zhichao-geng commited on
Commit
3a11c29
·
verified ·
1 Parent(s): 00aa333

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +149 -3
README.md CHANGED
@@ -1,3 +1,149 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ license: apache-2.0
4
+ tags:
5
+ - learned sparse
6
+ - opensearch
7
+ - transformers
8
+ - retrieval
9
+ - passage-retrieval
10
+ - document-expansion
11
+ - bag-of-words
12
+ ---
13
+
14
+ # opensearch-neural-sparse-encoding-doc-v2-distill
15
+ This is a learned sparse retrieval model. It encodes the documents to 30522 dimensional **sparse vectors**. For queries, it just use a tokenizer and a weight look-up table to generate sparse vectors. The non-zero dimension index means the corresponding token in the vocabulary, and the weight means the importance of the token. And the similarity score is the inner product of query/document sparse vectors. In the real-world use case, the search performance of opensearch-neural-sparse-encoding-v1 is comparable to BM25.
16
+
17
+ This model is trained on MS MARCO dataset.
18
+
19
+ OpenSearch neural sparse feature supports learned sparse retrieval with lucene inverted index. Link: https://opensearch.org/docs/latest/query-dsl/specialized/neural-sparse/. The indexing and search can be performed with OpenSearch high-level API.
20
+
21
+ ## Select the model
22
+ The model should be selected considering search relevance, model inference and retrieval efficiency(FLOPS). We benchmark models' **zero-shot performance** on a subset of BEIR benchmark: TrecCovid,NFCorpus,NQ,HotpotQA,FiQA,ArguAna,Touche,DBPedia,SCIDOCS,FEVER,Climate FEVER,SciFact,Quora.
23
+
24
+ Overall, the v2 series of models have better search relevance, efficiency and inference speed than the v1 series. The specific advantages and disadvantages may vary across different datasets.
25
+
26
+ | Model | Inference-free for Retrieval | Model Parameters | AVG NDCG@10 | AVG FLOPS |
27
+ |-------|------------------------------|------------------|-------------|-----------|
28
+ | [opensearch-neural-sparse-encoding-v1](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-v1) | | 133M | 0.524 | 11.4 |
29
+ | [opensearch-neural-sparse-encoding-v2-distill](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-v2-distill) | | 67M | 0.528 | 8.3 |
30
+ | [opensearch-neural-sparse-encoding-doc-v1](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v1) | ✔️ | 133M | 0.490 | 2.3 |
31
+ | [opensearch-neural-sparse-encoding-doc-v2-distill](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill) | ✔️ | 67M | 0.504 | 1.8 |
32
+
33
+
34
+ ## Usage (HuggingFace)
35
+ This model is supposed to run inside OpenSearch cluster. But you can also use it outside the cluster, with HuggingFace models API.
36
+
37
+ ```python
38
+ import json
39
+ import itertools
40
+ import torch
41
+
42
+ from transformers import AutoModelForMaskedLM, AutoTokenizer
43
+
44
+
45
+ # get sparse vector from dense vectors with shape batch_size * seq_len * vocab_size
46
+ def get_sparse_vector(feature, output):
47
+ values, _ = torch.max(output*feature["attention_mask"].unsqueeze(-1), dim=1)
48
+ values = torch.log(1 + torch.relu(values))
49
+ values[:,special_token_ids] = 0
50
+ return values
51
+
52
+ # transform the sparse vector to a dict of (token, weight)
53
+ def transform_sparse_vector_to_dict(sparse_vector):
54
+ sample_indices,token_indices=torch.nonzero(sparse_vector,as_tuple=True)
55
+ non_zero_values = sparse_vector[(sample_indices,token_indices)].tolist()
56
+ number_of_tokens_for_each_sample = torch.bincount(sample_indices).cpu().tolist()
57
+ tokens = [transform_sparse_vector_to_dict.id_to_token[_id] for _id in token_indices.tolist()]
58
+
59
+ output = []
60
+ end_idxs = list(itertools.accumulate([0]+number_of_tokens_for_each_sample))
61
+ for i in range(len(end_idxs)-1):
62
+ token_strings = tokens[end_idxs[i]:end_idxs[i+1]]
63
+ weights = non_zero_values[end_idxs[i]:end_idxs[i+1]]
64
+ output.append(dict(zip(token_strings, weights)))
65
+ return output
66
+
67
+ # download the idf file from model hub. idf is used to give weights for query tokens
68
+ def get_tokenizer_idf(tokenizer):
69
+ from huggingface_hub import hf_hub_download
70
+ local_cached_path = hf_hub_download(repo_id="opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill", filename="idf.json")
71
+ with open(local_cached_path) as f:
72
+ idf = json.load(f)
73
+ idf_vector = [0]*tokenizer.vocab_size
74
+ for token,weight in idf.items():
75
+ _id = tokenizer._convert_token_to_id_with_added_voc(token)
76
+ idf_vector[_id]=weight
77
+ return torch.tensor(idf_vector)
78
+
79
+ # load the model
80
+ model = AutoModelForMaskedLM.from_pretrained("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
81
+ tokenizer = AutoTokenizer.from_pretrained("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
82
+ idf = get_tokenizer_idf(tokenizer)
83
+
84
+ # set the special tokens and id_to_token transform for post-process
85
+ special_token_ids = [tokenizer.vocab[token] for token in tokenizer.special_tokens_map.values()]
86
+ get_sparse_vector.special_token_ids = special_token_ids
87
+ id_to_token = ["" for i in range(tokenizer.vocab_size)]
88
+ for token, _id in tokenizer.vocab.items():
89
+ id_to_token[_id] = token
90
+ transform_sparse_vector_to_dict.id_to_token = id_to_token
91
+
92
+
93
+
94
+ query = "What's the weather in ny now?"
95
+ document = "Currently New York is rainy."
96
+
97
+ # encode the query
98
+ feature_query = tokenizer([query], padding=True, truncation=True, return_tensors='pt', return_token_type_ids=False)
99
+ input_ids = feature_query["input_ids"]
100
+ batch_size = input_ids.shape[0]
101
+ query_vector = torch.zeros(batch_size, tokenizer.vocab_size)
102
+ query_vector[torch.arange(batch_size).unsqueeze(-1), input_ids] = 1
103
+ query_sparse_vector = query_vector*idf
104
+
105
+ # encode the document
106
+ feature_document = tokenizer([document], padding=True, truncation=True, return_tensors='pt', return_token_type_ids=False)
107
+ output = model(**feature_document)[0]
108
+ document_sparse_vector = get_sparse_vector(feature_document, output)
109
+
110
+
111
+ # get similarity score
112
+ sim_score = torch.matmul(query_sparse_vector[0],document_sparse_vector[0])
113
+ print(sim_score) # tensor(12.8465, grad_fn=<DotBackward0>)
114
+
115
+
116
+ query_token_weight = transform_sparse_vector_to_dict(query_sparse_vector)[0]
117
+ document_query_token_weight = transform_sparse_vector_to_dict(document_sparse_vector)[0]
118
+ for token in sorted(query_token_weight, key=lambda x:query_token_weight[x], reverse=True):
119
+ if token in document_query_token_weight:
120
+ print("score in query: %.4f, score in document: %.4f, token: %s"%(query_token_weight[token],document_query_token_weight[token],token))
121
+
122
+
123
+
124
+ # result:
125
+ # score in query: 5.7729, score in document: 1.4109, token: ny
126
+ # score in query: 4.5684, score in document: 1.4673, token: weather
127
+ # score in query: 3.5895, score in document: 0.7473, token: now
128
+ ```
129
+
130
+ The above code sample shows an example of neural sparse search. Although there is no overlap token in original query and document, but this model performs a good match.
131
+
132
+ ## Detailed Search Relevance
133
+
134
+ | Dataset | [opensearch-neural-sparse-encoding-v1](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-v1) | [opensearch-neural-sparse-encoding-v2-distill](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-v2-distill) | [opensearch-neural-sparse-encoding-doc-v1](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v1) | [opensearch-neural-sparse-encoding-doc-v2-distill](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill) |
135
+ |---------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
136
+ | Trec Covid | 0.771 | 0.775 | 0.707 | 0.690 |
137
+ | NFCorpus | 0.360 | 0.347 | 0.352 | 0.343 |
138
+ | NQ | 0.553 | 0.561 | 0.521 | 0.528 |
139
+ | HotpotQA | 0.697 | 0.685 | 0.677 | 0.675 |
140
+ | FiQA | 0.376 | 0.374 | 0.344 | 0.357 |
141
+ | ArguAna | 0.508 | 0.551 | 0.461 | 0.496 |
142
+ | Touche | 0.278 | 0.278 | 0.294 | 0.287 |
143
+ | DBPedia | 0.447 | 0.435 | 0.412 | 0.418 |
144
+ | SCIDOCS | 0.164 | 0.173 | 0.154 | 0.166 |
145
+ | FEVER | 0.821 | 0.849 | 0.743 | 0.818 |
146
+ | Climate FEVER | 0.263 | 0.249 | 0.202 | 0.224 |
147
+ | SciFact | 0.723 | 0.722 | 0.716 | 0.715 |
148
+ | Quora | 0.856 | 0.863 | 0.788 | 0.841 |
149
+ | **Average** | **0.524** | **0.528** | **0.490** | **0.504** |