--- tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: MiniLMv2-L12-H384-distilled-from-RoBERTa-Large-distilled-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.94 --- # MiniLMv2-L12-H384-distilled-from-RoBERTa-Large-distilled-clinc This model is a fine-tuned version of [nreimers/MiniLMv2-L12-H384-distilled-from-RoBERTa-Large](https://huggingface.co/nreimers/MiniLMv2-L12-H384-distilled-from-RoBERTa-Large) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.3479 - Accuracy: 0.94 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 60 | 0.8171 | 0.2490 | | No log | 2.0 | 120 | 0.7039 | 0.6568 | | No log | 3.0 | 180 | 0.6067 | 0.7932 | | 0.7269 | 4.0 | 240 | 0.5270 | 0.8674 | | 0.7269 | 5.0 | 300 | 0.4659 | 0.9010 | | 0.7269 | 6.0 | 360 | 0.4201 | 0.9194 | | 0.7269 | 7.0 | 420 | 0.3867 | 0.9352 | | 0.4426 | 8.0 | 480 | 0.3649 | 0.9352 | | 0.4426 | 9.0 | 540 | 0.3520 | 0.9403 | | 0.4426 | 10.0 | 600 | 0.3479 | 0.94 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3