False
|
334 |
+
- `full_determinism`: False
|
335 |
+
- `torchdynamo`: None
|
336 |
+
- `ray_scope`: last
|
337 |
+
- `ddp_timeout`: 1800
|
338 |
+
- `torch_compile`: False
|
339 |
+
- `torch_compile_backend`: None
|
340 |
+
- `torch_compile_mode`: None
|
341 |
+
- `dispatch_batches`: None
|
342 |
+
- `split_batches`: None
|
343 |
+
- `include_tokens_per_second`: False
|
344 |
+
- `include_num_input_tokens_seen`: False
|
345 |
+
- `neftune_noise_alpha`: None
|
346 |
+
- `optim_target_modules`: None
|
347 |
+
- `batch_eval_metrics`: False
|
348 |
+
- `eval_on_start`: False
|
349 |
+
- `eval_use_gather_object`: False
|
350 |
+
- `prompts`: None
|
351 |
+
- `batch_sampler`: no_duplicates
|
352 |
+
- `multi_dataset_batch_sampler`: proportional
|
353 |
+
|
354 |
+
</details>
|
355 |
+
|
356 |
+
### Training Logs
|
357 |
+
<details><summary>Click to expand</summary>
|
358 |
+
|
359 |
+
| Epoch | Step | Training Loss | Validation Loss | all-nli-turkish-dev_cosine_accuracy |
|
360 |
+
|:------:|:------:|:-------------:|:---------------:|:-----------------------------------:|
|
361 |
+
| 0 | 0 | - | - | 0.5808 |
|
362 |
+
| 0.0786 | 1000 | 3.5327 | 1.9481 | 0.7607 |
|
363 |
+
| 0.1571 | 2000 | 1.5833 | 1.2787 | 0.8260 |
|
364 |
+
| 0.2357 | 3000 | 1.2338 | 1.0960 | 0.8533 |
|
365 |
+
| 0.3142 | 4000 | 1.1031 | 0.9897 | 0.8695 |
|
366 |
+
| 0.3928 | 5000 | 0.998 | 0.9077 | 0.8793 |
|
367 |
+
| 0.4714 | 6000 | 0.9412 | 0.8434 | 0.8914 |
|
368 |
+
| 0.5499 | 7000 | 0.8703 | 0.7904 | 0.8982 |
|
369 |
+
| 0.6285 | 8000 | 0.8094 | 0.7311 | 0.9068 |
|
370 |
+
| 0.7070 | 9000 | 0.7653 | 0.6894 | 0.9086 |
|
371 |
+
| 0.7856 | 10000 | 0.7248 | 0.6509 | 0.9162 |
|
372 |
+
| 0.8642 | 11000 | 0.673 | 0.6145 | 0.9205 |
|
373 |
+
| 0.9427 | 12000 | 0.6514 | 0.5762 | 0.9273 |
|
374 |
+
| 1.0213 | 13000 | 0.6259 | 0.5463 | 0.9334 |
|
375 |
+
| 1.0999 | 14000 | 0.5874 | 0.5276 | 0.9332 |
|
376 |
+
| 1.1784 | 15000 | 0.5518 | 0.5053 | 0.9366 |
|
377 |
+
| 1.2570 | 16000 | 0.5277 | 0.4783 | 0.9391 |
|
378 |
+
| 1.3355 | 17000 | 0.5075 | 0.4571 | 0.9419 |
|
379 |
+
| 1.4141 | 18000 | 0.4906 | 0.4379 | 0.9454 |
|
380 |
+
| 1.4927 | 19000 | 0.475 | 0.4234 | 0.9465 |
|
381 |
+
| 1.5712 | 20000 | 0.447 | 0.4046 | 0.9499 |
|
382 |
+
| 1.6498 | 21000 | 0.4307 | 0.3908 | 0.9508 |
|
383 |
+
| 1.7283 | 22000 | 0.4126 | 0.3773 | 0.9548 |
|
384 |
+
| 1.8069 | 23000 | 0.3985 | 0.3654 | 0.9564 |
|
385 |
+
| 1.8855 | 24000 | 0.3748 | 0.3582 | 0.9560 |
|
386 |
+
| 1.9640 | 25000 | 0.3675 | 0.3449 | 0.9581 |
|
387 |
+
| 2.0426 | 26000 | 0.3545 | 0.3390 | 0.9586 |
|
388 |
+
| 2.1211 | 27000 | 0.3456 | 0.3335 | 0.9595 |
|
389 |
+
| 2.1997 | 28000 | 0.3295 | 0.3255 | 0.9626 |
|
390 |
+
| 2.2783 | 29000 | 0.3198 | 0.3146 | 0.9624 |
|
391 |
+
| 2.3568 | 30000 | 0.3107 | 0.3101 | 0.9642 |
|
392 |
+
| 2.4354 | 31000 | 0.3139 | 0.3014 | 0.9665 |
|
393 |
+
| 2.5139 | 32000 | 0.2982 | 0.3005 | 0.9659 |
|
394 |
+
| 2.5925 | 33000 | 0.2903 | 0.2891 | 0.9663 |
|
395 |
+
| 2.6711 | 34000 | 0.2778 | 0.2859 | 0.9662 |
|
396 |
+
| 2.7496 | 35000 | 0.2731 | 0.2812 | 0.9667 |
|
397 |
+
| 2.8282 | 36000 | 0.2613 | 0.2757 | 0.9677 |
|
398 |
+
| 2.9067 | 37000 | 0.2566 | 0.2680 | 0.9689 |
|
399 |
+
| 2.9853 | 38000 | 0.2488 | 0.2674 | 0.9699 |
|
400 |
+
| 3.0639 | 39000 | 0.2434 | 0.2594 | 0.9694 |
|
401 |
+
| 3.1424 | 40000 | 0.2375 | 0.2574 | 0.9705 |
|
402 |
+
| 3.2210 | 41000 | 0.2295 | 0.2553 | 0.9706 |
|
403 |
+
| 3.2996 | 42000 | 0.223 | 0.2501 | 0.9703 |
|
404 |
+
| 3.3781 | 43000 | 0.2209 | 0.2455 | 0.9719 |
|
405 |
+
| 3.4567 | 44000 | 0.2211 | 0.2409 | 0.9711 |
|
406 |
+
| 3.5352 | 45000 | 0.2097 | 0.2396 | 0.9728 |
|
407 |
+
| 3.6138 | 46000 | 0.2068 | 0.2345 | 0.9734 |
|
408 |
+
| 3.6924 | 47000 | 0.1994 | 0.2298 | 0.9731 |
|
409 |
+
| 3.7709 | 48000 | 0.1986 | 0.2299 | 0.9730 |
|
410 |
+
| 3.8495 | 49000 | 0.1878 | 0.2271 | 0.9728 |
|
411 |
+
| 3.9280 | 50000 | 0.1872 | 0.2244 | 0.9739 |
|
412 |
+
| 4.0066 | 51000 | 0.1821 | 0.2249 | 0.9734 |
|
413 |
+
| 4.0852 | 52000 | 0.1823 | 0.2188 | 0.9739 |
|
414 |
+
| 4.1637 | 53000 | 0.1736 | 0.2176 | 0.9748 |
|
415 |
+
| 4.2423 | 54000 | 0.1691 | 0.2152 | 0.9745 |
|
416 |
+
| 4.3208 | 55000 | 0.1665 | 0.2148 | 0.9753 |
|
417 |
+
| 4.3994 | 56000 | 0.1663 | 0.2133 | 0.9748 |
|
418 |
+
| 4.4780 | 57000 | 0.1666 | 0.2123 | 0.9755 |
|
419 |
+
| 4.5565 | 58000 | 0.1589 | 0.2082 | 0.9758 |
|
420 |
+
| 4.6351 | 59000 | 0.155 | 0.2053 | 0.9762 |
|
421 |
+
| 4.7136 | 60000 | 0.155 | 0.2037 | 0.9762 |
|
422 |
+
| 4.7922 | 61000 | 0.1536 | 0.2031 | 0.9764 |
|
423 |
+
| 4.8708 | 62000 | 0.1443 | 0.2020 | 0.9759 |
|
424 |
+
| 4.9493 | 63000 | 0.146 | 0.1999 | 0.9752 |
|
425 |
+
| 5.0279 | 64000 | 0.1417 | 0.1969 | 0.9764 |
|
426 |
+
| 5.1064 | 65000 | 0.1407 | 0.1966 | 0.9761 |
|
427 |
+
| 5.1850 | 66000 | 0.1342 | 0.1981 | 0.9757 |
|
428 |
+
| 5.2636 | 67000 | 0.1342 | 0.1933 | 0.9768 |
|
429 |
+
| 5.3421 | 68000 | 0.1312 | 0.1944 | 0.9758 |
|
430 |
+
| 5.4207 | 69000 | 0.1329 | 0.1932 | 0.9772 |
|
431 |
+
| 5.4993 | 70000 | 0.1304 | 0.1908 | 0.9768 |
|
432 |
+
| 5.5778 | 71000 | 0.1247 | 0.1880 | 0.9772 |
|
433 |
+
| 5.6564 | 72000 | 0.1221 | 0.1861 | 0.9779 |
|
434 |
+
| 5.7349 | 73000 | 0.1225 | 0.1831 | 0.9784 |
|
435 |
+
| 5.8135 | 74000 | 0.1205 | 0.1854 | 0.9790 |
|
436 |
+
| 5.8921 | 75000 | 0.1152 | 0.1815 | 0.9789 |
|
437 |
+
| 5.9706 | 76000 | 0.1161 | 0.1827 | 0.9782 |
|
438 |
+
| 6.0492 | 77000 | 0.1151 | 0.1819 | 0.9781 |
|
439 |
+
| 6.1277 | 78000 | 0.113 | 0.1818 | 0.9780 |
|
440 |
+
| 6.2063 | 79000 | 0.1102 | 0.1823 | 0.9784 |
|
441 |
+
| 6.2849 | 80000 | 0.1067 | 0.1798 | 0.9780 |
|
442 |
+
| 6.3634 | 81000 | 0.1067 | 0.1782 | 0.9790 |
|
443 |
+
| 6.4420 | 82000 | 0.1116 | 0.1779 | 0.9782 |
|
444 |
+
| 6.5205 | 83000 | 0.107 | 0.1752 | 0.9782 |
|
445 |
+
| 6.5991 | 84000 | 0.1039 | 0.1739 | 0.9792 |
|
446 |
+
| 6.6777 | 85000 | 0.1013 | 0.1728 | 0.9789 |
|
447 |
+
| 6.7562 | 86000 | 0.1029 | 0.1713 | 0.9786 |
|
448 |
+
| 6.8348 | 87000 | 0.0972 | 0.1721 | 0.9791 |
|
449 |
+
| 6.9133 | 88000 | 0.0991 | 0.1703 | 0.9790 |
|
450 |
+
| 6.9919 | 89000 | 0.0955 | 0.1708 | 0.9791 |
|
451 |
+
| 7.0705 | 90000 | 0.097 | 0.1715 | 0.9786 |
|
452 |
+
| 7.1490 | 91000 | 0.0941 | 0.1716 | 0.9793 |
|
453 |
+
| 7.2276 | 92000 | 0.0922 | 0.1712 | 0.9795 |
|
454 |
+
| 7.3062 | 93000 | 0.0921 | 0.1706 | 0.9789 |
|
455 |
+
| 7.3847 | 94000 | 0.091 | 0.1691 | 0.9793 |
|
456 |
+
| 7.4633 | 95000 | 0.0942 | 0.1689 | 0.9787 |
|
457 |
+
| 7.5418 | 96000 | 0.0905 | 0.1678 | 0.9790 |
|
458 |
+
| 7.6204 | 97000 | 0.0871 | 0.1664 | 0.9792 |
|
459 |
+
| 7.6990 | 98000 | 0.0859 | 0.1666 | 0.9793 |
|
460 |
+
| 7.7775 | 99000 | 0.0876 | 0.1656 | 0.9785 |
|
461 |
+
| 7.8561 | 100000 | 0.084 | 0.1643 | 0.9795 |
|
462 |
+
| 7.9346 | 101000 | 0.0853 | 0.1654 | 0.9795 |
|
463 |
+
| 8.0132 | 102000 | 0.083 | 0.1640 | 0.9789 |
|
464 |
+
| 8.0918 | 103000 | 0.0849 | 0.1637 | 0.9795 |
|
465 |
+
| 8.1703 | 104000 | 0.0816 | 0.1626 | 0.9797 |
|
466 |
+
| 8.2489 | 105000 | 0.0803 | 0.1627 | 0.9796 |
|
467 |
+
| 8.3274 | 106000 | 0.0802 | 0.1623 | 0.9796 |
|
468 |
+
| 8.4060 | 107000 | 0.0808 | 0.1622 | 0.9798 |
|
469 |
+
| 8.4846 | 108000 | 0.0836 | 0.1632 | 0.9792 |
|
470 |
+
| 8.5631 | 109000 | 0.0791 | 0.1612 | 0.9796 |
|
471 |
+
| 8.6417 | 110000 | 0.0761 | 0.1609 | 0.9798 |
|
472 |
+
| 8.7202 | 111000 | 0.0782 | 0.1604 | 0.9797 |
|
473 |
+
| 8.7988 | 112000 | 0.0784 | 0.1604 | 0.9803 |
|
474 |
+
| 8.8774 | 113000 | 0.0737 | 0.1600 | 0.9804 |
|
475 |
+
| 8.9559 | 114000 | 0.0762 | 0.1602 | 0.9799 |
|
476 |
+
| 9.0345 | 115000 | 0.0764 | 0.1597 | 0.9802 |
|
477 |
+
| 9.1130 | 116000 | 0.0761 | 0.1600 | 0.9799 |
|
478 |
+
| 9.1916 | 117000 | 0.0729 | 0.1592 | 0.9797 |
|
479 |
+
| 9.2702 | 118000 | 0.0728 | 0.1595 | 0.9803 |
|
480 |
+
| 9.3487 | 119000 | 0.0722 | 0.1590 | 0.9798 |
|
481 |
+
| 9.4273 | 120000 | 0.0745 | 0.1591 | 0.9797 |
|
482 |
+
| 9.5059 | 121000 | 0.0741 | 0.1591 | 0.9798 |
|
483 |
+
| 9.5844 | 122000 | 0.0715 | 0.1587 | 0.9797 |
|
484 |
+
| 9.6630 | 123000 | 0.0719 | 0.1581 | 0.9799 |
|
485 |
+
| 9.7415 | 124000 | 0.0716 | 0.1578 | 0.9799 |
|
486 |
+
| 9.8201 | 125000 | 0.0714 | 0.1582 | 0.9801 |
|
487 |
+
| 9.8987 | 126000 | 0.0712 | 0.1579 | 0.9803 |
|
488 |
+
| 9.9772 | 127000 | 0.0707 | 0.1581 | 0.9802 |
|
489 |
+
|
490 |
+
</details>
|
491 |
+
|
492 |
+
### Framework Versions
|
493 |
+
- Python: 3.12.4
|
494 |
+
- Sentence Transformers: 3.3.1
|
495 |
+
- Transformers: 4.44.2
|
496 |
+
- PyTorch: 2.4.1+cu124
|
497 |
+
- Accelerate: 0.33.0
|
498 |
+
- Datasets: 3.1.0
|
499 |
+
- Tokenizers: 0.19.1
|
500 |
+
|
501 |
+
## Citation
|
502 |
+
|
503 |
+
### BibTeX
|
504 |
+
|
505 |
+
#### Sentence Transformers
|
506 |
+
```bibtex
|
507 |
+
@inproceedings{reimers-2019-sentence-bert,
|
508 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
509 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
510 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
511 |
+
month = "11",
|
512 |
+
year = "2019",
|
513 |
+
publisher = "Association for Computational Linguistics",
|
514 |
+
url = "https://arxiv.org/abs/1908.10084",
|
515 |
+
}
|
516 |
+
```
|
517 |
+
|
518 |
+
#### MultipleNegativesRankingLoss
|
519 |
+
```bibtex
|
520 |
+
@misc{henderson2017efficient,
|
521 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
522 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
523 |
+
year={2017},
|
524 |
+
eprint={1705.00652},
|
525 |
+
archivePrefix={arXiv},
|
526 |
+
primaryClass={cs.CL}
|
527 |
+
}
|
528 |
+
```
|
529 |
+
|
530 |
+
<!--
|
531 |
+
## Glossary
|
532 |
+
|
533 |
+
*Clearly define terms in order to be accessible across audiences.*
|
534 |
+
-->
|
535 |
+
|
536 |
+
<!--
|
537 |
+
## Model Card Authors
|
538 |
+
|
539 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
540 |
+
-->
|
541 |
+
|
542 |
+
<!--
|
543 |
+
## Model Card Contact
|
544 |
+
|
545 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
546 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "models/dbmdz/distilbert-base-turkish-cased-all-nli-turkish-translate-triplet/final",
|
3 |
+
"activation": "gelu",
|
4 |
+
"architectures": [
|
5 |
+
"DistilBertModel"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0.1,
|
8 |
+
"dim": 768,
|
9 |
+
"dropout": 0.1,
|
10 |
+
"hidden_dim": 3072,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"max_position_embeddings": 512,
|
13 |
+
"model_type": "distilbert",
|
14 |
+
"n_heads": 12,
|
15 |
+
"n_layers": 6,
|
16 |
+
"output_past": true,
|
17 |
+
"pad_token_id": 0,
|
18 |
+
"qa_dropout": 0.1,
|
19 |
+
"seq_classif_dropout": 0.2,
|
20 |
+
"sinusoidal_pos_embds": true,
|
21 |
+
"tie_weights_": true,
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"transformers_version": "4.44.2",
|
24 |
+
"vocab_size": 32000
|
25 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.44.2",
|
5 |
+
"pytorch": "2.4.1+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be6e214abf9f46e9096ef497549a500cf9587c5755beb6173b7e8b0ec32c3dbe
|
3 |
+
size 270003032
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": false,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"max_len": 512,
|
50 |
+
"max_length": 512,
|
51 |
+
"model_max_length": 512,
|
52 |
+
"never_split": null,
|
53 |
+
"pad_to_multiple_of": null,
|
54 |
+
"pad_token": "[PAD]",
|
55 |
+
"pad_token_type_id": 0,
|
56 |
+
"padding_side": "right",
|
57 |
+
"sep_token": "[SEP]",
|
58 |
+
"stride": 0,
|
59 |
+
"strip_accents": null,
|
60 |
+
"tokenize_chinese_chars": true,
|
61 |
+
"tokenizer_class": "DistilBertTokenizer",
|
62 |
+
"truncation_side": "right",
|
63 |
+
"truncation_strategy": "longest_first",
|
64 |
+
"unk_token": "[UNK]"
|
65 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|