OpenSourceRonin commited on
Commit
15763ee
1 Parent(s): 4c7be39

add config

Browse files
config.json ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "DeepseekV3ForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_deepseek.DeepseekV3Config",
9
+ "AutoModel": "modeling_deepseek.DeepseekV3Model",
10
+ "AutoModelForCausalLM": "modeling_deepseek.DeepseekV3ForCausalLM"
11
+ },
12
+ "aux_loss_alpha": 0.001,
13
+ "bos_token_id": 0,
14
+ "eos_token_id": 1,
15
+ "ep_size": 1,
16
+ "first_k_dense_replace": 3,
17
+ "hidden_act": "silu",
18
+ "hidden_size": 7168,
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 18432,
21
+ "kv_lora_rank": 512,
22
+ "max_position_embeddings": 163840,
23
+ "model_type": "deepseek_v3",
24
+ "moe_intermediate_size": 2048,
25
+ "moe_layer_freq": 1,
26
+ "n_group": 8,
27
+ "n_routed_experts": 256,
28
+ "n_shared_experts": 1,
29
+ "norm_topk_prob": true,
30
+ "num_attention_heads": 128,
31
+ "num_experts_per_tok": 8,
32
+ "num_hidden_layers": 61,
33
+ "num_key_value_heads": 128,
34
+ "num_nextn_predict_layers": 1,
35
+ "pretraining_tp": 1,
36
+ "q_lora_rank": 1536,
37
+ "qk_nope_head_dim": 128,
38
+ "qk_rope_head_dim": 64,
39
+ "quantization_config": {
40
+ "activation_scheme": "dynamic",
41
+ "fmt": "e4m3",
42
+ "quant_method": "fp8",
43
+ "weight_block_size": [
44
+ 128,
45
+ 128
46
+ ]
47
+ },
48
+ "rms_norm_eps": 1e-06,
49
+ "rope_scaling": {
50
+ "beta_fast": 32,
51
+ "beta_slow": 1,
52
+ "factor": 40,
53
+ "mscale": 1.0,
54
+ "mscale_all_dim": 1.0,
55
+ "original_max_position_embeddings": 4096,
56
+ "type": "yarn"
57
+ },
58
+ "rope_theta": 10000,
59
+ "routed_scaling_factor": 2.5,
60
+ "scoring_func": "sigmoid",
61
+ "seq_aux": true,
62
+ "tie_word_embeddings": false,
63
+ "topk_group": 4,
64
+ "topk_method": "noaux_tc",
65
+ "torch_dtype": "bfloat16",
66
+ "transformers_version": "4.33.1",
67
+ "use_cache": true,
68
+ "v_head_dim": 128,
69
+ "vocab_size": 129280
70
+ }
configuration_deepseek.py ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.configuration_utils import PretrainedConfig
2
+ from transformers.utils import logging
3
+
4
+ logger = logging.get_logger(__name__)
5
+
6
+ DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
7
+ class DeepseekV3Config(PretrainedConfig):
8
+ r"""
9
+ This is the configuration class to store the configuration of a [`DeepseekV3Model`]. It is used to instantiate an DeepSeek
10
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
11
+ defaults will yield a similar configuration to that of the DeepSeek-V3.
12
+
13
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
14
+ documentation from [`PretrainedConfig`] for more information.
15
+
16
+
17
+ Args:
18
+ vocab_size (`int`, *optional*, defaults to 129280):
19
+ Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the
20
+ `inputs_ids` passed when calling [`DeepseekV3Model`]
21
+ hidden_size (`int`, *optional*, defaults to 4096):
22
+ Dimension of the hidden representations.
23
+ intermediate_size (`int`, *optional*, defaults to 11008):
24
+ Dimension of the MLP representations.
25
+ moe_intermediate_size (`int`, *optional*, defaults to 1407):
26
+ Dimension of the MoE representations.
27
+ num_hidden_layers (`int`, *optional*, defaults to 32):
28
+ Number of hidden layers in the Transformer decoder.
29
+ num_nextn_predict_layers (`int`, *optional*, defaults to 1):
30
+ Number of nextn predict layers in the DeepSeekV3 Model.
31
+ num_attention_heads (`int`, *optional*, defaults to 32):
32
+ Number of attention heads for each attention layer in the Transformer decoder.
33
+ n_shared_experts (`int`, *optional*, defaults to None):
34
+ Number of shared experts, None means dense model.
35
+ n_routed_experts (`int`, *optional*, defaults to None):
36
+ Number of routed experts, None means dense model.
37
+ routed_scaling_factor (`float`, *optional*, defaults to 1.0):
38
+ Scaling factor or routed experts.
39
+ topk_method (`str`, *optional*, defaults to `gready`):
40
+ Topk method used in routed gate.
41
+ n_group (`int`, *optional*, defaults to None):
42
+ Number of groups for routed experts.
43
+ topk_group (`int`, *optional*, defaults to None):
44
+ Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups).
45
+ num_experts_per_tok (`int`, *optional*, defaults to None):
46
+ Number of selected experts, None means dense model.
47
+ moe_layer_freq (`int`, *optional*, defaults to 1):
48
+ The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers.
49
+ first_k_dense_replace (`int`, *optional*, defaults to 0):
50
+ Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head).
51
+ \--k dense layers--/
52
+ norm_topk_prob (`bool`, *optional*, defaults to False):
53
+ Whether to normalize the weights of the routed experts.
54
+ scoring_func (`str`, *optional*, defaults to 'softmax'):
55
+ Method of computing expert weights.
56
+ aux_loss_alpha (`float`, *optional*, defaults to 0.001):
57
+ Auxiliary loss weight coefficient.
58
+ seq_aux = (`bool`, *optional*, defaults to True):
59
+ Whether to compute the auxiliary loss for each individual sample.
60
+ num_key_value_heads (`int`, *optional*):
61
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
62
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
63
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
64
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
65
+ by meanpooling all the original heads within that group. For more details checkout [this
66
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
67
+ `num_attention_heads`.
68
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
69
+ The non-linear activation function (function or string) in the decoder.
70
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
71
+ The maximum sequence length that this model might ever be used with.
72
+ initializer_range (`float`, *optional*, defaults to 0.02):
73
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
74
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
75
+ The epsilon used by the rms normalization layers.
76
+ use_cache (`bool`, *optional*, defaults to `True`):
77
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
78
+ relevant if `config.is_decoder=True`.
79
+ pad_token_id (`int`, *optional*):
80
+ Padding token id.
81
+ bos_token_id (`int`, *optional*, defaults to 1):
82
+ Beginning of stream token id.
83
+ eos_token_id (`int`, *optional*, defaults to 2):
84
+ End of stream token id.
85
+ pretraining_tp (`int`, *optional*, defaults to 1):
86
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
87
+ document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
88
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
89
+ issue](https://github.com/pytorch/pytorch/issues/76232).
90
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
91
+ Whether to tie weight embeddings
92
+ rope_theta (`float`, *optional*, defaults to 10000.0):
93
+ The base period of the RoPE embeddings.
94
+ rope_scaling (`Dict`, *optional*):
95
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
96
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
97
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
98
+ `max_position_embeddings` to the expected new maximum.
99
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
100
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
101
+ attention_dropout (`float`, *optional*, defaults to 0.0):
102
+ The dropout ratio for the attention probabilities.
103
+
104
+ ```python
105
+ >>> from transformers import DeepseekV3Model, DeepseekV3Config
106
+
107
+ >>> # Initializing a Deepseek-V3 style configuration
108
+ >>> configuration = DeepseekV3Config()
109
+
110
+ >>> # Accessing the model configuration
111
+ >>> configuration = model.config
112
+ ```"""
113
+
114
+ model_type = "deepseek_v3"
115
+ keys_to_ignore_at_inference = ["past_key_values"]
116
+
117
+ def __init__(
118
+ self,
119
+ vocab_size=129280,
120
+ hidden_size=7168,
121
+ intermediate_size=18432,
122
+ moe_intermediate_size = 2048,
123
+ num_hidden_layers=61,
124
+ num_nextn_predict_layers=1,
125
+ num_attention_heads=128,
126
+ num_key_value_heads=128,
127
+ n_shared_experts = 1,
128
+ n_routed_experts = 256,
129
+ ep_size = 1,
130
+ routed_scaling_factor = 2.5,
131
+ kv_lora_rank = 512,
132
+ q_lora_rank = 1536,
133
+ qk_rope_head_dim = 64,
134
+ v_head_dim = 128,
135
+ qk_nope_head_dim = 128,
136
+ topk_method = 'noaux_tc',
137
+ n_group = 8,
138
+ topk_group = 4,
139
+ num_experts_per_tok = 8,
140
+ moe_layer_freq = 1,
141
+ first_k_dense_replace = 3,
142
+ norm_topk_prob = True,
143
+ scoring_func = 'sigmoid',
144
+ aux_loss_alpha = 0.001,
145
+ seq_aux = True,
146
+ hidden_act="silu",
147
+ max_position_embeddings=4096,
148
+ initializer_range=0.02,
149
+ rms_norm_eps=1e-6,
150
+ use_cache=True,
151
+ pad_token_id=None,
152
+ bos_token_id=0,
153
+ eos_token_id=1,
154
+ pretraining_tp=1,
155
+ tie_word_embeddings=False,
156
+ rope_theta=10000.0,
157
+ rope_scaling=None,
158
+ attention_bias=False,
159
+ attention_dropout=0.0,
160
+ **kwargs,
161
+ ):
162
+ self.vocab_size = vocab_size
163
+ self.max_position_embeddings = max_position_embeddings
164
+ self.hidden_size = hidden_size
165
+ self.intermediate_size = intermediate_size
166
+ self.moe_intermediate_size = moe_intermediate_size
167
+ self.num_hidden_layers = num_hidden_layers
168
+ self.num_nextn_predict_layers = num_nextn_predict_layers
169
+ self.num_attention_heads = num_attention_heads
170
+ self.n_shared_experts = n_shared_experts
171
+ self.n_routed_experts = n_routed_experts
172
+ self.ep_size = ep_size
173
+ self.routed_scaling_factor = routed_scaling_factor
174
+ self.kv_lora_rank = kv_lora_rank
175
+ self.q_lora_rank = q_lora_rank
176
+ self.qk_rope_head_dim = qk_rope_head_dim
177
+ self.v_head_dim = v_head_dim
178
+ self.qk_nope_head_dim = qk_nope_head_dim
179
+ self.topk_method = topk_method
180
+ self.n_group = n_group
181
+ self.topk_group = topk_group
182
+ self.num_experts_per_tok = num_experts_per_tok
183
+ self.moe_layer_freq = moe_layer_freq
184
+ self.first_k_dense_replace = first_k_dense_replace
185
+ self.norm_topk_prob = norm_topk_prob
186
+ self.scoring_func = scoring_func
187
+ self.aux_loss_alpha = aux_loss_alpha
188
+ self.seq_aux = seq_aux
189
+ # for backward compatibility
190
+ if num_key_value_heads is None:
191
+ num_key_value_heads = num_attention_heads
192
+
193
+ self.num_key_value_heads = num_key_value_heads
194
+ self.hidden_act = hidden_act
195
+ self.initializer_range = initializer_range
196
+ self.rms_norm_eps = rms_norm_eps
197
+ self.pretraining_tp = pretraining_tp
198
+ self.use_cache = use_cache
199
+ self.rope_theta = rope_theta
200
+ self.rope_scaling = rope_scaling
201
+ self.attention_bias = attention_bias
202
+ self.attention_dropout = attention_dropout
203
+
204
+ super().__init__(
205
+ pad_token_id=pad_token_id,
206
+ bos_token_id=bos_token_id,
207
+ eos_token_id=eos_token_id,
208
+ tie_word_embeddings=tie_word_embeddings,
209
+ **kwargs,
210
+ )
modeling_deepseek.py ADDED
@@ -0,0 +1,1849 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 DeepSeek-AI and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch DeepSeek model."""
21
+ import math
22
+ import warnings
23
+ from typing import List, Optional, Tuple, Union
24
+
25
+ import torch
26
+ import torch.nn.functional as F
27
+ import torch.utils.checkpoint
28
+ from torch import nn
29
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
30
+
31
+ from transformers.activations import ACT2FN
32
+ from transformers.cache_utils import Cache, DynamicCache
33
+ from transformers.modeling_attn_mask_utils import (
34
+ AttentionMaskConverter,
35
+ _prepare_4d_attention_mask,
36
+ _prepare_4d_causal_attention_mask,
37
+ )
38
+ from transformers.modeling_outputs import (
39
+ BaseModelOutputWithPast,
40
+ CausalLMOutputWithPast,
41
+ SequenceClassifierOutputWithPast,
42
+ )
43
+ from transformers.modeling_utils import PreTrainedModel
44
+ from transformers.pytorch_utils import (
45
+ ALL_LAYERNORM_LAYERS,
46
+ is_torch_greater_or_equal_than_1_13,
47
+ )
48
+ from transformers.utils import (
49
+ add_start_docstrings,
50
+ add_start_docstrings_to_model_forward,
51
+ is_flash_attn_2_available,
52
+ is_flash_attn_greater_or_equal_2_10,
53
+ logging,
54
+ replace_return_docstrings,
55
+ )
56
+ from transformers.utils.import_utils import is_torch_fx_available
57
+ from .configuration_deepseek import DeepseekV3Config
58
+ import torch.distributed as dist
59
+ import numpy as np
60
+
61
+ if is_flash_attn_2_available():
62
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
63
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
64
+
65
+
66
+ # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
67
+ # It means that the function will not be traced through and simply appear as a node in the graph.
68
+ if is_torch_fx_available():
69
+ if not is_torch_greater_or_equal_than_1_13:
70
+ import torch.fx
71
+
72
+ _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
73
+
74
+
75
+ logger = logging.get_logger(__name__)
76
+
77
+ _CONFIG_FOR_DOC = "DeepseekV3Config"
78
+
79
+
80
+ def _get_unpad_data(attention_mask):
81
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
82
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
83
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
84
+ cu_seqlens = F.pad(
85
+ torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)
86
+ )
87
+ return (
88
+ indices,
89
+ cu_seqlens,
90
+ max_seqlen_in_batch,
91
+ )
92
+
93
+
94
+ class DeepseekV3RMSNorm(nn.Module):
95
+ def __init__(self, hidden_size, eps=1e-6):
96
+ """
97
+ DeepseekV3RMSNorm is equivalent to T5LayerNorm
98
+ """
99
+ super().__init__()
100
+ self.weight = nn.Parameter(torch.ones(hidden_size))
101
+ self.variance_epsilon = eps
102
+
103
+ def forward(self, hidden_states):
104
+ input_dtype = hidden_states.dtype
105
+ hidden_states = hidden_states.to(torch.float32)
106
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
107
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
108
+ return self.weight * hidden_states.to(input_dtype)
109
+
110
+
111
+ ALL_LAYERNORM_LAYERS.append(DeepseekV3RMSNorm)
112
+
113
+
114
+ class DeepseekV3RotaryEmbedding(nn.Module):
115
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
116
+ super().__init__()
117
+
118
+ self.dim = dim
119
+ self.max_position_embeddings = max_position_embeddings
120
+ self.base = base
121
+ inv_freq = 1.0 / (
122
+ self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
123
+ )
124
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
125
+
126
+ # Build here to make `torch.jit.trace` work.
127
+ self._set_cos_sin_cache(
128
+ seq_len=max_position_embeddings,
129
+ device=self.inv_freq.device,
130
+ dtype=torch.get_default_dtype(),
131
+ )
132
+ self.max_seq_len_cached = None
133
+
134
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
135
+ self.max_seq_len_cached = seq_len
136
+ t = torch.arange(
137
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
138
+ )
139
+
140
+ freqs = torch.outer(t, self.inv_freq.to(t.device))
141
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
142
+ emb = torch.cat((freqs, freqs), dim=-1)
143
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
144
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
145
+
146
+ def forward(self, x, seq_len=None):
147
+ # x: [bs, num_attention_heads, seq_len, head_size]
148
+ if self.max_seq_len_cached is None or seq_len > self.max_seq_len_cached:
149
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
150
+
151
+ return (
152
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
153
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
154
+ )
155
+
156
+
157
+ # Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->DeepseekV3
158
+ class DeepseekV3LinearScalingRotaryEmbedding(DeepseekV3RotaryEmbedding):
159
+ """DeepseekV3RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
160
+
161
+ def __init__(
162
+ self,
163
+ dim,
164
+ max_position_embeddings=2048,
165
+ base=10000,
166
+ device=None,
167
+ scaling_factor=1.0,
168
+ ):
169
+ self.scaling_factor = scaling_factor
170
+ super().__init__(dim, max_position_embeddings, base, device)
171
+
172
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
173
+ self.max_seq_len_cached = seq_len
174
+ t = torch.arange(
175
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
176
+ )
177
+ t = t / self.scaling_factor
178
+
179
+ freqs = torch.outer(t, self.inv_freq)
180
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
181
+ emb = torch.cat((freqs, freqs), dim=-1)
182
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
183
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
184
+
185
+
186
+ # Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->DeepseekV3
187
+ class DeepseekV3DynamicNTKScalingRotaryEmbedding(DeepseekV3RotaryEmbedding):
188
+ """DeepseekV3RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
189
+
190
+ def __init__(
191
+ self,
192
+ dim,
193
+ max_position_embeddings=2048,
194
+ base=10000,
195
+ device=None,
196
+ scaling_factor=1.0,
197
+ ):
198
+ self.scaling_factor = scaling_factor
199
+ super().__init__(dim, max_position_embeddings, base, device)
200
+
201
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
202
+ self.max_seq_len_cached = seq_len
203
+
204
+ if seq_len > self.max_position_embeddings:
205
+ base = self.base * (
206
+ (self.scaling_factor * seq_len / self.max_position_embeddings)
207
+ - (self.scaling_factor - 1)
208
+ ) ** (self.dim / (self.dim - 2))
209
+ inv_freq = 1.0 / (
210
+ base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
211
+ )
212
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
213
+
214
+ t = torch.arange(
215
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
216
+ )
217
+
218
+ freqs = torch.outer(t, self.inv_freq)
219
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
220
+ emb = torch.cat((freqs, freqs), dim=-1)
221
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
222
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
223
+
224
+
225
+ # Inverse dim formula to find dim based on number of rotations
226
+ def yarn_find_correction_dim(
227
+ num_rotations, dim, base=10000, max_position_embeddings=2048
228
+ ):
229
+ return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (
230
+ 2 * math.log(base)
231
+ )
232
+
233
+
234
+ # Find dim range bounds based on rotations
235
+ def yarn_find_correction_range(
236
+ low_rot, high_rot, dim, base=10000, max_position_embeddings=2048
237
+ ):
238
+ low = math.floor(
239
+ yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings)
240
+ )
241
+ high = math.ceil(
242
+ yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings)
243
+ )
244
+ return max(low, 0), min(high, dim - 1) # Clamp values just in case
245
+
246
+
247
+ def yarn_get_mscale(scale=1, mscale=1):
248
+ if scale <= 1:
249
+ return 1.0
250
+ return 0.1 * mscale * math.log(scale) + 1.0
251
+
252
+
253
+ def yarn_linear_ramp_mask(min, max, dim):
254
+ if min == max:
255
+ max += 0.001 # Prevent singularity
256
+
257
+ linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
258
+ ramp_func = torch.clamp(linear_func, 0, 1)
259
+ return ramp_func
260
+
261
+
262
+ class DeepseekV3YarnRotaryEmbedding(DeepseekV3RotaryEmbedding):
263
+
264
+ def __init__(
265
+ self,
266
+ dim,
267
+ max_position_embeddings=2048,
268
+ base=10000,
269
+ device=None,
270
+ scaling_factor=1.0,
271
+ original_max_position_embeddings=4096,
272
+ beta_fast=32,
273
+ beta_slow=1,
274
+ mscale=1,
275
+ mscale_all_dim=0,
276
+ ):
277
+ self.scaling_factor = scaling_factor
278
+ self.original_max_position_embeddings = original_max_position_embeddings
279
+ self.beta_fast = beta_fast
280
+ self.beta_slow = beta_slow
281
+ self.mscale = mscale
282
+ self.mscale_all_dim = mscale_all_dim
283
+ super().__init__(dim, max_position_embeddings, base, device)
284
+
285
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
286
+ self.max_seq_len_cached = seq_len
287
+ dim = self.dim
288
+
289
+ freq_extra = 1.0 / (
290
+ self.base
291
+ ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
292
+ )
293
+ freq_inter = 1.0 / (
294
+ self.scaling_factor
295
+ * self.base
296
+ ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
297
+ )
298
+
299
+ low, high = yarn_find_correction_range(
300
+ self.beta_fast,
301
+ self.beta_slow,
302
+ dim,
303
+ self.base,
304
+ self.original_max_position_embeddings,
305
+ )
306
+ inv_freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2).to(
307
+ device=device, dtype=torch.float32
308
+ )
309
+ inv_freq = freq_inter * (1 - inv_freq_mask) + freq_extra * inv_freq_mask
310
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
311
+
312
+ t = torch.arange(seq_len, device=device, dtype=torch.float32)
313
+
314
+ freqs = torch.outer(t, inv_freq)
315
+
316
+ _mscale = float(
317
+ yarn_get_mscale(self.scaling_factor, self.mscale)
318
+ / yarn_get_mscale(self.scaling_factor, self.mscale_all_dim)
319
+ )
320
+
321
+ emb = torch.cat((freqs, freqs), dim=-1)
322
+ self.register_buffer(
323
+ "cos_cached", (emb.cos() * _mscale).to(dtype), persistent=False
324
+ )
325
+ self.register_buffer(
326
+ "sin_cached", (emb.sin() * _mscale).to(dtype), persistent=False
327
+ )
328
+
329
+
330
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
331
+ def rotate_half(x):
332
+ """Rotates half the hidden dims of the input."""
333
+ x1 = x[..., : x.shape[-1] // 2]
334
+ x2 = x[..., x.shape[-1] // 2 :]
335
+ return torch.cat((-x2, x1), dim=-1)
336
+
337
+
338
+ # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
339
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
340
+ """Applies Rotary Position Embedding to the query and key tensors.
341
+
342
+ Args:
343
+ q (`torch.Tensor`): The query tensor.
344
+ k (`torch.Tensor`): The key tensor.
345
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
346
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
347
+ position_ids (`torch.Tensor`):
348
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
349
+ used to pass offsetted position ids when working with a KV-cache.
350
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
351
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
352
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
353
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
354
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
355
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
356
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
357
+ Returns:
358
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
359
+ """
360
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
361
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
362
+
363
+ b, h, s, d = q.shape
364
+ q = q.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
365
+
366
+ b, h, s, d = k.shape
367
+ k = k.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
368
+
369
+ q_embed = (q * cos) + (rotate_half(q) * sin)
370
+ k_embed = (k * cos) + (rotate_half(k) * sin)
371
+ return q_embed, k_embed
372
+
373
+
374
+ class DeepseekV3MLP(nn.Module):
375
+ def __init__(self, config, hidden_size=None, intermediate_size=None):
376
+ super().__init__()
377
+ self.config = config
378
+ self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
379
+ self.intermediate_size = (
380
+ config.intermediate_size if intermediate_size is None else intermediate_size
381
+ )
382
+
383
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
384
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
385
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
386
+ self.act_fn = ACT2FN[config.hidden_act]
387
+
388
+ def forward(self, x):
389
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
390
+ return down_proj
391
+
392
+
393
+ class MoEGate(nn.Module):
394
+ def __init__(self, config):
395
+ super().__init__()
396
+ self.config = config
397
+ self.top_k = config.num_experts_per_tok
398
+ self.n_routed_experts = config.n_routed_experts
399
+ self.routed_scaling_factor = config.routed_scaling_factor
400
+ self.scoring_func = config.scoring_func
401
+ self.seq_aux = config.seq_aux
402
+ self.topk_method = config.topk_method
403
+ self.n_group = config.n_group
404
+ self.topk_group = config.topk_group
405
+
406
+ # topk selection algorithm
407
+ self.norm_topk_prob = config.norm_topk_prob
408
+ self.gating_dim = config.hidden_size
409
+ self.weight = nn.Parameter(
410
+ torch.empty((self.n_routed_experts, self.gating_dim))
411
+ )
412
+ if self.topk_method == "noaux_tc":
413
+ self.e_score_correction_bias = nn.Parameter(
414
+ torch.empty((self.n_routed_experts))
415
+ )
416
+ self.reset_parameters()
417
+
418
+ def reset_parameters(self) -> None:
419
+ import torch.nn.init as init
420
+
421
+ init.kaiming_uniform_(self.weight, a=math.sqrt(5))
422
+
423
+ def forward(self, hidden_states):
424
+ bsz, seq_len, h = hidden_states.shape
425
+ ### compute gating score
426
+ hidden_states = hidden_states.view(-1, h)
427
+ logits = F.linear(
428
+ hidden_states.type(torch.float32), self.weight.type(torch.float32), None
429
+ )
430
+ if self.scoring_func == "sigmoid":
431
+ scores = logits.sigmoid()
432
+ else:
433
+ raise NotImplementedError(
434
+ f"insupportable scoring function for MoE gating: {self.scoring_func}"
435
+ )
436
+
437
+ ### select top-k experts
438
+ if self.topk_method == "noaux_tc":
439
+ assert not self.training
440
+ scores_for_choice = scores.view(bsz * seq_len, -1) + self.e_score_correction_bias.unsqueeze(0)
441
+ group_scores = (
442
+ scores_for_choice.view(bsz * seq_len, self.n_group, -1).topk(2, dim=-1)[0].sum(dim = -1)
443
+ ) # [n, n_group]
444
+ group_idx = torch.topk(
445
+ group_scores, k=self.topk_group, dim=-1, sorted=False
446
+ )[
447
+ 1
448
+ ] # [n, top_k_group]
449
+ group_mask = torch.zeros_like(group_scores) # [n, n_group]
450
+ group_mask.scatter_(1, group_idx, 1) # [n, n_group]
451
+ score_mask = (
452
+ group_mask.unsqueeze(-1)
453
+ .expand(
454
+ bsz * seq_len, self.n_group, self.n_routed_experts // self.n_group
455
+ )
456
+ .reshape(bsz * seq_len, -1)
457
+ ) # [n, e]
458
+ tmp_scores = scores_for_choice.masked_fill(~score_mask.bool(), 0.0) # [n, e]
459
+ _, topk_idx = torch.topk(
460
+ tmp_scores, k=self.top_k, dim=-1, sorted=False
461
+ )
462
+ topk_weight = scores.gather(1, topk_idx)
463
+ else:
464
+ raise NotImplementedError(
465
+ f"insupportable TopK function for MoE gating: {self.topk_method}"
466
+ )
467
+
468
+ ### norm gate to sum 1
469
+ if self.top_k > 1 and self.norm_topk_prob:
470
+ denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
471
+ topk_weight = topk_weight / denominator
472
+ topk_weight = topk_weight * self.routed_scaling_factor # must multiply the scaling factor
473
+
474
+ return topk_idx, topk_weight
475
+
476
+ class DeepseekV3MoE(nn.Module):
477
+ """
478
+ A mixed expert module containing shared experts.
479
+ """
480
+
481
+ def __init__(self, config):
482
+ super().__init__()
483
+ self.config = config
484
+ self.num_experts_per_tok = config.num_experts_per_tok
485
+
486
+ if hasattr(config, "ep_size") and config.ep_size > 1:
487
+ assert config.ep_size == dist.get_world_size()
488
+ self.ep_size = config.ep_size
489
+ self.experts_per_rank = config.n_routed_experts // config.ep_size
490
+ self.ep_rank = dist.get_rank()
491
+ self.experts = nn.ModuleList(
492
+ [
493
+ (
494
+ DeepseekV3MLP(
495
+ config, intermediate_size=config.moe_intermediate_size
496
+ )
497
+ if i >= self.ep_rank * self.experts_per_rank
498
+ and i < (self.ep_rank + 1) * self.experts_per_rank
499
+ else None
500
+ )
501
+ for i in range(config.n_routed_experts)
502
+ ]
503
+ )
504
+ else:
505
+ self.ep_size = 1
506
+ self.experts_per_rank = config.n_routed_experts
507
+ self.ep_rank = 0
508
+ self.experts = nn.ModuleList(
509
+ [
510
+ DeepseekV3MLP(
511
+ config, intermediate_size=config.moe_intermediate_size
512
+ )
513
+ for i in range(config.n_routed_experts)
514
+ ]
515
+ )
516
+ self.gate = MoEGate(config)
517
+ if config.n_shared_experts is not None:
518
+ intermediate_size = config.moe_intermediate_size * config.n_shared_experts
519
+ self.shared_experts = DeepseekV3MLP(
520
+ config=config, intermediate_size=intermediate_size
521
+ )
522
+
523
+ def forward(self, hidden_states):
524
+ identity = hidden_states
525
+ orig_shape = hidden_states.shape
526
+ topk_idx, topk_weight = self.gate(hidden_states)
527
+ hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
528
+ flat_topk_idx = topk_idx.view(-1)
529
+ if not self.training:
530
+ y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(*orig_shape)
531
+ if self.config.n_shared_experts is not None:
532
+ y = y + self.shared_experts(identity)
533
+ return y
534
+
535
+ @torch.no_grad()
536
+ def moe_infer(self, x, topk_ids, topk_weight):
537
+ cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts)))
538
+ cnts.scatter_(1, topk_ids, 1)
539
+ tokens_per_expert = cnts.sum(dim=0)
540
+ idxs = topk_ids.view(-1).argsort()
541
+ sorted_tokens = x[idxs // topk_ids.shape[1]]
542
+ sorted_tokens_shape = sorted_tokens.shape
543
+ if self.ep_size > 1:
544
+ tokens_per_ep_rank = tokens_per_expert.view(self.ep_size, -1).sum(dim=1)
545
+ tokens_per_expert_group = tokens_per_expert.new_empty(
546
+ tokens_per_expert.shape[0]
547
+ )
548
+ dist.all_to_all_single(tokens_per_expert_group, tokens_per_expert)
549
+ output_splits = (
550
+ tokens_per_expert_group.view(self.ep_size, -1)
551
+ .sum(1)
552
+ .cpu()
553
+ .numpy()
554
+ .tolist()
555
+ )
556
+ gathered_tokens = sorted_tokens.new_empty(
557
+ tokens_per_expert_group.sum(dim=0).cpu().item(), sorted_tokens.shape[1]
558
+ )
559
+ input_split_sizes = tokens_per_ep_rank.cpu().numpy().tolist()
560
+ dist.all_to_all(
561
+ list(gathered_tokens.split(output_splits)),
562
+ list(sorted_tokens.split(input_split_sizes)),
563
+ )
564
+ tokens_per_expert_post_gather = tokens_per_expert_group.view(
565
+ self.ep_size, self.experts_per_rank
566
+ ).sum(dim=0)
567
+ gatherd_idxs = np.zeros(shape=(gathered_tokens.shape[0],), dtype=np.int32)
568
+ s = 0
569
+ for i, k in enumerate(tokens_per_expert_group.cpu().numpy()):
570
+ gatherd_idxs[s : s + k] = i % self.experts_per_rank
571
+ s += k
572
+ gatherd_idxs = gatherd_idxs.argsort()
573
+ sorted_tokens = gathered_tokens[gatherd_idxs]
574
+ tokens_per_expert = tokens_per_expert_post_gather
575
+ tokens_per_expert = tokens_per_expert.cpu().numpy()
576
+
577
+ outputs = []
578
+ start_idx = 0
579
+ for i, num_tokens in enumerate(tokens_per_expert):
580
+ end_idx = start_idx + num_tokens
581
+ if num_tokens == 0:
582
+ continue
583
+ expert = self.experts[i + self.ep_rank * self.experts_per_rank]
584
+ tokens_for_this_expert = sorted_tokens[start_idx:end_idx]
585
+ expert_out = expert(tokens_for_this_expert)
586
+ outputs.append(expert_out)
587
+ start_idx = end_idx
588
+
589
+ outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0)
590
+ if self.ep_size > 1:
591
+ new_x = torch.empty_like(outs)
592
+ new_x[gatherd_idxs] = outs
593
+ gathered_tokens = new_x.new_empty(*sorted_tokens_shape)
594
+ dist.all_to_all(
595
+ list(gathered_tokens.split(input_split_sizes)),
596
+ list(new_x.split(output_splits)),
597
+ )
598
+ outs = gathered_tokens
599
+
600
+ new_x = torch.empty_like(outs)
601
+ new_x[idxs] = outs
602
+ final_out = (
603
+ new_x.view(*topk_ids.shape, -1)
604
+ .type(topk_weight.dtype)
605
+ .mul_(topk_weight.unsqueeze(dim=-1))
606
+ .sum(dim=1)
607
+ .type(new_x.dtype)
608
+ )
609
+ return final_out
610
+
611
+
612
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv
613
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
614
+ """
615
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
616
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
617
+ """
618
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
619
+ if n_rep == 1:
620
+ return hidden_states
621
+ hidden_states = hidden_states[:, :, None, :, :].expand(
622
+ batch, num_key_value_heads, n_rep, slen, head_dim
623
+ )
624
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
625
+
626
+
627
+ # Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->DeepseekV3
628
+ class DeepseekV3Attention(nn.Module):
629
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
630
+
631
+ def __init__(self, config: DeepseekV3Config, layer_idx: Optional[int] = None):
632
+ super().__init__()
633
+ self.config = config
634
+ self.layer_idx = layer_idx
635
+ if layer_idx is None:
636
+ logger.warning_once(
637
+ f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
638
+ "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
639
+ "when creating this class."
640
+ )
641
+
642
+ self.attention_dropout = config.attention_dropout
643
+ self.hidden_size = config.hidden_size
644
+ self.num_heads = config.num_attention_heads
645
+
646
+ self.max_position_embeddings = config.max_position_embeddings
647
+ self.rope_theta = config.rope_theta
648
+ self.q_lora_rank = config.q_lora_rank
649
+ self.qk_rope_head_dim = config.qk_rope_head_dim
650
+ self.kv_lora_rank = config.kv_lora_rank
651
+ self.v_head_dim = config.v_head_dim
652
+ self.qk_nope_head_dim = config.qk_nope_head_dim
653
+ self.q_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim
654
+
655
+ self.is_causal = True
656
+
657
+ if self.q_lora_rank is None:
658
+ self.q_proj = nn.Linear(
659
+ self.hidden_size, self.num_heads * self.q_head_dim, bias=False
660
+ )
661
+ else:
662
+ self.q_a_proj = nn.Linear(
663
+ self.hidden_size, config.q_lora_rank, bias=config.attention_bias
664
+ )
665
+ self.q_a_layernorm = DeepseekV3RMSNorm(config.q_lora_rank)
666
+ self.q_b_proj = nn.Linear(
667
+ config.q_lora_rank, self.num_heads * self.q_head_dim, bias=False
668
+ )
669
+
670
+ self.kv_a_proj_with_mqa = nn.Linear(
671
+ self.hidden_size,
672
+ config.kv_lora_rank + config.qk_rope_head_dim,
673
+ bias=config.attention_bias,
674
+ )
675
+ self.kv_a_layernorm = DeepseekV3RMSNorm(config.kv_lora_rank)
676
+ self.kv_b_proj = nn.Linear(
677
+ config.kv_lora_rank,
678
+ self.num_heads
679
+ * (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim),
680
+ bias=False,
681
+ )
682
+
683
+ self.o_proj = nn.Linear(
684
+ self.num_heads * self.v_head_dim,
685
+ self.hidden_size,
686
+ bias=config.attention_bias,
687
+ )
688
+ self._init_rope()
689
+
690
+ self.softmax_scale = self.q_head_dim ** (-0.5)
691
+ if self.config.rope_scaling is not None:
692
+ mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0)
693
+ scaling_factor = self.config.rope_scaling["factor"]
694
+ if mscale_all_dim:
695
+ mscale = yarn_get_mscale(scaling_factor, mscale_all_dim)
696
+ self.softmax_scale = self.softmax_scale * mscale * mscale
697
+
698
+ def _init_rope(self):
699
+ if self.config.rope_scaling is None:
700
+ self.rotary_emb = DeepseekV3RotaryEmbedding(
701
+ self.qk_rope_head_dim,
702
+ max_position_embeddings=self.max_position_embeddings,
703
+ base=self.rope_theta,
704
+ )
705
+ else:
706
+ scaling_type = self.config.rope_scaling["type"]
707
+ scaling_factor = self.config.rope_scaling["factor"]
708
+ if scaling_type == "linear":
709
+ self.rotary_emb = DeepseekV3LinearScalingRotaryEmbedding(
710
+ self.qk_rope_head_dim,
711
+ max_position_embeddings=self.max_position_embeddings,
712
+ scaling_factor=scaling_factor,
713
+ base=self.rope_theta,
714
+ )
715
+ elif scaling_type == "dynamic":
716
+ self.rotary_emb = DeepseekV3DynamicNTKScalingRotaryEmbedding(
717
+ self.qk_rope_head_dim,
718
+ max_position_embeddings=self.max_position_embeddings,
719
+ scaling_factor=scaling_factor,
720
+ base=self.rope_theta,
721
+ )
722
+ elif scaling_type == "yarn":
723
+ kwargs = {
724
+ key: self.config.rope_scaling[key]
725
+ for key in [
726
+ "original_max_position_embeddings",
727
+ "beta_fast",
728
+ "beta_slow",
729
+ "mscale",
730
+ "mscale_all_dim",
731
+ ]
732
+ if key in self.config.rope_scaling
733
+ }
734
+ self.rotary_emb = DeepseekV3YarnRotaryEmbedding(
735
+ self.qk_rope_head_dim,
736
+ max_position_embeddings=self.max_position_embeddings,
737
+ scaling_factor=scaling_factor,
738
+ base=self.rope_theta,
739
+ **kwargs,
740
+ )
741
+ else:
742
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
743
+
744
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
745
+ return (
746
+ tensor.view(bsz, seq_len, self.num_heads, self.v_head_dim)
747
+ .transpose(1, 2)
748
+ .contiguous()
749
+ )
750
+
751
+ def forward(
752
+ self,
753
+ hidden_states: torch.Tensor,
754
+ attention_mask: Optional[torch.Tensor] = None,
755
+ position_ids: Optional[torch.LongTensor] = None,
756
+ past_key_value: Optional[Cache] = None,
757
+ output_attentions: bool = False,
758
+ use_cache: bool = False,
759
+ **kwargs,
760
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
761
+ if "padding_mask" in kwargs:
762
+ warnings.warn(
763
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
764
+ )
765
+ bsz, q_len, _ = hidden_states.size()
766
+
767
+ if self.q_lora_rank is None:
768
+ q = self.q_proj(hidden_states)
769
+ else:
770
+ q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
771
+ q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
772
+ q_nope, q_pe = torch.split(
773
+ q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
774
+ )
775
+
776
+ compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
777
+ compressed_kv, k_pe = torch.split(
778
+ compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
779
+ )
780
+ k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
781
+ kv = (
782
+ self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
783
+ .view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
784
+ .transpose(1, 2)
785
+ )
786
+
787
+ k_nope, value_states = torch.split(
788
+ kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
789
+ )
790
+ kv_seq_len = value_states.shape[-2]
791
+ if past_key_value is not None:
792
+ if self.layer_idx is None:
793
+ raise ValueError(
794
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
795
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
796
+ "with a layer index."
797
+ )
798
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
799
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
800
+
801
+ q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
802
+
803
+ query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
804
+ query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
805
+ query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
806
+
807
+ key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
808
+ key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
809
+ key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
810
+ if past_key_value is not None:
811
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
812
+ key_states, value_states = past_key_value.update(
813
+ key_states, value_states, self.layer_idx, cache_kwargs
814
+ )
815
+
816
+ attn_weights = (
817
+ torch.matmul(query_states, key_states.transpose(2, 3)) * self.softmax_scale
818
+ )
819
+
820
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
821
+ raise ValueError(
822
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
823
+ f" {attn_weights.size()}"
824
+ )
825
+ assert attention_mask is not None
826
+ if attention_mask is not None:
827
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
828
+ raise ValueError(
829
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
830
+ )
831
+ attn_weights = attn_weights + attention_mask
832
+
833
+ # upcast attention to fp32
834
+ attn_weights = nn.functional.softmax(
835
+ attn_weights, dim=-1, dtype=torch.float32
836
+ ).to(query_states.dtype)
837
+ attn_weights = nn.functional.dropout(
838
+ attn_weights, p=self.attention_dropout, training=self.training
839
+ )
840
+ attn_output = torch.matmul(attn_weights, value_states)
841
+
842
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.v_head_dim):
843
+ raise ValueError(
844
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.v_head_dim)}, but is"
845
+ f" {attn_output.size()}"
846
+ )
847
+
848
+ attn_output = attn_output.transpose(1, 2).contiguous()
849
+
850
+ attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.v_head_dim)
851
+
852
+ attn_output = self.o_proj(attn_output)
853
+
854
+ if not output_attentions:
855
+ attn_weights = None
856
+
857
+ return attn_output, attn_weights, past_key_value
858
+
859
+
860
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->DeepseekV3
861
+ class DeepseekV3FlashAttention2(DeepseekV3Attention):
862
+ """
863
+ DeepseekV3 flash attention module. This module inherits from `DeepseekV3Attention` as the weights of the module stays
864
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
865
+ flash attention and deal with padding tokens in case the input contains any of them.
866
+ """
867
+
868
+ def __init__(self, *args, **kwargs):
869
+ super().__init__(*args, **kwargs)
870
+
871
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
872
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
873
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
874
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
875
+
876
+ def forward(
877
+ self,
878
+ hidden_states: torch.Tensor,
879
+ attention_mask: Optional[torch.LongTensor] = None,
880
+ position_ids: Optional[torch.LongTensor] = None,
881
+ past_key_value: Optional[Cache] = None,
882
+ output_attentions: bool = False,
883
+ use_cache: bool = False,
884
+ **kwargs,
885
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
886
+ # DeepseekV3FlashAttention2 attention does not support output_attentions
887
+ if "padding_mask" in kwargs:
888
+ warnings.warn(
889
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
890
+ )
891
+
892
+ # overwrite attention_mask with padding_mask
893
+ attention_mask = kwargs.pop("padding_mask")
894
+
895
+ output_attentions = False
896
+
897
+ bsz, q_len, _ = hidden_states.size()
898
+
899
+ if self.q_lora_rank is None:
900
+ q = self.q_proj(hidden_states)
901
+ else:
902
+ q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
903
+ q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
904
+ q_nope, q_pe = torch.split(
905
+ q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
906
+ )
907
+
908
+ # Flash attention requires the input to have the shape
909
+ # batch_size x seq_length x head_dim x hidden_dim
910
+ # therefore we just need to keep the original shape
911
+ compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
912
+ compressed_kv, k_pe = torch.split(
913
+ compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
914
+ )
915
+ k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
916
+ kv = (
917
+ self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
918
+ .view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
919
+ .transpose(1, 2)
920
+ )
921
+
922
+ k_nope, value_states = torch.split(
923
+ kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
924
+ )
925
+ kv_seq_len = value_states.shape[-2]
926
+
927
+ kv_seq_len = value_states.shape[-2]
928
+ if past_key_value is not None:
929
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
930
+
931
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
932
+ q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
933
+
934
+ query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
935
+ query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
936
+ query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
937
+
938
+ key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
939
+ key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
940
+ key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
941
+
942
+ if self.q_head_dim != self.v_head_dim:
943
+ value_states = F.pad(value_states, [0, self.q_head_dim - self.v_head_dim])
944
+
945
+ if past_key_value is not None:
946
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
947
+ key_states, value_states = past_key_value.update(
948
+ key_states, value_states, self.layer_idx, cache_kwargs
949
+ )
950
+
951
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
952
+ # to be able to avoid many of these transpose/reshape/view.
953
+ query_states = query_states.transpose(1, 2)
954
+ key_states = key_states.transpose(1, 2)
955
+ value_states = value_states.transpose(1, 2)
956
+
957
+ dropout_rate = self.attention_dropout if self.training else 0.0
958
+
959
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
960
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
961
+ # cast them back in the correct dtype just to be sure everything works as expected.
962
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
963
+ # in fp32. (DeepseekV3RMSNorm handles it correctly)
964
+
965
+ input_dtype = query_states.dtype
966
+ if input_dtype == torch.float32:
967
+ # Handle the case where the model is quantized
968
+ if hasattr(self.config, "_pre_quantization_dtype"):
969
+ target_dtype = self.config._pre_quantization_dtype
970
+ elif torch.is_autocast_enabled():
971
+ target_dtype = torch.get_autocast_gpu_dtype()
972
+ else:
973
+ target_dtype = (
974
+ self.q_proj.weight.dtype
975
+ if self.q_lora_rank is None
976
+ else self.q_a_proj.weight.dtype
977
+ )
978
+
979
+ logger.warning_once(
980
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
981
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
982
+ f" {target_dtype}."
983
+ )
984
+
985
+ query_states = query_states.to(target_dtype)
986
+ key_states = key_states.to(target_dtype)
987
+ value_states = value_states.to(target_dtype)
988
+
989
+ attn_output = self._flash_attention_forward(
990
+ query_states,
991
+ key_states,
992
+ value_states,
993
+ attention_mask,
994
+ q_len,
995
+ dropout=dropout_rate,
996
+ softmax_scale=self.softmax_scale,
997
+ )
998
+ if self.q_head_dim != self.v_head_dim:
999
+ attn_output = attn_output[:, :, :, : self.v_head_dim]
1000
+
1001
+ attn_output = attn_output.reshape(
1002
+ bsz, q_len, self.num_heads * self.v_head_dim
1003
+ ).contiguous()
1004
+ attn_output = self.o_proj(attn_output)
1005
+
1006
+ if not output_attentions:
1007
+ attn_weights = None
1008
+
1009
+ return attn_output, attn_weights, past_key_value
1010
+
1011
+ def _flash_attention_forward(
1012
+ self,
1013
+ query_states,
1014
+ key_states,
1015
+ value_states,
1016
+ attention_mask,
1017
+ query_length,
1018
+ dropout=0.0,
1019
+ softmax_scale=None,
1020
+ ):
1021
+ """
1022
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
1023
+ first unpad the input, then computes the attention scores and pad the final attention scores.
1024
+
1025
+ Args:
1026
+ query_states (`torch.Tensor`):
1027
+ Input query states to be passed to Flash Attention API
1028
+ key_states (`torch.Tensor`):
1029
+ Input key states to be passed to Flash Attention API
1030
+ value_states (`torch.Tensor`):
1031
+ Input value states to be passed to Flash Attention API
1032
+ attention_mask (`torch.Tensor`):
1033
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
1034
+ position of padding tokens and 1 for the position of non-padding tokens.
1035
+ dropout (`int`, *optional*):
1036
+ Attention dropout
1037
+ softmax_scale (`float`, *optional*):
1038
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
1039
+ """
1040
+ if not self._flash_attn_uses_top_left_mask:
1041
+ causal = self.is_causal
1042
+ else:
1043
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in DeepseekV3FlashAttention2 __init__.
1044
+ causal = self.is_causal and query_length != 1
1045
+
1046
+ # Contains at least one padding token in the sequence
1047
+ if attention_mask is not None:
1048
+ batch_size = query_states.shape[0]
1049
+ (
1050
+ query_states,
1051
+ key_states,
1052
+ value_states,
1053
+ indices_q,
1054
+ cu_seq_lens,
1055
+ max_seq_lens,
1056
+ ) = self._upad_input(
1057
+ query_states, key_states, value_states, attention_mask, query_length
1058
+ )
1059
+
1060
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
1061
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
1062
+
1063
+ attn_output_unpad = flash_attn_varlen_func(
1064
+ query_states,
1065
+ key_states,
1066
+ value_states,
1067
+ cu_seqlens_q=cu_seqlens_q,
1068
+ cu_seqlens_k=cu_seqlens_k,
1069
+ max_seqlen_q=max_seqlen_in_batch_q,
1070
+ max_seqlen_k=max_seqlen_in_batch_k,
1071
+ dropout_p=dropout,
1072
+ softmax_scale=softmax_scale,
1073
+ causal=causal,
1074
+ )
1075
+
1076
+ attn_output = pad_input(
1077
+ attn_output_unpad, indices_q, batch_size, query_length
1078
+ )
1079
+ else:
1080
+ attn_output = flash_attn_func(
1081
+ query_states,
1082
+ key_states,
1083
+ value_states,
1084
+ dropout,
1085
+ softmax_scale=softmax_scale,
1086
+ causal=causal,
1087
+ )
1088
+
1089
+ return attn_output
1090
+
1091
+ def _upad_input(
1092
+ self, query_layer, key_layer, value_layer, attention_mask, query_length
1093
+ ):
1094
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
1095
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
1096
+
1097
+ key_layer = index_first_axis(
1098
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
1099
+ indices_k,
1100
+ )
1101
+ value_layer = index_first_axis(
1102
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
1103
+ indices_k,
1104
+ )
1105
+ if query_length == kv_seq_len:
1106
+ query_layer = index_first_axis(
1107
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim),
1108
+ indices_k,
1109
+ )
1110
+ cu_seqlens_q = cu_seqlens_k
1111
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
1112
+ indices_q = indices_k
1113
+ elif query_length == 1:
1114
+ max_seqlen_in_batch_q = 1
1115
+ cu_seqlens_q = torch.arange(
1116
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
1117
+ ) # There is a memcpy here, that is very bad.
1118
+ indices_q = cu_seqlens_q[:-1]
1119
+ query_layer = query_layer.squeeze(1)
1120
+ else:
1121
+ # The -q_len: slice assumes left padding.
1122
+ attention_mask = attention_mask[:, -query_length:]
1123
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
1124
+ query_layer, attention_mask
1125
+ )
1126
+
1127
+ return (
1128
+ query_layer,
1129
+ key_layer,
1130
+ value_layer,
1131
+ indices_q,
1132
+ (cu_seqlens_q, cu_seqlens_k),
1133
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
1134
+ )
1135
+
1136
+
1137
+ ATTENTION_CLASSES = {
1138
+ "eager": DeepseekV3Attention,
1139
+ "flash_attention_2": DeepseekV3FlashAttention2,
1140
+ }
1141
+
1142
+
1143
+ class DeepseekV3DecoderLayer(nn.Module):
1144
+ def __init__(self, config: DeepseekV3Config, layer_idx: int):
1145
+ super().__init__()
1146
+ self.hidden_size = config.hidden_size
1147
+
1148
+ self.self_attn = ATTENTION_CLASSES[config._attn_implementation](
1149
+ config=config, layer_idx=layer_idx
1150
+ )
1151
+
1152
+ self.mlp = (
1153
+ DeepseekV3MoE(config)
1154
+ if (
1155
+ config.n_routed_experts is not None
1156
+ and layer_idx >= config.first_k_dense_replace
1157
+ and layer_idx % config.moe_layer_freq == 0
1158
+ )
1159
+ else DeepseekV3MLP(config)
1160
+ )
1161
+ self.input_layernorm = DeepseekV3RMSNorm(
1162
+ config.hidden_size, eps=config.rms_norm_eps
1163
+ )
1164
+ self.post_attention_layernorm = DeepseekV3RMSNorm(
1165
+ config.hidden_size, eps=config.rms_norm_eps
1166
+ )
1167
+
1168
+ def forward(
1169
+ self,
1170
+ hidden_states: torch.Tensor,
1171
+ attention_mask: Optional[torch.Tensor] = None,
1172
+ position_ids: Optional[torch.LongTensor] = None,
1173
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
1174
+ output_attentions: Optional[bool] = False,
1175
+ use_cache: Optional[bool] = False,
1176
+ **kwargs,
1177
+ ) -> Tuple[
1178
+ torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
1179
+ ]:
1180
+ """
1181
+ Args:
1182
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
1183
+ attention_mask (`torch.FloatTensor`, *optional*):
1184
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
1185
+ query_sequence_length, key_sequence_length)` if default attention is used.
1186
+ output_attentions (`bool`, *optional*):
1187
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
1188
+ returned tensors for more detail.
1189
+ use_cache (`bool`, *optional*):
1190
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
1191
+ (see `past_key_values`).
1192
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
1193
+ """
1194
+ if "padding_mask" in kwargs:
1195
+ warnings.warn(
1196
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
1197
+ )
1198
+ residual = hidden_states
1199
+
1200
+ hidden_states = self.input_layernorm(hidden_states)
1201
+
1202
+ # Self Attention
1203
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
1204
+ hidden_states=hidden_states,
1205
+ attention_mask=attention_mask,
1206
+ position_ids=position_ids,
1207
+ past_key_value=past_key_value,
1208
+ output_attentions=output_attentions,
1209
+ use_cache=use_cache,
1210
+ **kwargs,
1211
+ )
1212
+ hidden_states = residual + hidden_states
1213
+
1214
+ # Fully Connected
1215
+ residual = hidden_states
1216
+ hidden_states = self.post_attention_layernorm(hidden_states)
1217
+ hidden_states = self.mlp(hidden_states)
1218
+ hidden_states = residual + hidden_states
1219
+
1220
+ outputs = (hidden_states,)
1221
+
1222
+ if output_attentions:
1223
+ outputs += (self_attn_weights,)
1224
+
1225
+ if use_cache:
1226
+ outputs += (present_key_value,)
1227
+
1228
+ return outputs
1229
+
1230
+
1231
+ DeepseekV3_START_DOCSTRING = r"""
1232
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
1233
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
1234
+ etc.)
1235
+
1236
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
1237
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
1238
+ and behavior.
1239
+
1240
+ Parameters:
1241
+ config ([`DeepseekV3Config`]):
1242
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
1243
+ load the weights associated with the model, only the configuration. Check out the
1244
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
1245
+ """
1246
+
1247
+
1248
+ @add_start_docstrings(
1249
+ "The bare DeepseekV3 Model outputting raw hidden-states without any specific head on top.",
1250
+ DeepseekV3_START_DOCSTRING,
1251
+ )
1252
+ class DeepseekV3PreTrainedModel(PreTrainedModel):
1253
+ config_class = DeepseekV3Config
1254
+ base_model_prefix = "model"
1255
+ supports_gradient_checkpointing = True
1256
+ _no_split_modules = ["DeepseekV3DecoderLayer"]
1257
+ _skip_keys_device_placement = "past_key_values"
1258
+ _supports_flash_attn_2 = True
1259
+ _supports_cache_class = True
1260
+
1261
+ def _init_weights(self, module):
1262
+ std = self.config.initializer_range
1263
+ if isinstance(module, nn.Linear):
1264
+ module.weight.data.normal_(mean=0.0, std=std)
1265
+ if module.bias is not None:
1266
+ module.bias.data.zero_()
1267
+ elif isinstance(module, nn.Embedding):
1268
+ module.weight.data.normal_(mean=0.0, std=std)
1269
+ if module.padding_idx is not None:
1270
+ module.weight.data[module.padding_idx].zero_()
1271
+
1272
+
1273
+ DeepseekV3_INPUTS_DOCSTRING = r"""
1274
+ Args:
1275
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1276
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
1277
+ it.
1278
+
1279
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1280
+ [`PreTrainedTokenizer.__call__`] for details.
1281
+
1282
+ [What are input IDs?](../glossary#input-ids)
1283
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1284
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1285
+
1286
+ - 1 for tokens that are **not masked**,
1287
+ - 0 for tokens that are **masked**.
1288
+
1289
+ [What are attention masks?](../glossary#attention-mask)
1290
+
1291
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1292
+ [`PreTrainedTokenizer.__call__`] for details.
1293
+
1294
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
1295
+ `past_key_values`).
1296
+
1297
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
1298
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
1299
+ information on the default strategy.
1300
+
1301
+ - 1 indicates the head is **not masked**,
1302
+ - 0 indicates the head is **masked**.
1303
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1304
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
1305
+ config.n_positions - 1]`.
1306
+
1307
+ [What are position IDs?](../glossary#position-ids)
1308
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
1309
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
1310
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
1311
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
1312
+
1313
+ Two formats are allowed:
1314
+ - a [`~cache_utils.Cache`] instance;
1315
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
1316
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
1317
+ cache format.
1318
+
1319
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
1320
+ legacy cache format will be returned.
1321
+
1322
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
1323
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
1324
+ of shape `(batch_size, sequence_length)`.
1325
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1326
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1327
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1328
+ model's internal embedding lookup matrix.
1329
+ use_cache (`bool`, *optional*):
1330
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1331
+ `past_key_values`).
1332
+ output_attentions (`bool`, *optional*):
1333
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1334
+ tensors for more detail.
1335
+ output_hidden_states (`bool`, *optional*):
1336
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1337
+ more detail.
1338
+ return_dict (`bool`, *optional*):
1339
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1340
+ """
1341
+
1342
+
1343
+ @add_start_docstrings(
1344
+ "The bare DeepseekV3 Model outputting raw hidden-states without any specific head on top.",
1345
+ DeepseekV3_START_DOCSTRING,
1346
+ )
1347
+ class DeepseekV3Model(DeepseekV3PreTrainedModel):
1348
+ """
1349
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeepseekV3DecoderLayer`]
1350
+
1351
+ Args:
1352
+ config: DeepseekV3Config
1353
+ """
1354
+
1355
+ def __init__(self, config: DeepseekV3Config):
1356
+ super().__init__(config)
1357
+ self.padding_idx = config.pad_token_id
1358
+ self.vocab_size = config.vocab_size
1359
+
1360
+ self.embed_tokens = nn.Embedding(
1361
+ config.vocab_size, config.hidden_size, self.padding_idx
1362
+ )
1363
+ self.layers = nn.ModuleList(
1364
+ [
1365
+ DeepseekV3DecoderLayer(config, layer_idx)
1366
+ for layer_idx in range(config.num_hidden_layers)
1367
+ ]
1368
+ )
1369
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
1370
+ self.norm = DeepseekV3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1371
+
1372
+ self.gradient_checkpointing = False
1373
+ # Initialize weights and apply final processing
1374
+ self.post_init()
1375
+
1376
+ def get_input_embeddings(self):
1377
+ return self.embed_tokens
1378
+
1379
+ def set_input_embeddings(self, value):
1380
+ self.embed_tokens = value
1381
+
1382
+ @add_start_docstrings_to_model_forward(DeepseekV3_INPUTS_DOCSTRING)
1383
+ def forward(
1384
+ self,
1385
+ input_ids: torch.LongTensor = None,
1386
+ attention_mask: Optional[torch.Tensor] = None,
1387
+ position_ids: Optional[torch.LongTensor] = None,
1388
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1389
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1390
+ use_cache: Optional[bool] = None,
1391
+ output_attentions: Optional[bool] = None,
1392
+ output_hidden_states: Optional[bool] = None,
1393
+ return_dict: Optional[bool] = None,
1394
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
1395
+ output_attentions = (
1396
+ output_attentions
1397
+ if output_attentions is not None
1398
+ else self.config.output_attentions
1399
+ )
1400
+ output_hidden_states = (
1401
+ output_hidden_states
1402
+ if output_hidden_states is not None
1403
+ else self.config.output_hidden_states
1404
+ )
1405
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1406
+
1407
+ return_dict = (
1408
+ return_dict if return_dict is not None else self.config.use_return_dict
1409
+ )
1410
+
1411
+ # retrieve input_ids and inputs_embeds
1412
+ if input_ids is not None and inputs_embeds is not None:
1413
+ raise ValueError(
1414
+ "You cannot specify both input_ids and inputs_embeds at the same time"
1415
+ )
1416
+ elif input_ids is not None:
1417
+ batch_size, seq_length = input_ids.shape[:2]
1418
+ elif inputs_embeds is not None:
1419
+ batch_size, seq_length = inputs_embeds.shape[:2]
1420
+ else:
1421
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1422
+
1423
+ past_key_values_length = 0
1424
+ if use_cache:
1425
+ use_legacy_cache = not isinstance(past_key_values, Cache)
1426
+ if use_legacy_cache:
1427
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1428
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
1429
+
1430
+ if position_ids is None:
1431
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1432
+ position_ids = torch.arange(
1433
+ past_key_values_length,
1434
+ seq_length + past_key_values_length,
1435
+ dtype=torch.long,
1436
+ device=device,
1437
+ )
1438
+ position_ids = position_ids.unsqueeze(0)
1439
+
1440
+ if inputs_embeds is None:
1441
+ inputs_embeds = self.embed_tokens(input_ids)
1442
+
1443
+ if self._use_flash_attention_2:
1444
+ # 2d mask is passed through the layers
1445
+ attention_mask = (
1446
+ attention_mask
1447
+ if (attention_mask is not None and 0 in attention_mask)
1448
+ else None
1449
+ )
1450
+ else:
1451
+ # 4d mask is passed through the layers
1452
+ attention_mask = _prepare_4d_causal_attention_mask(
1453
+ attention_mask,
1454
+ (batch_size, seq_length),
1455
+ inputs_embeds,
1456
+ past_key_values_length,
1457
+ )
1458
+
1459
+ # embed positions
1460
+ hidden_states = inputs_embeds
1461
+
1462
+ # decoder layers
1463
+ all_hidden_states = () if output_hidden_states else None
1464
+ all_self_attns = () if output_attentions else None
1465
+ next_decoder_cache = None
1466
+
1467
+ for decoder_layer in self.layers:
1468
+ if output_hidden_states:
1469
+ all_hidden_states += (hidden_states,)
1470
+
1471
+ layer_outputs = decoder_layer(
1472
+ hidden_states,
1473
+ attention_mask=attention_mask,
1474
+ position_ids=position_ids,
1475
+ past_key_value=past_key_values,
1476
+ output_attentions=output_attentions,
1477
+ use_cache=use_cache,
1478
+ )
1479
+
1480
+ hidden_states = layer_outputs[0]
1481
+
1482
+ if use_cache:
1483
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1484
+
1485
+ if output_attentions:
1486
+ all_self_attns += (layer_outputs[1],)
1487
+
1488
+ hidden_states = self.norm(hidden_states)
1489
+
1490
+ # add hidden states from the last decoder layer
1491
+ if output_hidden_states:
1492
+ all_hidden_states += (hidden_states,)
1493
+
1494
+ next_cache = None
1495
+ if use_cache:
1496
+ next_cache = (
1497
+ next_decoder_cache.to_legacy_cache()
1498
+ if use_legacy_cache
1499
+ else next_decoder_cache
1500
+ )
1501
+ if not return_dict:
1502
+ return tuple(
1503
+ v
1504
+ for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
1505
+ if v is not None
1506
+ )
1507
+ return BaseModelOutputWithPast(
1508
+ last_hidden_state=hidden_states,
1509
+ past_key_values=next_cache,
1510
+ hidden_states=all_hidden_states,
1511
+ attentions=all_self_attns,
1512
+ )
1513
+
1514
+
1515
+ class DeepseekV3ForCausalLM(DeepseekV3PreTrainedModel):
1516
+ _tied_weights_keys = ["lm_head.weight"]
1517
+
1518
+ def __init__(self, config):
1519
+ super().__init__(config)
1520
+ self.model = DeepseekV3Model(config)
1521
+ self.vocab_size = config.vocab_size
1522
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1523
+
1524
+ # Initialize weights and apply final processing
1525
+ self.post_init()
1526
+
1527
+ def get_input_embeddings(self):
1528
+ return self.model.embed_tokens
1529
+
1530
+ def set_input_embeddings(self, value):
1531
+ self.model.embed_tokens = value
1532
+
1533
+ def get_output_embeddings(self):
1534
+ return self.lm_head
1535
+
1536
+ def set_output_embeddings(self, new_embeddings):
1537
+ self.lm_head = new_embeddings
1538
+
1539
+ def set_decoder(self, decoder):
1540
+ self.model = decoder
1541
+
1542
+ def get_decoder(self):
1543
+ return self.model
1544
+
1545
+ @add_start_docstrings_to_model_forward(DeepseekV3_INPUTS_DOCSTRING)
1546
+ @replace_return_docstrings(
1547
+ output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
1548
+ )
1549
+ def forward(
1550
+ self,
1551
+ input_ids: torch.LongTensor = None,
1552
+ attention_mask: Optional[torch.Tensor] = None,
1553
+ position_ids: Optional[torch.LongTensor] = None,
1554
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1555
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1556
+ labels: Optional[torch.LongTensor] = None,
1557
+ use_cache: Optional[bool] = None,
1558
+ output_attentions: Optional[bool] = None,
1559
+ output_hidden_states: Optional[bool] = None,
1560
+ return_dict: Optional[bool] = None,
1561
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1562
+ r"""
1563
+ Args:
1564
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1565
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers.,
1566
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1567
+ (masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`.
1568
+
1569
+ Returns:
1570
+
1571
+ Example:
1572
+
1573
+ ```python
1574
+ >>> from transformers import AutoTokenizer, DeepseekV3ForCausalLM
1575
+
1576
+ >>> model = DeepseekV3ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1577
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1578
+
1579
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1580
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1581
+
1582
+ >>> # Generate
1583
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1584
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1585
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1586
+ ```"""
1587
+ output_attentions = (
1588
+ output_attentions
1589
+ if output_attentions is not None
1590
+ else self.config.output_attentions
1591
+ )
1592
+ output_hidden_states = (
1593
+ output_hidden_states
1594
+ if output_hidden_states is not None
1595
+ else self.config.output_hidden_states
1596
+ )
1597
+ return_dict = (
1598
+ return_dict if return_dict is not None else self.config.use_return_dict
1599
+ )
1600
+
1601
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1602
+ outputs = self.model(
1603
+ input_ids=input_ids,
1604
+ attention_mask=attention_mask,
1605
+ position_ids=position_ids,
1606
+ past_key_values=past_key_values,
1607
+ inputs_embeds=inputs_embeds,
1608
+ use_cache=use_cache,
1609
+ output_attentions=output_attentions,
1610
+ output_hidden_states=output_hidden_states,
1611
+ return_dict=return_dict,
1612
+ )
1613
+
1614
+ hidden_states = outputs[0]
1615
+ logits = self.lm_head(hidden_states)
1616
+ logits = logits.float()
1617
+
1618
+ loss = None
1619
+ if labels is not None:
1620
+ # Shift so that tokens < n predict n
1621
+ shift_logits = logits[..., :-1, :].contiguous()
1622
+ shift_labels = labels[..., 1:].contiguous()
1623
+ # Flatten the tokens
1624
+ loss_fct = CrossEntropyLoss()
1625
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1626
+ shift_labels = shift_labels.view(-1)
1627
+ # Enable model parallelism
1628
+ shift_labels = shift_labels.to(shift_logits.device)
1629
+ loss = loss_fct(shift_logits, shift_labels)
1630
+
1631
+ if not return_dict:
1632
+ output = (logits,) + outputs[1:]
1633
+ return (loss,) + output if loss is not None else output
1634
+
1635
+ return CausalLMOutputWithPast(
1636
+ loss=loss,
1637
+ logits=logits,
1638
+ past_key_values=outputs.past_key_values,
1639
+ hidden_states=outputs.hidden_states,
1640
+ attentions=outputs.attentions,
1641
+ )
1642
+
1643
+ def prepare_inputs_for_generation(
1644
+ self,
1645
+ input_ids,
1646
+ past_key_values=None,
1647
+ attention_mask=None,
1648
+ inputs_embeds=None,
1649
+ **kwargs,
1650
+ ):
1651
+ if past_key_values is not None:
1652
+ if isinstance(past_key_values, Cache):
1653
+ cache_length = past_key_values.get_seq_length()
1654
+ past_length = past_key_values.seen_tokens
1655
+ max_cache_length = past_key_values.get_max_length()
1656
+ else:
1657
+ cache_length = past_length = past_key_values[0][0].shape[2]
1658
+ max_cache_length = None
1659
+
1660
+ # Keep only the unprocessed tokens:
1661
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1662
+ # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
1663
+ # input)
1664
+ if (
1665
+ attention_mask is not None
1666
+ and attention_mask.shape[1] > input_ids.shape[1]
1667
+ ):
1668
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1669
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1670
+ # input_ids based on the past_length.
1671
+ elif past_length < input_ids.shape[1]:
1672
+ input_ids = input_ids[:, past_length:]
1673
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1674
+
1675
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1676
+ if (
1677
+ max_cache_length is not None
1678
+ and attention_mask is not None
1679
+ and cache_length + input_ids.shape[1] > max_cache_length
1680
+ ):
1681
+ attention_mask = attention_mask[:, -max_cache_length:]
1682
+
1683
+ position_ids = kwargs.get("position_ids", None)
1684
+ if attention_mask is not None and position_ids is None:
1685
+ # create position_ids on the fly for batch generation
1686
+ position_ids = attention_mask.long().cumsum(-1) - 1
1687
+ position_ids.masked_fill_(attention_mask == 0, 1)
1688
+ if past_key_values:
1689
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1690
+
1691
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1692
+ if inputs_embeds is not None and past_key_values is None:
1693
+ model_inputs = {"inputs_embeds": inputs_embeds}
1694
+ else:
1695
+ model_inputs = {"input_ids": input_ids}
1696
+
1697
+ model_inputs.update(
1698
+ {
1699
+ "position_ids": position_ids,
1700
+ "past_key_values": past_key_values,
1701
+ "use_cache": kwargs.get("use_cache"),
1702
+ "attention_mask": attention_mask,
1703
+ }
1704
+ )
1705
+ return model_inputs
1706
+
1707
+ @staticmethod
1708
+ def _reorder_cache(past_key_values, beam_idx):
1709
+ reordered_past = ()
1710
+ for layer_past in past_key_values:
1711
+ reordered_past += (
1712
+ tuple(
1713
+ past_state.index_select(0, beam_idx.to(past_state.device))
1714
+ for past_state in layer_past
1715
+ ),
1716
+ )
1717
+ return reordered_past
1718
+
1719
+
1720
+ @add_start_docstrings(
1721
+ """
1722
+ The DeepseekV3 Model transformer with a sequence classification head on top (linear layer).
1723
+
1724
+ [`DeepseekV3ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1725
+ (e.g. GPT-2) do.
1726
+
1727
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1728
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1729
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1730
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1731
+ each row of the batch).
1732
+ """,
1733
+ DeepseekV3_START_DOCSTRING,
1734
+ )
1735
+ class DeepseekV3ForSequenceClassification(DeepseekV3PreTrainedModel):
1736
+ def __init__(self, config):
1737
+ super().__init__(config)
1738
+ self.num_labels = config.num_labels
1739
+ self.model = DeepseekV3Model(config)
1740
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1741
+
1742
+ # Initialize weights and apply final processing
1743
+ self.post_init()
1744
+
1745
+ def get_input_embeddings(self):
1746
+ return self.model.embed_tokens
1747
+
1748
+ def set_input_embeddings(self, value):
1749
+ self.model.embed_tokens = value
1750
+
1751
+ @add_start_docstrings_to_model_forward(DeepseekV3_INPUTS_DOCSTRING)
1752
+ def forward(
1753
+ self,
1754
+ input_ids: torch.LongTensor = None,
1755
+ attention_mask: Optional[torch.Tensor] = None,
1756
+ position_ids: Optional[torch.LongTensor] = None,
1757
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1758
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1759
+ labels: Optional[torch.LongTensor] = None,
1760
+ use_cache: Optional[bool] = None,
1761
+ output_attentions: Optional[bool] = None,
1762
+ output_hidden_states: Optional[bool] = None,
1763
+ return_dict: Optional[bool] = None,
1764
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1765
+ r"""
1766
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1767
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, transformers.,
1768
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1769
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1770
+ """
1771
+ return_dict = (
1772
+ return_dict if return_dict is not None else self.config.use_return_dict
1773
+ )
1774
+
1775
+ transformer_outputs = self.model(
1776
+ input_ids,
1777
+ attention_mask=attention_mask,
1778
+ position_ids=position_ids,
1779
+ past_key_values=past_key_values,
1780
+ inputs_embeds=inputs_embeds,
1781
+ use_cache=use_cache,
1782
+ output_attentions=output_attentions,
1783
+ output_hidden_states=output_hidden_states,
1784
+ return_dict=return_dict,
1785
+ )
1786
+ hidden_states = transformer_outputs[0]
1787
+ logits = self.score(hidden_states)
1788
+
1789
+ if input_ids is not None:
1790
+ batch_size = input_ids.shape[0]
1791
+ else:
1792
+ batch_size = inputs_embeds.shape[0]
1793
+
1794
+ if self.config.pad_token_id is None and batch_size != 1:
1795
+ raise ValueError(
1796
+ "Cannot handle batch sizes > 1 if no padding token is defined."
1797
+ )
1798
+ if self.config.pad_token_id is None:
1799
+ sequence_lengths = -1
1800
+ else:
1801
+ if input_ids is not None:
1802
+ sequence_lengths = (
1803
+ torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1804
+ ).to(logits.device)
1805
+ else:
1806
+ sequence_lengths = -1
1807
+
1808
+ pooled_logits = logits[
1809
+ torch.arange(batch_size, device=logits.device), sequence_lengths
1810
+ ]
1811
+
1812
+ loss = None
1813
+ if labels is not None:
1814
+ labels = labels.to(logits.device)
1815
+ if self.config.problem_type is None:
1816
+ if self.num_labels == 1:
1817
+ self.config.problem_type = "regression"
1818
+ elif self.num_labels > 1 and (
1819
+ labels.dtype == torch.long or labels.dtype == torch.int
1820
+ ):
1821
+ self.config.problem_type = "single_label_classification"
1822
+ else:
1823
+ self.config.problem_type = "multi_label_classification"
1824
+
1825
+ if self.config.problem_type == "regression":
1826
+ loss_fct = MSELoss()
1827
+ if self.num_labels == 1:
1828
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1829
+ else:
1830
+ loss = loss_fct(pooled_logits, labels)
1831
+ elif self.config.problem_type == "single_label_classification":
1832
+ loss_fct = CrossEntropyLoss()
1833
+ loss = loss_fct(
1834
+ pooled_logits.view(-1, self.num_labels), labels.view(-1)
1835
+ )
1836
+ elif self.config.problem_type == "multi_label_classification":
1837
+ loss_fct = BCEWithLogitsLoss()
1838
+ loss = loss_fct(pooled_logits, labels)
1839
+ if not return_dict:
1840
+ output = (pooled_logits,) + transformer_outputs[1:]
1841
+ return ((loss,) + output) if loss is not None else output
1842
+
1843
+ return SequenceClassifierOutputWithPast(
1844
+ loss=loss,
1845
+ logits=pooled_logits,
1846
+ past_key_values=transformer_outputs.past_key_values,
1847
+ hidden_states=transformer_outputs.hidden_states,
1848
+ attentions=transformer_outputs.attentions,
1849
+ )
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "bos_token": {
5
+ "__type": "AddedToken",
6
+ "content": "<|begin▁of▁sentence|>",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "clean_up_tokenization_spaces": false,
13
+ "eos_token": {
14
+ "__type": "AddedToken",
15
+ "content": "<|end▁of▁sentence|>",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "legacy": true,
22
+ "model_max_length": 131072,
23
+ "pad_token": {
24
+ "__type": "AddedToken",
25
+ "content": "<|end▁of▁sentence|>",
26
+ "lstrip": false,
27
+ "normalized": true,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ },
31
+ "sp_model_kwargs": {},
32
+ "unk_token": null,
33
+ "tokenizer_class": "LlamaTokenizerFast",
34
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='', is_first_sp=true) %}{%- for message in messages %}{%- if message['role'] == 'system' %}{%- if ns.is_first_sp %}{% set ns.system_prompt = ns.system_prompt + message['content'] %}{% set ns.is_first_sp = false %}{%- else %}{% set ns.system_prompt = ns.system_prompt + '\n\n' + message['content'] %}{%- endif %}{%- endif %}{%- endfor %}{{bos_token}}{{ns.system_prompt}}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{'<|User|>' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is none %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls']%}{%- if not ns.is_first %}{{'<|Assistant|><|tool▁calls▁begin|><|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\n' + '```json' + '\n' + tool['function']['arguments'] + '\n' + '```' + '<|tool▁call▁end|>'}}{%- set ns.is_first = true -%}{%- else %}{{'\n' + '<|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\n' + '```json' + '\n' + tool['function']['arguments'] + '\n' + '```' + '<|tool▁call▁end|>'}}{{'<|tool▁calls▁end|><|end▁of▁sentence|>'}}{%- endif %}{%- endfor %}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is not none %}{%- if ns.is_tool %}{{'<|tool▁outputs▁end|>' + message['content'] + '<|end▁of▁sentence|>'}}{%- set ns.is_tool = false -%}{%- else %}{{'<|Assistant|>' + message['content'] + '<|end▁of▁sentence|>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{'<|tool▁outputs▁begin|><|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- set ns.is_output_first = false %}{%- else %}{{'\n<|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<|tool▁outputs▁end|>'}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{'<|Assistant|>'}}{% endif %}"
35
+ }