# coding=utf-8 # Copyright 2025 The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import logging import math import os import types from collections.abc import Iterator from copy import deepcopy from dataclasses import dataclass from threading import Thread from typing import List from typing import Literal from typing import Optional from typing import Tuple from typing import Union import numpy as np import soundfile as sf import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.utils.parametrize as P from huggingface_hub import hf_hub_download from PIL import Image from torch.nn.utils.parametrizations import weight_norm from tqdm import tqdm from transformers import AutoProcessor from transformers import BertTokenizerFast from transformers import LlamaConfig from transformers import LlamaModel from transformers import LogitsWarper from transformers import PreTrainedModel from transformers import Qwen2ForCausalLM from transformers import Qwen2PreTrainedModel from transformers import TextIteratorStreamer from transformers import TopKLogitsWarper from transformers import TopPLogitsWarper from transformers.cache_utils import Cache from transformers.cache_utils import DynamicCache from transformers.cache_utils import EncoderDecoderCache from transformers.cache_utils import StaticCache from transformers.modeling_outputs import BaseModelOutputWithPast from transformers.modeling_outputs import ModelOutput from transformers.models.whisper.modeling_whisper import ACT2FN from transformers.models.whisper.modeling_whisper import WHISPER_ATTENTION_CLASSES from transformers.models.whisper.modeling_whisper import WhisperConfig from transformers.models.whisper.modeling_whisper import WhisperEncoder try: from vector_quantize_pytorch import GroupedResidualFSQ from vocos import Vocos from vocos.pretrained import instantiate_class _tts_deps = True except: _tts_deps = False from .configuration_minicpm import ConditionalChatTTSConfig from .configuration_minicpm import MiniCPMOConfig from .modeling_navit_siglip import SiglipVisionTransformer from .resampler import Resampler from .utils import NumberToTextConverter from .utils import sentence_end from .utils import VoiceChecker logger = logging.getLogger(__name__) @dataclass class OmniOutput(ModelOutput): text: Optional[Union[str, List[str], Iterator]] = None spk_embeds: Optional[torch.FloatTensor] = None audio_wav: Optional[np.ndarray] = None sampling_rate: Optional[int] = None class MiniCPMOPreTrainedModel(Qwen2PreTrainedModel): config_class = MiniCPMOConfig class MiniCPMO(MiniCPMOPreTrainedModel): def __init__(self, config): super().__init__(config) self.llm = Qwen2ForCausalLM(config) self.llm.prepare_inputs_for_generation = types.MethodType(prepare_inputs_for_generation, self.llm) # patch llm self.embed_dim = self.llm.config.hidden_size # init vision module if self.config.init_vision: self.vpm = self.init_vision_module() self.vision_dim = self.vpm.embed_dim self.resampler = self.init_resampler(self.embed_dim, self.vision_dim) # init audio module if self.config.init_audio: self.apm = self.init_audio_module() audio_output_dim = int(self.apm.config.encoder_ffn_dim // 4) self.audio_avg_pooler = nn.AvgPool1d(self.config.audio_pool_step, stride=self.config.audio_pool_step) self.audio_projection_layer = MultiModalProjector(in_dim=audio_output_dim, out_dim=self.embed_dim) self.audio_encoder_layer = -1 # init tts module if self.config.init_tts: assert _tts_deps, "please make sure vector_quantize_pytorch and vocos are installed." self.tts = self.init_tts_module() self.processor = AutoProcessor.from_pretrained(self.config._name_or_path, trust_remote_code=True) self.terminators = ["<|im_end|>", "<|endoftext|>"] self.default_tts_chat_template = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n<|spk_bos|><|spk|><|spk_eos|><|tts_bos|>' }}{% endif %}" self.force_no_stop = False # for stream api self.reset_session() def reset_session(self): self.session_id = None self.new_user_msg = True self.llm_generated = False self.llm_generate_completed = False self.llm_past_key_values = None self.audio_past_key_values = None # apm kv cache def init_tts( self, tts_text_tokenizer_path=None, vocos_ckpt_path=None, ): """ load tts tokenizer and vocos 1. try load form local 2. try load from huggingface """ from .processing_minicpmo import ChatTTSProcessor if tts_text_tokenizer_path is None: tts_text_tokenizer_path = os.path.join(self.config._name_or_path, "assets/chattts_tokenizer") if not os.path.exists(tts_text_tokenizer_path): # try from hf model_id tts_text_tokenizer_path = "openbmb/chattts_tokenizer" tts_text_tokenizer = BertTokenizerFast.from_pretrained(tts_text_tokenizer_path) self.tts_processor = ChatTTSProcessor(text_tokenizer=tts_text_tokenizer) if vocos_ckpt_path is None: vocos_ckpt_path = os.path.join(self.config._name_or_path, "assets/Vocos.pt") if not os.path.exists(vocos_ckpt_path): vocos_ckpt_path = hf_hub_download(repo_id="openbmb/MiniCPM-o-2_6", subfolder="assets", filename="Vocos.pt") assert os.path.exists(vocos_ckpt_path) self.vocos = self.initialize_vocos(vocos_ckpt_path) def initialize_vocos(self, ckpt_path): feature_extractor = instantiate_class( args=(), init={ "class_path": "vocos.feature_extractors.MelSpectrogramFeatures", "init_args": {"sample_rate": 24000, "n_fft": 1024, "hop_length": 256, "n_mels": 100}, }, ) backbone = instantiate_class( args=(), init={ "class_path": "vocos.models.VocosBackbone", "init_args": {"input_channels": 100, "dim": 512, "intermediate_dim": 1536, "num_layers": 8}, }, ) head = instantiate_class( args=(), init={"class_path": "vocos.heads.ISTFTHead", "init_args": {"dim": 512, "n_fft": 1024, "hop_length": 256}}, ) vocos = Vocos(feature_extractor, backbone, head).to("cuda").eval().to(torch.float32) vocos.load_state_dict(torch.load(ckpt_path, weights_only=True, mmap=True)) return vocos def init_vision_module(self): if self.config._attn_implementation == "flash_attention_2": self.config.vision_config._attn_implementation = "flash_attention_2" else: self.config.vision_config._attn_implementation = "eager" model = SiglipVisionTransformer(self.config.vision_config) if self.config.drop_vision_last_layer: model.encoder.layers = model.encoder.layers[:-1] setattr(model, "embed_dim", model.embeddings.embed_dim) setattr(model, "patch_size", model.embeddings.patch_size) return model def init_resampler(self, embed_dim, vision_dim): return Resampler( num_queries=self.config.query_num, embed_dim=embed_dim, num_heads=embed_dim // 128, kv_dim=vision_dim, adaptive=True, ) def init_audio_module(self): model = MiniCPMWhisperEncoder(self.config.audio_config) return model def init_tts_module(self): model = ConditionalChatTTS(self.config.tts_config) return model def get_input_embeddings(self): return self.llm.get_input_embeddings() def set_input_embeddings(self, value): self.llm.embed_tokens = value def get_output_embeddings(self): return self.llm.lm_head def set_output_embeddings(self, new_embeddings): self.llm.lm_head = new_embeddings def set_decoder(self, decoder): self.llm = decoder def get_decoder(self): return self.llm def subsequent_chunk_mask( self, size: int, chunk_size: int, num_left_chunks: int = -1, device: torch.device = torch.device("cpu"), num_lookhead: int = 0, ) -> torch.Tensor: """Create mask for subsequent steps (size, size) with chunk size, this is for streaming encoder Args: size (int): size of mask chunk_size (int): size of chunk num_left_chunks (int): number of left chunks <0: use full chunk >=0: use num_left_chunks device (torch.device): "cpu" or "cuda" or torch.Tensor.device Returns: torch.Tensor: mask Examples: >>> subsequent_chunk_mask(4, 2) [[1, 1, 0, 0], [1, 1, 0, 0], [1, 1, 1, 1], [1, 1, 1, 1]] """ ret = torch.zeros(size, size, device=device, dtype=torch.bool) for i in range(size): if num_left_chunks < 0: start = 0 else: start = max((i // chunk_size - num_left_chunks) * chunk_size, 0) ending = min((i // chunk_size + 1) * chunk_size + num_lookhead, size) ret[i, start:ending] = True return ret def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor): """ Computes the output length of the convolutional layers and the output length of the audio encoder """ input_lengths_after_cnn = (input_lengths - 1) // 2 + 1 input_lengths_after_pooling = ( input_lengths_after_cnn - self.config.audio_pool_step ) // self.config.audio_pool_step + 1 input_lengths_after_pooling = input_lengths_after_pooling.to(dtype=torch.int32) return input_lengths_after_cnn, input_lengths_after_pooling def get_vllm_embedding(self, data): """ Compute all visual embeddings, and set into llm embeddings. Args: data: Dict tgt_sizes: image size after patch embedding pixel_values: image features image_bound: position of each picture corresponding to input_ids input_ids: full input_ids, include placeholder Returns: embedding with vision, vision_hidden_states """ if "vision_hidden_states" not in data: dtype = self.llm.model.embed_tokens.weight.dtype device = self.llm.model.embed_tokens.weight.device tgt_sizes = data["tgt_sizes"] pixel_values_list = data["pixel_values"] vision_hidden_states = [] all_pixel_values = [] img_cnt = [] for pixel_values in pixel_values_list: img_cnt.append(len(pixel_values)) all_pixel_values.extend([i.flatten(end_dim=1).permute(1, 0) for i in pixel_values]) # exist image if all_pixel_values: tgt_sizes = [tgt_size for tgt_size in tgt_sizes if isinstance(tgt_size, torch.Tensor)] tgt_sizes = torch.vstack(tgt_sizes).type(torch.int32) max_patches = torch.max(tgt_sizes[:, 0] * tgt_sizes[:, 1]) all_pixel_values = torch.nn.utils.rnn.pad_sequence( all_pixel_values, batch_first=True, padding_value=0.0 ) B, L, _ = all_pixel_values.shape all_pixel_values = all_pixel_values.permute(0, 2, 1).reshape(B, 3, -1, L) patch_attn_mask = torch.zeros((B, 1, max_patches), dtype=torch.bool, device=device) for i in range(B): patch_attn_mask[i, 0, : tgt_sizes[i][0] * tgt_sizes[i][1]] = True vision_batch_size = self.config.vision_batch_size all_pixel_values = all_pixel_values.type(dtype) if B > vision_batch_size: hs = [] for i in range(0, B, vision_batch_size): start_idx = i end_idx = i + vision_batch_size tmp_hs = self.vpm( all_pixel_values[start_idx:end_idx], patch_attention_mask=patch_attn_mask[start_idx:end_idx], tgt_sizes=tgt_sizes[start_idx:end_idx], ).last_hidden_state hs.append(tmp_hs) vision_embedding = torch.cat(hs, dim=0) else: vision_embedding = self.vpm( all_pixel_values, patch_attention_mask=patch_attn_mask, tgt_sizes=tgt_sizes ).last_hidden_state vision_embedding = self.resampler(vision_embedding, tgt_sizes) start = 0 for pixel_values in pixel_values_list: img_cnt = len(pixel_values) if img_cnt > 0: vision_hidden_states.append(vision_embedding[start : start + img_cnt]) start += img_cnt else: vision_hidden_states.append([]) else: # no image if self.training: dummy_image = torch.zeros((1, 3, 224, 224), device=device, dtype=dtype) tgt_sizes = torch.Tensor( [[(224 // self.config.patch_size), math.ceil(224 / self.config.patch_size)]] ).type(torch.int32) dummy_feature = self.resampler(self.vpm(dummy_image).last_hidden_state, tgt_sizes) else: dummy_feature = [] for _ in range(len(pixel_values_list)): vision_hidden_states.append(dummy_feature) else: vision_hidden_states = data["vision_hidden_states"] if hasattr(self.llm.config, "scale_emb"): vllm_embedding = self.llm.model.embed_tokens(data["input_ids"]) * self.llm.config.scale_emb else: vllm_embedding = self.llm.model.embed_tokens(data["input_ids"]) vision_hidden_states = [ i.type(vllm_embedding.dtype) if isinstance(i, torch.Tensor) else i for i in vision_hidden_states ] bs = len(data["input_ids"]) for i in range(bs): cur_vs_hs = vision_hidden_states[i] if len(cur_vs_hs) > 0: cur_vllm_emb = vllm_embedding[i] cur_image_bound = data["image_bound"][i] if len(cur_image_bound) > 0: image_indices = torch.stack( [torch.arange(r[0], r[1], dtype=torch.long) for r in cur_image_bound] ).to(vllm_embedding.device) cur_vllm_emb.scatter_( 0, image_indices.view(-1, 1).repeat(1, cur_vllm_emb.shape[-1]), cur_vs_hs.view(-1, cur_vs_hs.shape[-1]), ) elif self.training: cur_vllm_emb += cur_vs_hs[0].mean() * 0 return vllm_embedding, vision_hidden_states def get_audio_embedding_streaming(self, data): r""" Extract audio embeddings in a streaming manner using cached key-value pairs. This method processes incoming audio features incrementally and stores/updates `past_key_values` for faster inference on subsequent audio frames. It only supports batch_size=1 and is intended for streaming scenarios. Args: data (dict): - **"audio_features"** (`torch.FloatTensor`): Input mel-spectrograms of shape `(batch_size, 80, frames)`. - **"audio_feature_lens"** (List[List[int]]): Lengths of each audio segment for each item in the batch. Returns: List[List[torch.Tensor]]: audio embeddings """ wavforms = data.get("audio_features", []) # (bs, 80, frames) or [], multi audios need filled in advance audio_feature_lens_raw = data.get("audio_feature_lens", []) # list, [[x1, x2], [y1], [z1]] # exist audio if len(wavforms) > 0: audio_feature_lens = torch.hstack(audio_feature_lens_raw) batch_size, _, max_mel_seq_len = wavforms.shape assert batch_size == 1 max_seq_len = (max_mel_seq_len - 1) // 2 + 1 if self.audio_past_key_values is not None: cache_length = self.audio_past_key_values[0][0].shape[2] apm_max_len = self.apm.embed_positions.weight.shape[0] if cache_length + max_seq_len >= apm_max_len: logger.warning( f"audio_past_key_values length {cache_length + max_seq_len} exceed {apm_max_len}, reset." ) self.audio_past_key_values = None audio_outputs = self.apm(wavforms, past_key_values=self.audio_past_key_values, use_cache=True) audio_states = audio_outputs.last_hidden_state # [:, :audio_feat_lengths, :] self.audio_past_key_values = audio_outputs.past_key_values audio_embeds = self.audio_projection_layer(audio_states) audio_embeds = audio_embeds.transpose(1, 2) audio_embeds = self.audio_avg_pooler(audio_embeds) audio_embeds = audio_embeds.transpose(1, 2) _, feature_lens_after_pooling = self._get_feat_extract_output_lengths(audio_feature_lens) num_audio_tokens = feature_lens_after_pooling final_audio_embeds = [] idx = 0 for i in range(len(audio_feature_lens_raw)): target_audio_embeds = [] for _ in range(len(audio_feature_lens_raw[i])): target_audio_embeds.append(audio_embeds[idx, : num_audio_tokens[idx], :]) idx += 1 final_audio_embeds.append(target_audio_embeds) return final_audio_embeds else: return [] def get_audio_embedding(self, data, chunk_length=-1): r""" Extract full audio embeddings with optional chunk-based attention. This method computes embeddings for all audio frames at once, either using full attention (when `chunk_length` is -1) or chunk-based attention (when `chunk_length` is a positive number). It does not use key-value caching and is suitable for non-streaming inference. Args: data (dict): - **"audio_features"** (`torch.FloatTensor`): Input mel-spectrograms of shape `(batch_size, 80, frames)`. - **"audio_feature_lens"** (List[List[int]]): Lengths of each audio segment for each item in the batch. chunk_length (int, optional): Determines whether to use full attention (-1) or chunk-based attention (>0) during embedding computation. Returns: List[List[torch.Tensor]]: audio embeddings """ wavforms = data.get("audio_features", []) # (bs, 80, frames) or [], multi audios need filled in advance audio_feature_lens_raw = data.get("audio_feature_lens", []) # list, [[x1, x2], [y1], [z1]] # exist audio if len(wavforms) > 0: audio_feature_lens = torch.hstack(audio_feature_lens_raw) batch_size, _, max_mel_seq_len = wavforms.shape max_seq_len = (max_mel_seq_len - 1) // 2 + 1 # Create a sequence tensor of shape (batch_size, max_seq_len) seq_range = ( torch.arange(0, max_seq_len, dtype=audio_feature_lens.dtype, device=audio_feature_lens.device) .unsqueeze(0) .expand(batch_size, max_seq_len) ) lengths_expand = audio_feature_lens.unsqueeze(1).expand(batch_size, max_seq_len) # Create mask padding_mask = seq_range >= lengths_expand # 1 for padded values audio_attention_mask_ = padding_mask.view(batch_size, 1, 1, max_seq_len).expand( batch_size, 1, max_seq_len, max_seq_len ) audio_attention_mask = audio_attention_mask_.to( dtype=self.apm.conv1.weight.dtype, device=self.apm.conv1.weight.device ) if chunk_length > 0: chunk_num_frame = int(chunk_length * 50) chunk_mask = self.subsequent_chunk_mask( size=max_seq_len, chunk_size=chunk_num_frame, num_left_chunks=-1, device=audio_attention_mask_.device, ) audio_attention_mask_ = torch.logical_or(audio_attention_mask_, torch.logical_not(chunk_mask)) audio_attention_mask[audio_attention_mask_] = float("-inf") audio_states = self.apm( wavforms, output_hidden_states=True, attention_mask=audio_attention_mask ).hidden_states[self.audio_encoder_layer] audio_embeds = self.audio_projection_layer(audio_states) audio_embeds = audio_embeds.transpose(1, 2) audio_embeds = self.audio_avg_pooler(audio_embeds) audio_embeds = audio_embeds.transpose(1, 2) _, feature_lens_after_pooling = self._get_feat_extract_output_lengths(audio_feature_lens) num_audio_tokens = feature_lens_after_pooling final_audio_embeds = [] idx = 0 for i in range(len(audio_feature_lens_raw)): target_audio_embeds = [] for _ in range(len(audio_feature_lens_raw[i])): target_audio_embeds.append(audio_embeds[idx, : num_audio_tokens[idx], :]) idx += 1 final_audio_embeds.append(target_audio_embeds) return final_audio_embeds else: return [] def get_omni_embedding(self, data, input_embeddings, chunk_length=-1, stream_input=False): """ Args: data: input_embeddings: chunk_length: whisper use full attention or chunk attention stream_input: use streaming audio embedding Returns: final embeddings with audio feature """ if stream_input: audio_embeddings = self.get_audio_embedding_streaming(data) else: audio_embeddings = self.get_audio_embedding(data, chunk_length) bs = len(input_embeddings) if len(data.get("audio_features", [])) > 0: assert len(audio_embeddings) == len(input_embeddings) if len(audio_embeddings) > 0: audio_bounds = data["audio_bounds"] if self.config.chunk_input: for i in range(bs): audio_embs = torch.cat(audio_embeddings[i], dim=0).to( device=input_embeddings.device, dtype=input_embeddings.dtype ) audio_start_pos = 0 for bound in audio_bounds[i]: audio_len = bound[1] - bound[0] input_embeddings[0, bound[0] : bound[1]] = audio_embs[ audio_start_pos : audio_start_pos + audio_len, : ] audio_start_pos += audio_len else: for i in range(bs): audio_embs = audio_embeddings[i] bounds = audio_bounds[i] for embs, bound in zip(audio_embs, bounds): audio_indices = torch.arange(bound[0], bound[1], dtype=torch.long).to( input_embeddings.device ) if embs.shape[0] != len(audio_indices): raise ValueError( f"Shape mismatch: Trying to assign embeddings of shape {embs.shape} " f"to input indices of length {len(audio_indices)}" ) input_embeddings[i, audio_indices] = embs.to(input_embeddings.dtype) elif self.training: for i in range(bs): # dummy audio_embeddings input_embeddings += audio_embeddings[0].mean() * 0 return input_embeddings def forward(self, data, **kwargs): vllm_embedding, vision_hidden_states = self.get_vllm_embedding(data) if self.config.init_audio: vllm_embedding = self.get_omni_embedding( data, input_embeddings=vllm_embedding, chunk_length=self.config.audio_chunk_length ) position_ids = data["position_ids"] if position_ids.dtype != torch.int64: position_ids = position_ids.long() # compatible with llama factory for key in ["input_ids", "inputs_embeds", "position_ids"]: if key in kwargs: del kwargs[key] return self.llm(input_ids=None, position_ids=position_ids, inputs_embeds=vllm_embedding, **kwargs) def _decode(self, inputs_embeds, tokenizer, attention_mask, **kwargs): terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators] outputs = self.llm.generate( inputs_embeds=inputs_embeds, pad_token_id=0, eos_token_id=terminators, attention_mask=attention_mask, output_hidden_states=True, return_dict_in_generate=True, **kwargs, ) return outputs def _decode_stream(self, inputs_embeds, tokenizer, **kwargs): terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators] streamer = TextIteratorStreamer(tokenizer=tokenizer) generation_kwargs = { "inputs_embeds": inputs_embeds, "pad_token_id": 0, "eos_token_id": terminators, "streamer": streamer, } generation_kwargs.update(kwargs) thread = Thread(target=self.llm.generate, kwargs=generation_kwargs) thread.start() return streamer def _decode_text(self, result_ids, tokenizer): terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators] result_text = [] for result in result_ids: result = result[result != 0] if result[0] == tokenizer.bos_id: result = result[1:] if result[-1] in terminators: result = result[:-1] result_text.append(tokenizer.decode(result)) return result_text def get_sys_prompt(self, ref_audio=None, mode="default", language="zh"): """ Choose different system prompts according to different tasks Args: ref_audio: if ref_audio is not None, will use the voice cloning prompts, and the voice generated by the model will refer to the timbre of ref audio mode: "default": default system prompt and not refer to any task "omni": input video and audio simultaneously "audio_assistant": Default voice-only mode, the model will use the ref_audio's voice to reply user's question as a helpful assistant. "audio_roleplay": Roleplay voice-only mode, the model will use the ref_audio's voice to reply, and also role-play the character based on the audio prompt. "voice_cloning": TTS mode, the model will clone the voice of ref_audio. language: prompts language, the model has the ability to automatically select the response language based on the question language Returns: """ if ref_audio is not None: assert isinstance(ref_audio, np.ndarray), "ref_audio error" if mode == "omni": if language == "zh": sys_prompt = "你是一个AI助手。你能接受视频,音频和文本输入并输出语音和文本。" vc_prompt_prefix = sys_prompt + "模仿输入音频中的声音特征。" vc_prompt_suffix = "作为助手,你将使用这种声音风格说话。" else: sys_prompt = "You are a helpful assistant. You can accept video, audio and text input and output voice and text. " vc_prompt_prefix = sys_prompt + "Clone the voice in the provided audio prompt." vc_prompt_suffix = "As an assistant, you will speak using this voice style." if ref_audio is not None: sys_msgs = {"role": "user", "content": [vc_prompt_prefix, ref_audio, vc_prompt_suffix]} else: sys_msgs = {"role": "user", "content": [sys_prompt]} return sys_msgs elif mode == "audio_assistant": if language == "zh": vc_prompt_prefix = "模仿输入音频中的声音特征。" vc_prompt_suffix = "作为助手,你将使用这种声音风格说话。" else: vc_prompt_prefix = "Clone the voice in the provided audio prompt." vc_prompt_suffix = "As an assistant, you will speak using this voice style." if ref_audio is not None: sys_msgs = {"role": "user", "content": [vc_prompt_prefix, ref_audio, vc_prompt_suffix]} else: logger.warning( "Warning: ref_audio is None, speech generation will be performed based on the default voice." ) sys_msgs = {"role": "user", "content": ["Use the voice.", vc_prompt_suffix]} return sys_msgs elif mode == "audio_roleplay": if language == "zh": vc_prompt_prefix = "模仿输入音频中的声音特征。" vc_prompt_suffix = "假装你是上述音频中的人物,与我进行对话。" else: vc_prompt_prefix = "Clone the voice in the provided audio prompt." vc_prompt_suffix = "Try to role-play the character based on the audio prompt above." if ref_audio is not None: sys_msgs = {"role": "user", "content": [vc_prompt_prefix, ref_audio, vc_prompt_suffix]} else: print("Warning: ref_audio is None, speech generation will be performed based on the default voice.") sys_msgs = {"role": "user", "content": ["Use the voice.", vc_prompt_suffix]} return sys_msgs elif mode == "voice_cloning": if language == "zh": vc_prompt_prefix = "模仿输入音频中的声音特征。" else: vc_prompt_prefix = "Clone the voice in the provided audio prompt." if ref_audio is not None: sys_msgs = {"role": "user", "content": [vc_prompt_prefix, ref_audio]} else: raise ValueError("ref_audio con't be None in voice_cloning mode.") return sys_msgs else: sys_prompt = "You are a helpful assistant. You can accept audio and text input and output voice and text." sys_msgs = {"role": "user", "content": [sys_prompt]} return sys_msgs def generate( self, input_ids=None, pixel_values=None, tgt_sizes=None, audio_features=None, audio_feature_lens=None, image_bound=None, audio_bounds=None, spk_bounds=None, attention_mask=None, tokenizer=None, vision_hidden_states=None, stream=False, **kwargs, ): assert input_ids is not None assert len(input_ids) == len(pixel_values) model_inputs = { "input_ids": input_ids, "audio_features": audio_features, "audio_feature_lens": audio_feature_lens, "image_bound": image_bound, "audio_bounds": audio_bounds, "spk_bounds": spk_bounds, } if vision_hidden_states is None: model_inputs["pixel_values"] = pixel_values model_inputs["tgt_sizes"] = tgt_sizes else: model_inputs["vision_hidden_states"] = vision_hidden_states model_output = {} with torch.inference_mode(): model_inputs["inputs_embeds"], vision_hidden_states = self.get_vllm_embedding(model_inputs) model_inputs["inputs_embeds"] = self.get_omni_embedding( model_inputs, input_embeddings=model_inputs["inputs_embeds"], chunk_length=self.config.audio_chunk_length, ) if stream: result = self._decode_stream(model_inputs["inputs_embeds"], tokenizer, **kwargs) # if stream return TextIteratorStreamer and output is empty outputs = {} else: outputs = self._decode(model_inputs["inputs_embeds"], tokenizer, attention_mask, **kwargs) result = self._decode_text(outputs.sequences, tokenizer) return result, outputs def chat( self, image=None, msgs=None, tokenizer=None, processor=None, vision_hidden_states=None, max_new_tokens=2048, min_new_tokens=0, sampling=True, max_inp_length=32768, stream=False, chunk_input=True, omni_input=False, max_slice_nums=None, use_image_id=None, use_tts_template=False, generate_audio=False, return_spk_embed=False, return_dict=False, output_audio_path=None, **kwargs, ): """ Unified chat function Args: image: use for batch_size=1 vqa, It is not recommended to continue to use this parameter msgs: the input chat msgs, support text: (string) / image: (PIL.Image) / audio (numpy.ndarray) tokenizer: tokenizer for llm processor: if None, use the default processor max_new_tokens: the maximum length of the generation min_new_tokens: the minimum length of the generation sampling: whether to use sampling decoding or beam search decoding max_inp_length: the maximum length of input stream: whether to return generator, only used when tts is not required chunk_input: whether to split audio into 1s chunks omni_input: determine whether it is omni mode max_slice_nums: control the maximum number of image slices use_image_id: for video understanding or omni understanding, use_image_id should be False use_tts_template: if the msgs contain audio, use_tts_template should be True generate_audio: whether to generate audio output, only used when return_dict=True return_spk_embed: whether to return spk embedding, only used when return_dict=True return_dict: whether to return dict output_audio_path: audio save path when generate_audio **kwargs: """ if isinstance(msgs[0], list): batched = True else: batched = False if generate_audio or return_spk_embed: return_dict = True msgs_list = msgs images_list = image if batched is False: images_list, msgs_list = [images_list], [msgs_list] else: assert images_list is None, "Please integrate image to msgs when using batch inference." images_list = [None] * len(msgs_list) assert len(images_list) == len(msgs_list), "The batch dim of images_list and msgs_list should be the same." if processor is None: if self.processor is None: self.processor = AutoProcessor.from_pretrained(self.config._name_or_path, trust_remote_code=True) processor = self.processor assert ( self.config.query_num == processor.image_processor.image_feature_size ), "These two values should be the same. Check `config.json` and `preprocessor_config.json`." assert ( self.config.patch_size == processor.image_processor.patch_size ), "These two values should be the same. Check `config.json` and `preprocessor_config.json`." assert ( self.config.use_image_id == processor.image_processor.use_image_id ), "These two values should be the same. Check `config.json` and `preprocessor_config.json`." assert ( self.config.slice_config.max_slice_nums == processor.image_processor.max_slice_nums ), "These two values should be the same. Check `config.json` and `preprocessor_config.json`." assert ( self.config.slice_mode == processor.image_processor.slice_mode ), "These two values should be the same. Check `config.json` and `preprocessor_config.json`." prompts_lists = [] input_images_list = [] input_audios_list = [] audio_parts_list = [] for image, msgs in zip(images_list, msgs_list): if isinstance(msgs, str): msgs = json.loads(msgs) copy_msgs = deepcopy(msgs) assert len(msgs) > 0, "msgs is empty" assert sampling or not stream, "if use stream mode, make sure sampling=True" if image is not None and isinstance(copy_msgs[0]["content"], str): copy_msgs[0]["content"] = [image, copy_msgs[0]["content"]] images = [] audios = [] audio_parts = [] for i, msg in enumerate(copy_msgs): role = msg["role"] content = msg["content"] assert role in ["system", "user", "assistant"] if i == 0: assert role in ["user", "system"], "The role of first msg should be user" if isinstance(content, str): content = [content] cur_msgs = [] for c in content: if isinstance(c, Image.Image): images.append(c) cur_msgs.append("(./)") elif isinstance(c, np.ndarray): # audio audios.append(c) audio_parts.append(i) cur_msgs.append("()") use_tts_template = True elif isinstance(c, str): cur_msgs.append(c) if omni_input: msg["content"] = "".join(cur_msgs) else: msg["content"] = "\n".join(cur_msgs) prompts_lists.append( processor.tokenizer.apply_chat_template( copy_msgs, tokenize=False, add_generation_prompt=True, chat_template=self.default_tts_chat_template if use_tts_template else None, ) ) input_images_list.append(images) input_audios_list.append(audios) audio_parts_list.append(audio_parts) inputs = processor( prompts_lists, input_images_list, input_audios_list, audio_parts_list, max_slice_nums=max_slice_nums, use_image_id=use_image_id, chunk_input=chunk_input, return_tensors="pt", max_length=max_inp_length, ).to(self.device) if sampling: generation_config = { "top_p": 0.8, "top_k": 100, "temperature": 0.7, "do_sample": True, "repetition_penalty": 1.01, } else: generation_config = { "num_beams": 3, "repetition_penalty": 1.2, } if min_new_tokens > 0: generation_config["min_new_tokens"] = min_new_tokens generation_config.update((k, kwargs[k]) for k in generation_config.keys() & kwargs.keys()) inputs.pop("image_sizes") with torch.inference_mode(): res, outputs = self.generate( **inputs, tokenizer=tokenizer, max_new_tokens=max_new_tokens, vision_hidden_states=vision_hidden_states, stream=stream, **generation_config, ) if stream: def stream_gen(): for text in res: for term in self.terminators: text = text.replace(term, "") yield text if return_dict: return OmniOutput(text=stream_gen()) else: return stream_gen() else: spk_embeds = wav_numpy = sr = None if batched: answer = res else: answer = res[0] if use_tts_template and generate_audio: mel_spec = self._generate_mel_spec(inputs, outputs, answer) wav_numpy, sr = self.decode_mel_to_audio(mel_spec, output_audio_path) if return_spk_embed: spk_embeds = self._get_last_spk_embeds(inputs, outputs) if isinstance(answer, list): answer = [i.replace(tokenizer.tts_end, "") for i in answer] else: answer = answer.replace(tokenizer.tts_end, "") if return_dict: return OmniOutput(text=answer, spk_embeds=spk_embeds, audio_wav=wav_numpy, sampling_rate=sr) else: return answer @torch.inference_mode() def streaming_prefill( self, session_id, msgs, tokenizer, omni_input=True, max_slice_nums=None, ls_temperature=1.0, **kwargs, ): """ Streaming video/audio input and output audio stream, Only support batch_size=1 Args: session_id: Note: new connection should use a new session_id """ assert session_id is not None if self.session_id is None or session_id != self.session_id: # new session self.is_first = True else: self.is_first = False images = [] audios = [] assert len(msgs) == 1 copy_msgs = deepcopy(msgs) msg = copy_msgs[0] assert msg["role"] in ["system", "user", "assistant"] content = msg["content"] cur_msgs = [] for j, c in enumerate(content): if isinstance(c, Image.Image): images.append(c) cur_msgs.append("(./)") elif isinstance(c, np.ndarray): # audio audios.append(c) cur_msgs.append("()") elif isinstance(c, str): cur_msgs.append(c) else: logger.error("Invalid content type:", c) cur_contents = "".join(cur_msgs) if omni_input else "\n".join(omni_input) if not self.is_first and self.new_user_msg and msg["role"] == "user": # new user add im_start if self.llm_generated: if self.llm_generate_completed: msg["content"] = "<|im_end|>\n<|im_start|>user\n" + cur_contents else: # break llm gen, add tts_eos msg["content"] = "<|tts_eos|><|im_end|>\n<|im_start|>user\n" + cur_contents else: msg["content"] = "<|im_start|>user\n" + cur_contents self.new_user_msg = False else: msg["content"] = cur_contents if msg["role"] in ["system", "assistant"]: self.new_user_msg = True self.audio_past_key_values = None # apm kv cache if self.is_first: # init pask_key_values logger.info(f"new session_id: {session_id}, reset kv cache") self.reset_session() self.session_id = session_id prompt = tokenizer.apply_chat_template( copy_msgs, tokenize=False, add_generation_prompt=False, chat_template=self.default_tts_chat_template ) add_special_tokens = True # add bos else: prompt = copy_msgs[0]["content"] add_special_tokens = False model_inputs = self.processor( [prompt], [images], [audios], max_slice_nums=1 if max_slice_nums is None else max_slice_nums, use_image_id=False, chunk_input=True, return_tensors="pt", max_length=None, sampling_rate=16000, add_special_tokens=add_special_tokens, ).to(self.device) # 1. prepare input embeddings model_inputs["inputs_embeds"], _ = self.get_vllm_embedding(model_inputs) # get audio embedding with audio_past_key_values inputs_embeds = self.get_omni_embedding( model_inputs, input_embeddings=model_inputs["inputs_embeds"], stream_input=True ) if self.is_first: # clean audio_past_key_values after first prefill self.audio_past_key_values = None if self.llm_past_key_values is not None: cache_length = self.llm_past_key_values[0][0].shape[2] else: cache_length = 0 attention_mask = torch.ones((1, cache_length + inputs_embeds.shape[1]), dtype=torch.bool, device=self.device) # 2. do prefill and predict listen/speak label outputs = self.llm( past_key_values=self.llm_past_key_values, inputs_embeds=inputs_embeds, attention_mask=attention_mask, position_ids=None, # position_ids, use_cache=True, return_dict=True, ) self.llm_past_key_values = outputs["past_key_values"] return @torch.inference_mode() def streaming_generate( self, session_id, tokenizer, max_new_tokens=512, min_new_tokens=0, sampling=True, generate_audio=True, enable_regenerate=False, **kwargs, ): """ Streaming video/audio input and output audio stream Args: """ if sampling: generation_config = { "top_p": 0.8, "top_k": 100, "temperature": 0.7, "do_sample": True, "repetition_penalty": 1.01, } else: generation_config = { "num_beams": 3, "repetition_penalty": 1.2, } generation_config["min_new_tokens"] = min_new_tokens generation_config.update((k, kwargs[k]) for k in generation_config.keys() & kwargs.keys()) # do generate # reset buffer self.new_user_msg = True self.llm_generated = True self.llm_generate_completed = False self.audio_past_key_values = None # apm kv cache terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators] generate_prompt = "<|im_end|>\n<|im_start|>assistant\n<|spk_bos|><|spk|><|spk_eos|><|tts_bos|>" input_ids = tokenizer(generate_prompt, return_tensors="pt", add_special_tokens=False)["input_ids"].cuda() spk_start_idx = torch.where(input_ids[0] == tokenizer.spk_start_id)[0] spk_end_idx = torch.where(input_ids[0] == tokenizer.spk_end_id)[0] spk_bounds = [ torch.hstack([(spk_start_idx + 1).unsqueeze(-1), spk_end_idx.unsqueeze(-1)]) ] # List[Tensor], (1,2) cache_length = past_length = self.llm_past_key_values[0][0].shape[2] attention_mask = torch.ones((1, cache_length + input_ids.shape[1]), dtype=torch.bool, device=self.device) generation_config["max_new_tokens"] = max_new_tokens streamer = self.llm_generate_chunk(input_ids, attention_mask, tokenizer, terminators, generation_config) if generate_audio: result = self._generate_mel_spec_audio_streaming( spk_bounds, streamer, output_chunk_size=25, enable_regenerate=enable_regenerate ) return result else: return streamer def llm_generate_chunk(self, input_ids, attention_mask, tokenizer, terminators, generation_config): def check_uncompleted_token(ids): cur_text = tokenizer.decode(ids) end = len(ids) while cur_text[-1] == "�": end -= 1 if end == 0: break cur_text = tokenizer.decode(ids[:end]) return end max_new_tokens = int(generation_config.pop("max_new_tokens", 2048)) new_len = 0 first_chunk = True eos = False left_ids = None while True: outputs = self.llm.generate( input_ids=input_ids, past_key_values=self.llm_past_key_values, attention_mask=attention_mask, use_cache=True, max_new_tokens=3, # reduce first token delay pad_token_id=0, output_hidden_states=True if first_chunk else False, return_dict_in_generate=True, eos_token_id=terminators, **generation_config, ) if outputs.sequences[0, -1] in terminators: eos = True input_len = input_ids.shape[1] cur_ids = outputs.sequences[:, input_len:] new_len += cur_ids.shape[1] if left_ids is not None and left_ids.shape[1] > 0: cur_ids = torch.cat([left_ids, cur_ids], dim=1) end = check_uncompleted_token(cur_ids[0]) left_ids = cur_ids[:, end:] cur_ids = cur_ids[:, :end] text = self._decode_text(cur_ids, tokenizer)[0] if end > 0 else "" self.llm_past_key_values = outputs.past_key_values input_ids = outputs.sequences[:, -1:] cache_length = past_length = self.llm_past_key_values[0][0].shape[2] attention_mask = torch.ones((1, cache_length + input_ids.shape[1]), dtype=torch.bool, device=self.device) res = {"text": text} if first_chunk: res["hidden_states"] = outputs.hidden_states first_chunk = False yield res if eos: self.llm_generate_completed = True break if new_len >= max_new_tokens: logger.debug(f"LLM generation {new_len} exceeds max_new_tokens({max_new_tokens}), break.") break def prepare_tts_text(self, text): tts_tokens = self.tts_processor.text_tokenizer.encode(text, add_special_tokens=False) tts_tokens_len = len(tts_tokens) if tts_tokens_len < self.tts.streaming_text_reserved_len: num_pad_tokens = self.tts.streaming_text_reserved_len - tts_tokens_len pad_str = "[Etts]" + "[PAD]" * (num_pad_tokens - 1) else: tts_tokens = tts_tokens[0 : self.tts.streaming_text_reserved_len] tts_tokens_len = len(tts_tokens) text = self.tts_processor.text_tokenizer.decode(tts_tokens, add_special_tokens=False) pad_str = "" spk_emb_placeholder_tts = "[spk_emb]" * self.tts.num_spk_embs new_text_tts = f"[Stts]{spk_emb_placeholder_tts}{text}{pad_str}[Ptts]" return new_text_tts, tts_tokens_len def get_tts_text_start_token_ids(self): text = "[Stts]" + "[spk_emb]" * self.tts.num_spk_embs tts_input_ids = self.tts_processor.text_tokenizer(text, return_tensors="pt", add_special_tokens=False)[ "input_ids" ].cuda() return tts_input_ids def _build_streaming_mask(self, tts_tokens_len): tts_sequence_full_length = ( 1 + self.tts.num_spk_embs * self.tts.use_speaker_embedding + self.tts.streaming_text_reserved_len + 1 ) streaming_attention_mask = torch.zeros(tts_sequence_full_length, dtype=torch.int8) streaming_attention_mask[0 : 1 + 1 + tts_tokens_len + 1] = 1 streaming_attention_mask[-1] = 1 return streaming_attention_mask def _get_last_spk_embeds(self, inputs, outputs): last_hidden_states = [hs[-1] for hs in outputs.hidden_states] # batch = 1 last_hidden_states = torch.vstack([i[0] for i in last_hidden_states]) # last spk spk_bound = inputs["spk_bounds"][0][-1] spk_embeds = last_hidden_states[spk_bound[0] : spk_bound[1]] return spk_embeds def _generate_mel_spec(self, inputs, outputs, text, output_chunk_size=25, tts_max_new_tokens=2048): spk_embeds = self._get_last_spk_embeds(inputs, outputs) text = text.split("<|tts_bos|>")[-1] gen_text = text.split("<|tts_eos|>")[0] tts_text, tts_token_lens = self.prepare_tts_text(gen_text) tts_inputs = self.tts_processor.text_tokenizer.encode(tts_text, add_special_tokens=False) tts_input_ids = torch.Tensor(tts_inputs).unsqueeze(0).to("cuda", dtype=torch.long) streaming_tts_text_mask = self._build_streaming_mask(tts_token_lens).to(device=self.tts.device) logits_warpers, logits_processors = gen_logits( num_code=626, top_P=self.tts.top_p, top_K=self.tts.top_k, repetition_penalty=self.tts.repetition_penalty ) condition_length = ( 1 + self.tts.use_speaker_embedding * self.tts.num_spk_embs + self.tts.streaming_text_reserved_len + 1 ) dtype = self.tts.emb_text.weight.dtype emb = torch.zeros(1, condition_length, self.tts.num_vq, dtype=dtype, device=self.tts.device) past_key_values = [ ( torch.zeros( 1, self.tts.config.num_attention_heads, condition_length - 1, self.tts.config.hidden_size // self.tts.config.num_attention_heads, dtype=emb.dtype, device=self.tts.device, ), torch.zeros( 1, self.tts.config.num_attention_heads, condition_length - 1, self.tts.config.hidden_size // self.tts.config.num_attention_heads, dtype=emb.dtype, device=self.tts.device, ), ) for _ in range(self.tts.config.num_hidden_layers) ] audio_input_ids = torch.zeros(1, condition_length, self.tts.num_vq, dtype=torch.long, device=self.tts.device) eos_lab = False for chunk_idx in range(math.ceil(emb.shape[1] / self.tts.streaming_text_chunk_size)): if chunk_idx == 0: begin = chunk_idx * self.tts.streaming_text_chunk_size + 0 end = ( (chunk_idx + 1) * self.tts.streaming_text_chunk_size + 1 + self.tts.use_speaker_embedding * self.tts.num_spk_embs ) else: begin = ( chunk_idx * self.tts.streaming_text_chunk_size + 1 + self.tts.use_speaker_embedding * self.tts.num_spk_embs ) end = min( (chunk_idx + 1) * self.tts.streaming_text_chunk_size + 1 + self.tts.use_speaker_embedding * self.tts.num_spk_embs, condition_length - 1, ) if end - begin > 0: text_input_ids = tts_input_ids[:, begin:end] position_ids = torch.arange(begin, end, dtype=torch.long, device=self.tts.device).unsqueeze(0) if begin == 0: past_key_values = self.tts.prefill_text( input_ids=text_input_ids, position_ids=position_ids, past_key_values=past_key_values, lm_spk_emb_last_hidden_states=spk_embeds, ) else: past_key_values = self.tts.prefill_text( input_ids=text_input_ids, position_ids=position_ids, past_key_values=past_key_values ) outputs = self.tts.generate( input_ids=audio_input_ids, past_key_values=past_key_values, streaming_tts_text_mask=streaming_tts_text_mask, max_new_token=output_chunk_size, force_no_stop=self.force_no_stop, temperature=torch.tensor([0.1, 0.3, 0.1, 0.3], dtype=torch.float, device=self.tts.device), eos_token=torch.tensor([625], dtype=torch.long, device=self.tts.device), logits_warpers=logits_warpers, logits_processors=logits_processors, ) audio_input_ids = outputs.audio_input_ids past_key_values = outputs.past_key_values if outputs.finished: logger.debug("Generation finished.") eos_lab = True break if not eos_lab: logger.debug("eos_lab False, Generation continue.") while True: outputs = self.tts.generate( input_ids=audio_input_ids, past_key_values=past_key_values, streaming_tts_text_mask=streaming_tts_text_mask, max_new_token=output_chunk_size, force_no_stop=self.force_no_stop, temperature=torch.tensor([0.1, 0.3, 0.1, 0.3], dtype=torch.float, device=self.tts.device), eos_token=torch.tensor([625], dtype=torch.long, device=self.tts.device), logits_warpers=logits_warpers, logits_processors=logits_processors, ) audio_input_ids = outputs.audio_input_ids past_key_values = outputs.past_key_values if outputs.finished: logger.debug("Generation finished.") break if outputs.new_ids.shape[1] > tts_max_new_tokens: logger.debug(f"Generation length > {tts_max_new_tokens}, stopped.") break mel_spec = self.tts.decode_to_mel_specs(outputs.new_ids) return mel_spec def _linear_overlap_add2_wav(self, frames: List[torch.Tensor], overlap: int): """ Merge two audio waveforms with smooth in streaming audio generation. Borrowed some codes from `https://github.com/huggingface/transformers/blob/main/src/transformers/models/encodec/modeling_encodec.py` """ assert len(frames) == 2 device = frames[0].device dtype = frames[0].dtype # shape = frames[0].shape[:-1] frame0_length = frames[0].shape[-1] frame1_length = frames[1].shape[-1] total_size = frame0_length + frame1_length - overlap weight_len = max(frame0_length, frame1_length) + overlap t = torch.linspace(0, 1, weight_len + 2, device=device, dtype=dtype)[1:-1] weight = 0.5 - (t - 0.5).abs() sum_weight = torch.zeros(total_size, device=device, dtype=dtype) out = torch.zeros(total_size, device=device, dtype=dtype) offset: int = 0 out[offset : offset + frame0_length] += weight[-frame0_length:] * frames[0] sum_weight[offset : offset + frame0_length] += weight[-frame0_length:] offset += frame0_length - overlap out[offset : offset + frame1_length] += weight[:frame1_length] * frames[1] sum_weight[offset : offset + frame1_length] += weight[:frame1_length] assert sum_weight.min() > 0 out = out / sum_weight return out[:frame0_length], out[frame0_length:] def _generate_mel_spec_audio_streaming( self, spk_bounds, streamer, output_chunk_size=25, spk_embeds=None, prev_seg_text_ids=None, prev_seg_text_left="", prev_seg_audio_ids=None, enable_regenerate=False, ): # get spk_embedding gen_text = "" tts_text = "" new_segment_gen = False if spk_embeds is None: spk_bound = spk_bounds[0][-1] r = next(streamer) txt = r["text"] gen_text += txt.split("<|tts_eos|>")[0] tts_text, tts_token_lens = self.prepare_tts_text(gen_text) last_hidden_states = r["hidden_states"][0][-1][0] # output: (input_seq_len, dim) spk_embeds = last_hidden_states[spk_bound[0] : spk_bound[1]] # init past_key_values logits_warpers, logits_processors = gen_logits( num_code=626, top_P=self.tts.top_p, top_K=self.tts.top_k, repetition_penalty=self.tts.repetition_penalty ) condition_length = ( 1 + self.tts.use_speaker_embedding * self.tts.num_spk_embs + self.tts.streaming_text_reserved_len + 1 ) tts_start_token_len = 1 + self.tts.use_speaker_embedding * self.tts.num_spk_embs dtype = self.tts.emb_text.weight.dtype past_key_values = [ ( torch.zeros( 1, self.tts.config.num_attention_heads, condition_length - 1, self.tts.config.hidden_size // self.tts.config.num_attention_heads, dtype=dtype, device=self.tts.device, ), torch.zeros( 1, self.tts.config.num_attention_heads, condition_length - 1, self.tts.config.hidden_size // self.tts.config.num_attention_heads, dtype=dtype, device=self.tts.device, ), ) for _ in range(self.tts.config.num_hidden_layers) ] audio_input_ids = torch.zeros(1, condition_length, self.tts.num_vq, dtype=torch.long, device=self.tts.device) # prefill prev segment for smooth chunk_idx = 0 new_ids_len = 0 prev_text_len = 0 if prev_seg_text_ids is not None and prev_seg_audio_ids is not None: tts_token_lens = prev_seg_text_ids.shape[1] # assert tts_token_lens % self.tts.streaming_text_chunk_size == 0 streaming_tts_text_mask = self._build_streaming_mask(tts_token_lens).to(device=self.tts.device) position_ids = torch.arange( 0, tts_token_lens + tts_start_token_len, dtype=torch.long, device=self.tts.device ).unsqueeze(0) text_input_ids = self.get_tts_text_start_token_ids() text_input_ids = torch.cat([text_input_ids, prev_seg_text_ids], dim=1) past_key_values = self.tts.prefill_text( input_ids=text_input_ids, position_ids=position_ids, past_key_values=past_key_values, lm_spk_emb_last_hidden_states=spk_embeds, ) past_key_values = self.tts.prefill_audio_ids( input_ids=prev_seg_audio_ids[:, :-1, :], # not prefill last id, which will be input_id of next generation past_key_values=past_key_values, streaming_tts_text_mask=streaming_tts_text_mask, ) # update init chunk_idx += int(tts_token_lens / self.tts.streaming_text_chunk_size) audio_input_ids = torch.cat([audio_input_ids, prev_seg_audio_ids], dim=1) text = self.tts_processor.text_tokenizer.decode(prev_seg_text_ids[0].tolist(), add_special_tokens=False) gen_text += text gen_text += prev_seg_text_left prev_text_len = len(gen_text) # takecare the position new_ids_len += prev_seg_audio_ids.shape[1] prev_wav = None eos_lab = False stop = False shift_len = 180 voice_checker = VoiceChecker() number_converter = NumberToTextConverter() lang = None gen_text_raw = gen_text for t, r in enumerate(streamer): t += 1 txt = r["text"] txt = txt.split("<|tts_eos|>")[0] gen_text_raw += txt if t == 1 and txt == "" and prev_seg_text_ids is not None: logger.warning("New segment is empty, generation finished.") return if t <= 2: # do just one time, more token greater certainty lang = number_converter.detect_language(gen_text_raw) gen_text += number_converter.replace_numbers_with_text(txt, lang).replace("*", "") # markdown ** # TODO speed up tts_text, tts_token_lens = self.prepare_tts_text(gen_text) if tts_token_lens >= self.tts.streaming_text_reserved_len - shift_len: end_c = sentence_end(txt) if end_c: end_c_idx = gen_text.rfind(end_c) assert end_c_idx != -1 text_left = gen_text[end_c_idx + 1 :] gen_text = gen_text[: end_c_idx + 1] tts_text, tts_token_lens = self.prepare_tts_text(gen_text) new_segment_gen = True logger.debug( f"tts_text tokens {tts_token_lens} exceed {self.tts.streaming_text_reserved_len - shift_len}, starting a new segment generation" ) break if tts_token_lens >= (chunk_idx + 1) * self.tts.streaming_text_chunk_size: # do prefill and generate if chunk_idx == 0: begin = 0 end = (chunk_idx + 1) * self.tts.streaming_text_chunk_size + tts_start_token_len else: begin = chunk_idx * self.tts.streaming_text_chunk_size + tts_start_token_len end = min( (chunk_idx + 1) * self.tts.streaming_text_chunk_size + tts_start_token_len, condition_length - 1 ) tts_input_ids = self.tts_processor.text_tokenizer( tts_text, return_tensors="pt", add_special_tokens=False )["input_ids"].cuda() text_input_ids = tts_input_ids[:, begin:end] streaming_tts_text_mask = self._build_streaming_mask(tts_token_lens).to(device=self.tts.device) position_ids = torch.arange(begin, end, dtype=torch.long, device=self.tts.device).unsqueeze(0) past_key_values = self.tts.prefill_text( input_ids=text_input_ids, position_ids=position_ids, past_key_values=past_key_values, lm_spk_emb_last_hidden_states=spk_embeds if chunk_idx == 0 else None, ) outputs = self.tts.generate( input_ids=audio_input_ids, past_key_values=past_key_values, streaming_tts_text_mask=streaming_tts_text_mask, max_new_token=output_chunk_size, force_no_stop=self.force_no_stop, temperature=torch.tensor([0.1, 0.3, 0.1, 0.3], dtype=torch.float, device=self.tts.device), eos_token=torch.tensor([625], dtype=torch.long, device=self.tts.device), logits_warpers=logits_warpers, logits_processors=logits_processors, ) audio_input_ids = ( outputs.audio_input_ids ) # [1,seq_len,4] seq_len=tts.streaming_text_reserved_len + 3 + len(new_ids) past_key_values = outputs.past_key_values chunk_idx += 1 mel_spec = self.tts.decode_to_mel_specs(outputs.new_ids[:, max(new_ids_len - 4, 0) :, :]) new_ids_len = outputs.new_ids.shape[1] # [1, seq_len, 4] wav_np, sr = self.decode_mel_to_audio(mel_spec) # [1,100,50] -> [50*256] if enable_regenerate: if prev_wav is not None: check_wav_np = wav_np[2048:].cpu().numpy() # 2*4*256(hop) check_mel = mel_spec[0, :, 8:].cpu().numpy() # 2*4 else: check_wav_np = wav_np.cpu().numpy() check_mel = mel_spec[0].cpu().numpy() if enable_regenerate and voice_checker.is_bad(check_wav_np, check_mel, chunk_size=2560): voice_checker.reset() # regenerate N = output_chunk_size if prev_wav is None else output_chunk_size * 2 past_kv = [] for i in range(len(past_key_values)): past_kv.append( ( past_key_values[i][0][:, :, :-N, :], # .clone(), past_key_values[i][1][:, :, :-N, :], # .clone(), ) ) outputs = self.tts.generate( input_ids=audio_input_ids[:, :-N, :], past_key_values=past_kv, streaming_tts_text_mask=streaming_tts_text_mask, max_new_token=N, force_no_stop=self.force_no_stop, temperature=torch.tensor([0.1, 0.3, 0.1, 0.3], dtype=torch.float, device=self.tts.device), eos_token=torch.tensor([625], dtype=torch.long, device=self.tts.device), logits_warpers=logits_warpers, logits_processors=logits_processors, ) audio_input_ids = outputs.audio_input_ids past_key_values = outputs.past_key_values new_ids_len -= N mel_spec = self.tts.decode_to_mel_specs(outputs.new_ids[:, new_ids_len:, :]) new_ids_len = outputs.new_ids.shape[1] # [1, seq_len, 4] wav_np, sr = self.decode_mel_to_audio(mel_spec) if prev_wav is not None: wav_y = wav_np[: len(prev_wav)] prev_wav = wav_np[len(prev_wav) :] cur_text = gen_text_raw[prev_text_len:] prev_text_len = len(gen_text_raw) yield OmniOutput(text=cur_text, audio_wav=wav_y, sampling_rate=sr) else: prev_wav = wav_np else: # smooth wav if prev_wav is not None: wav_np, prev_wav = self._linear_overlap_add2_wav( [prev_wav, wav_np], overlap=512 * 4 ) # tts_hop256*2 cur_text = gen_text_raw[prev_text_len:] prev_text_len = len(gen_text_raw) yield OmniOutput(text=cur_text, audio_wav=wav_np, sampling_rate=sr) else: prev_wav = wav_np if outputs.finished: logger.debug("Generation finished.") eos_lab = True break if not eos_lab and tts_text: logger.debug("eos_lab False, Generation continue.") if chunk_idx == 0: begin = 0 else: begin = chunk_idx * self.tts.streaming_text_chunk_size + tts_start_token_len end = tts_token_lens + tts_start_token_len + 1 # 1 for [Etts] if end > begin: tts_input_ids = self.tts_processor.text_tokenizer( tts_text, return_tensors="pt", add_special_tokens=False )["input_ids"].cuda() text_input_ids = tts_input_ids[:, begin:end] streaming_tts_text_mask = self._build_streaming_mask(tts_token_lens).to(device=self.tts.device) position_ids = torch.arange(begin, end, dtype=torch.long, device=self.tts.device).unsqueeze(0) past_key_values = self.tts.prefill_text( input_ids=text_input_ids, position_ids=position_ids, past_key_values=past_key_values, lm_spk_emb_last_hidden_states=spk_embeds if chunk_idx == 0 else None, ) while True: # temp = [0.1, 0.3, 0.1, 0.3] if chunk_idx < 21 else [0.1] * self.tts.num_vq outputs = self.tts.generate( input_ids=audio_input_ids, past_key_values=past_key_values, streaming_tts_text_mask=streaming_tts_text_mask, max_new_token=output_chunk_size, force_no_stop=self.force_no_stop, # temperature=torch.tensor([0.1] * self.tts.num_vq, dtype=torch.float, device=self.tts.device), temperature=torch.tensor([0.1, 0.3, 0.1, 0.3], dtype=torch.float, device=self.tts.device), eos_token=torch.tensor([625], dtype=torch.long, device=self.tts.device), logits_warpers=logits_warpers, logits_processors=logits_processors, ) audio_input_ids = outputs.audio_input_ids past_key_values = outputs.past_key_values chunk_idx += 1 mel_spec = self.tts.decode_to_mel_specs(outputs.new_ids[:, max(new_ids_len - 4, 0) :, :]) new_ids_len = outputs.new_ids.shape[1] # [1, seq_len, 4] wav_np, sr = self.decode_mel_to_audio(mel_spec) if enable_regenerate: if prev_wav is not None: check_wav_np = wav_np[2048:].cpu().numpy() # 2*4*256(hop) check_mel = mel_spec[0, :, 8:].cpu().numpy() # 2*4 else: check_wav_np = wav_np.cpu().numpy() check_mel = mel_spec[0].cpu().numpy() if enable_regenerate and voice_checker.is_bad(check_wav_np, check_mel, chunk_size=2560): voice_checker.reset() # regenerate N = output_chunk_size if prev_wav is None else output_chunk_size * 2 past_kv = [] for i in range(len(past_key_values)): past_kv.append( ( past_key_values[i][0][:, :, :-N, :], # .clone(), past_key_values[i][1][:, :, :-N, :], # .clone(), ) ) outputs = self.tts.generate( input_ids=audio_input_ids[:, :-N, :], past_key_values=past_kv, streaming_tts_text_mask=streaming_tts_text_mask, max_new_token=N, force_no_stop=self.force_no_stop, temperature=torch.tensor([0.1, 0.3, 0.1, 0.3], dtype=torch.float, device=self.tts.device), eos_token=torch.tensor([625], dtype=torch.long, device=self.tts.device), logits_warpers=logits_warpers, logits_processors=logits_processors, ) audio_input_ids = outputs.audio_input_ids past_key_values = outputs.past_key_values new_ids_len -= N mel_spec = self.tts.decode_to_mel_specs(outputs.new_ids[:, new_ids_len:, :]) new_ids_len = outputs.new_ids.shape[1] # [1, seq_len, 4] wav_np, sr = self.decode_mel_to_audio(mel_spec) if prev_wav is not None: wav_y = wav_np[: len(prev_wav)] prev_wav = wav_np[len(prev_wav) :] cur_text = gen_text_raw[prev_text_len:] prev_text_len = len(gen_text_raw) yield OmniOutput(text=cur_text, audio_wav=wav_y, sampling_rate=sr) else: prev_wav = wav_np else: # smooth wav if prev_wav is not None: wav_np, prev_wav = self._linear_overlap_add2_wav( [prev_wav, wav_np], overlap=512 * 4 ) # tts_hop256*2 cur_text = gen_text_raw[prev_text_len:] prev_text_len = len(gen_text_raw) yield OmniOutput(text=cur_text, audio_wav=wav_np, sampling_rate=sr) else: prev_wav = wav_np if outputs.finished: logger.debug("Generation finished.") break if outputs.new_ids.shape[1] > 2048: stop = True logger.debug("Generation length > 2048, stopped.") break if prev_wav is not None: cur_text = gen_text_raw[prev_text_len:] yield OmniOutput(text=cur_text, audio_wav=prev_wav, sampling_rate=sr) # yield last chunk wav without smooth if new_segment_gen and not stop: logger.debug( f"tts_text tokens {tts_token_lens} exceed {self.tts.streaming_text_reserved_len - shift_len}, start a new segment generation" ) tid_len = 5 # self.tts.streaming_text_chunk_size prev_seg_text_ids = tts_input_ids[:, end - 1 - tid_len : end - 1] # exclude last Etts aid_len = 50 # int(tid_len * new_ids_len / tts_token_lens) prev_seg_audio_ids = outputs.new_ids[:, -aid_len:, :] result = self._generate_mel_spec_audio_streaming( spk_bounds, streamer, output_chunk_size, spk_embeds, prev_seg_text_ids, text_left, prev_seg_audio_ids, enable_regenerate=enable_regenerate, ) for res in result: yield res def decode_mel_to_audio(self, mel_spec, output_path=""): with torch.inference_mode(): wav_numpy = self.vocos.decode(mel_spec.float()).cpu().squeeze() sr = 24000 if output_path: sf.write(output_path, wav_numpy.numpy(), samplerate=sr) logger.info(f"Audio saved to {output_path}") return wav_numpy, sr # Copied from transformers.models.whisper.modeling_whisper.WhisperEncoderLayer and add use_cache for streaming inference class MiniCPMWhisperEncoderLayer(nn.Module): def __init__(self, config: WhisperConfig, layer_idx: int = None): super().__init__() self.embed_dim = config.d_model self.self_attn = WHISPER_ATTENTION_CLASSES[config._attn_implementation]( embed_dim=self.embed_dim, num_heads=config.encoder_attention_heads, dropout=config.attention_dropout, config=config, layer_idx=layer_idx, ) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, layer_head_mask: torch.Tensor, output_attentions: bool = False, past_key_values: Optional[EncoderDecoderCache] = None, use_cache: Optional[bool] = False, ) -> torch.Tensor: r""" Args: hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, embed_dim)`): Hidden states to be fed into the encoder layer. attention_mask (`torch.FloatTensor` of shape `(batch_size, 1, tgt_len, src_len)`): Attention mask where padding elements are indicated by large negative values. layer_head_mask (`torch.FloatTensor` of shape `(encoder_attention_heads,)`): Mask to nullify selected heads of the attention modules. output_attentions (`bool`, *optional*): Whether or not to return the attention weights. past_key_values (`EncoderDecoderCache`, *optional*): Past key-value pairs used for incremental decoding. use_cache (`bool`, *optional*): Whether or not to return updated `past_key_values` for caching. Returns: A tuple of shape `(hidden_states, optional(attn_weights), optional(past_key_values))`. """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, attn_weights, past_key_values = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, past_key_value=past_key_values, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states if hidden_states.dtype == torch.float16 and ( torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() ): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) if use_cache: outputs += (past_key_values,) return outputs # Copied from from transformers.models.whisper.modeling_whisper.WhisperEncoder and add use_cache for streaming inference class MiniCPMWhisperEncoder(WhisperEncoder): def __init__(self, config: WhisperConfig): super().__init__(config) self.layers = nn.ModuleList( [MiniCPMWhisperEncoderLayer(config, layer_idx=i) for i in range(config.encoder_layers)] ) def forward( self, input_features, attention_mask=None, head_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, past_key_values: Optional[EncoderDecoderCache] = None, use_cache: Optional[bool] = None, ): r""" Forward pass of the Whisper encoder. Args: input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, sequence_length)`): Float values of log-mel features extracted from the raw audio waveform. Typically generated by a feature extractor (e.g., `WhisperFeatureExtractor`) that processes `.flac` or `.wav` files into padded 2D mel spectrogram frames. These features are projected via convolution layers (`conv1` and `conv2`) and then transformed into embeddings for the encoder. attention_mask (`torch.Tensor`, *optional*): Not used by Whisper for masking `input_features`, but included for API compatibility with other models. If provided, it is simply ignored within the model. By default, Whisper effectively ignores silence in the input log-mel spectrogram. head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected attention heads. The elements should be either 1 or 0, where: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked** (i.e., the attention head is dropped). output_attentions (`bool`, *optional*): Whether or not to return the attention tensors of all encoder layers. If set to `True`, the returned tuple (or `BaseModelOutputWithPast`) will contain an additional element with attention weights for each encoder layer. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. If set to `True`, the returned tuple (or `BaseModelOutputWithPast`) will contain a tuple of hidden states, including the initial embedding output as well as the outputs of each layer. return_dict (`bool`, *optional*): Whether or not to return a `BaseModelOutputWithPast` (a subclass of `ModelOutput`) instead of a plain tuple. If set to `True`, the output will be a `BaseModelOutputWithPast` object, otherwise it will be a tuple. past_key_values (`EncoderDecoderCache`, *optional*): When using caching for faster inference, this is an object that stores the key-value pairs for attention states. If provided, the model will append new states to the existing cache and return the updated cache. This speeds up sequential decoding or chunked inference. - If `past_key_values` is `None`, no past states are used or returned. - If `past_key_values` is not `None` and `use_cache=True`, the model will use the provided cache and return the updated cache (as `next_encoder_cache`). use_cache (`bool`, *optional*): Whether or not the model should use caching (`past_key_values`) to speed up processing during inference. When set to `True`, the model will: - Inspect and use `past_key_values` if provided. - Return updated `past_key_values` (under the name `next_encoder_cache` in `BaseModelOutputWithPast`). Returns: `BaseModelOutputWithPast` or `tuple` (depending on `return_dict`): If `return_dict=True`, a `BaseModelOutputWithPast` is returned, which contains: - **last_hidden_state** (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): The output of the final encoder layer. - **hidden_states** (`tuple(torch.FloatTensor)`, *optional*, returned if `output_hidden_states=True`): Hidden states of the model at each layer (including the initial projection). - **attentions** (`tuple(torch.FloatTensor)`, *optional*, returned if `output_attentions=True`): Attention weights from each encoder layer. - **past_key_values** (an object of type `EncoderDecoderCache` or `None`, *optional*): Updated cache of key-value pairs if `use_cache=True`. If `return_dict=False`, a tuple is returned, where the format is: `(last_hidden_state, hidden_states, attentions)`, with `hidden_states` and `attentions` only present if their respective `output_*` arguments are set to `True`. Example: >>> from transformers import AutoFeatureExtractor, WhisperConfig, WhisperForConditionalGeneration >>> import torch >>> # Load a feature extractor and a Whisper model >>> feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-tiny.en") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en") >>> # Assume you have audio (list of floats or numpy array) loaded from a file >>> # Then extract the mel features: >>> input_features = feature_extractor(audio, sampling_rate=16000, return_tensors="pt").input_features >>> # Forward pass >>> outputs = model.encoder( ... input_features=input_features, ... output_hidden_states=True, ... output_attentions=True, ... use_cache=True ... ) >>> # Retrieve the last hidden state >>> last_hidden_state = outputs.last_hidden_state >>> print(last_hidden_state.shape) torch.Size([batch_size, seq_length, hidden_size]) >>> # Retrieve the intermediate hidden states if output_hidden_states=True >>> all_encoder_hidden_states = outputs.hidden_states >>> # Retrieve attention weights if output_attentions=True >>> all_encoder_attentions = outputs.attentions >>> # Retrieve updated past key values if use_cache=True >>> encoder_cache = outputs.past_key_values """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # Ignore copy input_features = input_features.to(dtype=self.conv1.weight.dtype, device=self.conv1.weight.device) inputs_embeds = nn.functional.gelu(self.conv1(input_features)) inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds)) inputs_embeds = inputs_embeds.permute(0, 2, 1) embed_pos = self.embed_positions.weight past_key_values_length = 0 if use_cache: if past_key_values is None: past_key_values = EncoderDecoderCache(DynamicCache(), DynamicCache()) elif isinstance(past_key_values, list): past_key_values = EncoderDecoderCache(DynamicCache.from_legacy_cache(past_key_values), DynamicCache()) elif isinstance(past_key_values, DynamicCache): past_key_values = EncoderDecoderCache(past_key_values, DynamicCache()) else: pass past_key_values_length = past_key_values.self_attention_cache.get_usable_length(inputs_embeds.shape[1]) if inputs_embeds.shape[1] + past_key_values_length > embed_pos.shape[0]: logger.warning("seems the audio is longer than 30s. repeating the last part of the audio") embed_pos_front = embed_pos[past_key_values_length:, :] embed_pos = torch.cat( ( embed_pos_front, torch.repeat_interleave( embed_pos[-1, :].unsqueeze(0), inputs_embeds.shape[1] - embed_pos.shape[0] + past_key_values_length, dim=0, ), ) ) else: embed_pos = embed_pos[past_key_values_length : inputs_embeds.shape[1] + past_key_values_length, :] else: embed_pos = embed_pos[: inputs_embeds.shape[1], :] hidden_states = inputs_embeds + embed_pos hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: assert head_mask.size()[0] == ( len(self.layers) ), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}." for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) to_drop = False if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: # skip the layer to_drop = True # Ignore copy if to_drop: layer_outputs = (None, None) else: if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, attention_mask, (head_mask[idx] if head_mask is not None else None), output_attentions, past_key_values, use_cache, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), output_attentions=output_attentions, past_key_values=past_key_values, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_encoder_cache = layer_outputs[2 if output_attentions else 1] else: next_encoder_cache = None if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions, past_key_values=next_encoder_cache, ) # Borrowed from `https://github.com/2noise/ChatTTS/blob/main/ChatTTS/model/dvae.py` class ConvNeXtBlock(nn.Module): def __init__( self, dim: int, intermediate_dim: int, kernel: int, dilation: int, layer_scale_init_value: float = 1e-6, ): # ConvNeXt Block copied from Vocos. super().__init__() self.dwconv = nn.Conv1d( dim, dim, kernel_size=kernel, padding=dilation * (kernel // 2), dilation=dilation, groups=dim, ) self.norm = nn.LayerNorm(dim, eps=1e-6) self.pwconv1 = nn.Linear(dim, intermediate_dim) self.act = nn.GELU() self.pwconv2 = nn.Linear(intermediate_dim, dim) self.coef = ( nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True) if layer_scale_init_value > 0 else None ) def forward(self, x: torch.Tensor, cond=None) -> torch.Tensor: residual = x y = self.dwconv(x) y.transpose_(1, 2) # (B, C, T) -> (B, T, C) x = self.norm(y) del y y = self.pwconv1(x) del x x = self.act(y) del y y = self.pwconv2(x) del x if self.coef is not None: y *= self.coef y.transpose_(1, 2) # (B, T, C) -> (B, C, T) x = y + residual del y return x # Borrowed from `https://github.com/2noise/ChatTTS/blob/main/ChatTTS/model/dvae.py` class GFSQ(nn.Module): def __init__( self, dim: int, levels: List[int], G: int, R: int, eps=1e-5, transpose=True, ): super(GFSQ, self).__init__() self.quantizer = GroupedResidualFSQ( dim=dim, levels=list(levels), num_quantizers=R, groups=G, ) self.n_ind = math.prod(levels) self.eps = eps self.transpose = transpose self.G = G self.R = R def _embed(self, x: torch.Tensor): if self.transpose: x = x.transpose(1, 2) x = x.view(x.size(0), x.size(1), self.G, self.R).permute(2, 0, 1, 3) feat = self.quantizer.get_output_from_indices(x) return feat.transpose_(1, 2) if self.transpose else feat def __call__(self, x: torch.Tensor) -> torch.Tensor: return super().__call__(x) def forward(self, x: torch.Tensor) -> torch.Tensor: if self.transpose: x.transpose_(1, 2) _, ind = self.quantizer(x) ind = ind.permute(1, 2, 0, 3).contiguous() ind = ind.view(ind.size(0), ind.size(1), -1) return ind.transpose_(1, 2) if self.transpose else ind # Borrowed from `https://github.com/2noise/ChatTTS/blob/main/ChatTTS/model/dvae.py` class DVAEDecoder(nn.Module): def __init__( self, idim: int, odim: int, n_layer=12, bn_dim=64, hidden=256, kernel=7, dilation=2, up=False, ): super().__init__() self.up = up self.conv_in = nn.Sequential( nn.Conv1d(idim, bn_dim, 3, 1, 1), nn.GELU(), nn.Conv1d(bn_dim, hidden, 3, 1, 1), ) self.decoder_block = nn.ModuleList( [ ConvNeXtBlock( hidden, hidden * 4, kernel, dilation, ) for _ in range(n_layer) ] ) self.conv_out = nn.Conv1d(hidden, odim, kernel_size=1, bias=False) def forward(self, x: torch.Tensor, conditioning=None) -> torch.Tensor: # B, C, T y = self.conv_in(x) del x for f in self.decoder_block: y = f(y, conditioning) x = self.conv_out(y) del y return x # Borrowed from `https://github.com/2noise/ChatTTS/blob/main/ChatTTS/model/dvae.py` class DVAE(nn.Module): def __init__( self, ): super().__init__() coef = torch.rand(100) self.coef = nn.Parameter(coef.unsqueeze(0).unsqueeze_(2)) self.downsample_conv = nn.Sequential( nn.Conv1d(100, 512, 3, 1, 1), nn.GELU(), nn.Conv1d(512, 512, 4, 2, 1), nn.GELU(), ) self.encoder = DVAEDecoder( idim=512, odim=1024, hidden=256, n_layer=12, bn_dim=128, ) self.decoder = DVAEDecoder( idim=512, odim=512, hidden=256, n_layer=12, bn_dim=128, ) self.out_conv = nn.Conv1d(512, 100, 3, 1, 1, bias=False) self.vq_layer = GFSQ( dim=1024, levels=(5, 5, 5, 5), G=2, R=2, ) @torch.inference_mode() def forward(self, inp: torch.Tensor, mode: Literal["encode", "decode"] = "decode") -> torch.Tensor: if mode == "encode" and hasattr(self, "encoder") and self.vq_layer is not None: mel = inp.clone() x: torch.Tensor = self.downsample_conv( torch.div(mel, self.coef.view(100, 1).expand(mel.shape), out=mel), ).unsqueeze_(0) del mel x = self.encoder(x) ind = self.vq_layer(x) del x return ind if self.vq_layer is not None: vq_feats = self.vq_layer._embed(inp) else: vq_feats = inp vq_feats = ( vq_feats.view( (vq_feats.size(0), 2, vq_feats.size(1) // 2, vq_feats.size(2)), ) .permute(0, 2, 3, 1) .flatten(2) ) dec_out = self.out_conv( self.decoder( x=vq_feats, ), ) del vq_feats return torch.mul(dec_out, self.coef, out=dec_out) def apply_spk_emb( input_ids: torch.Tensor = None, spk_emb: torch.Tensor = None, input_embeds: torch.Tensor = None, spk_emb_token_id: int = 0, num_spk_embs: int = 1, ): """ Replace consecutive `num_spk_embs` speaker embedding placeholders in input_embeds with pre-prepared speaker embeddings. This is an in-place replacement, no new tensor is created, so no value is returned. Args: input_ids (torch.Tensor): Input ID tensor, shape [batch_size, seq_len_max] spk_emb (torch.Tensor): Speaker embedding tensor, shape [batch_size, num_spk_emb, hidden_dim] input_embeds (torch.Tensor): Input embedding tensor, shape [batch_size, seq_len_max, hidden_dim] spk_emb_token_id (int): ID of the speaker embedding token num_spk_embs (int): Number of speaker embeddings Returns: None """ batch_size = input_ids.shape[0] for idx in range(batch_size): input_ids_ = input_ids[idx] # [seq_len_max] spk_emb_ = spk_emb[idx] # [num_spk_emb] mask_ = input_ids_ == spk_emb_token_id # [batch_size, seq_len_max] nonzero_position_idx = mask_.nonzero(as_tuple=False) # [num_spk_emb, 1] assert nonzero_position_idx.shape[0] == num_spk_embs begin_idx = nonzero_position_idx.min() end_idx = nonzero_position_idx.max() input_embeds[idx, begin_idx : end_idx + 1, :] = spk_emb_ return def make_streaming_chunk_mask_generation( inputs_embeds: torch.Tensor, past_seen_tokens: int, streaming_tts_text_mask: torch.Tensor, streaming_reserved_length: int = 300, streaming_audio_chunk_size: int = 50, streaming_text_chunk_size: int = 10, num_spk_emb: int = 1, use_spk_emb: bool = True, ) -> torch.Tensor: """ In streaming audio generation, determine which `text` positions the TTS model can attend to when generating each chunk of `audio` tokens. This function creates a mask that allows the model to attend to a specific chunk of text tokens when generating each chunk of audio tokens, enabling streaming TTS generation. Args: inputs_embeds (torch.Tensor): Input embeddings tensor. past_seen_tokens (int): Number of tokens already seen by the model. streaming_tts_text_mask (torch.Tensor): Mask for the text tokens. streaming_reserved_length (int, optional): Number of reserved tokens for streaming. Defaults to 300. streaming_chunk_length (int, optional): Length of each streaming chunk. Defaults to 50. streaming_text_chunk_size (int, optional): Size of each text chunk. Defaults to 7. Returns: torch.Tensor: Causal mask for streaming TTS generation, shape is [batch_size=1, 1, seq_len=1, past_seen_tokens+1] Raises: AssertionError: If the batch size is not 1 (only supports batch size of 1 for inference). """ assert inputs_embeds.shape[0] == 1 dtype = inputs_embeds.dtype device = inputs_embeds.device min_dtype = torch.finfo(dtype).min # Add `1` to the past seen tokens to account for new `tokens` during `generate` causal_mask = torch.full((1, past_seen_tokens + inputs_embeds.shape[1]), fill_value=0, dtype=dtype, device=device) # Calculate the start of invisible text tokens invisible_text_tokens_start = ( min( math.ceil((past_seen_tokens - streaming_reserved_length) / streaming_audio_chunk_size) * streaming_text_chunk_size, streaming_reserved_length, ) + 1 + num_spk_emb * use_spk_emb ) # Add 1 for [Stts] and N for [spk_emb] tokens if `use_spk_emb` is True invisible_text_tokens_end = ( streaming_reserved_length + 1 + num_spk_emb * use_spk_emb + 1 ) # Add 1 for [Ptts] (aka `audio_bos_token_id`) # Set invisible text tokens to min_dtype (effectively -inf) causal_mask[0, invisible_text_tokens_start:invisible_text_tokens_end] = min_dtype # Mask padding positions in the text mask causal_mask[0, 0 : 1 + num_spk_emb * use_spk_emb + streaming_reserved_length + 1].masked_fill_( streaming_tts_text_mask == 0, min_dtype ) # Add extra dimensions for batch and heads causal_mask = causal_mask.unsqueeze(0).unsqueeze(0) return causal_mask # Borrowed from `https://github.com/2noise/ChatTTS/blob/main/ChatTTS/model/processors.py` class CustomRepetitionPenaltyLogitsProcessorRepeat: def __init__(self, penalty: float, max_input_ids: int, past_window: int): if not isinstance(penalty, float) or not (penalty > 0): raise ValueError(f"`penalty` has to be a strictly positive float, but is {penalty}") self.penalty = penalty self.max_input_ids = max_input_ids self.past_window = past_window def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: if input_ids.size(1) > self.past_window: input_ids = input_ids.narrow(1, -self.past_window, self.past_window) freq = F.one_hot(input_ids, scores.size(1)).sum(1) if freq.size(0) > self.max_input_ids: freq.narrow(0, self.max_input_ids, freq.size(0) - self.max_input_ids).zero_() alpha = torch.pow(self.penalty, freq) scores = scores.contiguous() inp = scores.multiply(alpha) oth = scores.divide(alpha) con = scores < 0 out = torch.where(con, inp, oth) del inp, oth, scores, con, alpha return out @dataclass class ConditionalChatTTSGenerationOutput(ModelOutput): """ Output class for ConditionalChatTTS generation. Args: new_ids (torch.LongTensor): Newly generated audio code sequence, shape (batch_size, sequence_length, num_vq). audio_input_ids (torch.LongTensor): Updated input IDs including condition and generated audio codes, shape (batch_size, full_sequence_length, num_vq). past_key_values (Tuple[Tuple[torch.FloatTensor]]): Tuple containing pre-computed keys and values used for attention mechanism. Each element has shape (batch_size, num_heads, sequence_length, embed_size_per_head). finished (bool): Boolean indicating whether generation is complete. """ new_ids: torch.LongTensor = None audio_input_ids: torch.LongTensor = None past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None finished: bool = None class MultiModalProjector(nn.Module): def __init__(self, in_dim, out_dim): super().__init__() self.linear1 = nn.Linear(in_features=in_dim, out_features=out_dim, bias=True) self.relu = nn.ReLU() self.linear2 = nn.Linear(in_features=out_dim, out_features=out_dim, bias=True) def forward(self, audio_features): hidden_states = self.relu(self.linear1(audio_features)) hidden_states = self.linear2(hidden_states) return hidden_states class ConditionalChatTTS(PreTrainedModel): """A conditional text-to-speech model that can generate speech from text with speaker conditioning. This model extends PreTrainedModel to provide text-to-speech capabilities with: - LLM hidden state conditioning - Streaming generation The model uses a transformer architecture with LLM hidden states and can operate in both streaming and non-streaming modes for flexible deployment. The model process sequence in the following format: | text bos token | LLM embedding projected to tts embedding space | text tokens (fixed length, reserved for future tokens) | audio bos token | audio tokens (audio token length is not fixed)| audio eos token | The format is designed to support LLM-conditioned streaming audio generation. Usage: To support streaming generation, two global variables should be maintained outside of the model. 1. `audio_input_ids`: stores *discrete* audio codes. It is a tensor with shape [1, sequence length+1, num_vq]. 2. `past_key_values`: stores the KV cache for both text tokens and audio codes. It is a list of tuples, each tuple contains two tensors with shape [1, num_attention_heads, sequence length, hidden_size // num_attention_heads] where `num_vq` is the number of audio codebooks, in default setting, it is `4`. 1. Create an empty `past_key_values` with ```python initial_kv_cache_length = 1 + model.num_spk_embs + model.streaming_text_reserved_len # where `1` denotes the `bos` token dtype = model.emb_text.weight.dtype device = model.emb_text.weight.device past_key_values = [ ( torch.zeros(1, model.config.num_attention_heads, initial_kv_cache_length, model.config.hidden_size // model.config.num_attention_heads, dtype=dtype, device=device), torch.zeros(1, model.config.num_attention_heads, initial_kv_cache_length, model.config.hidden_size // model.config.num_attention_heads, dtype=dtype, device=device) ) for _ in range(model.config.num_hidden_layers) ] 2. At the same time, create an empty `audio_input_ids` with shape [1, sequence length, num_vq], `num_vq` denotes multiple layer audio codebooks. But here we also include text tokens in the sequence, but they will be zeros, and will not be used, just a placeholder. ```python initial_audio_input_ids_length = 1 + model.num_spk_embs + model.streaming_text_reserved_len + 1 # [bos token, speaker embeddings, text tokens, audio bos token] audio_input_ids = torch.zeros(batch_size=1, initial_audio_input_ids_length, model.num_vq) ``` 2. Prefill some text tokens to TTS model (for example, 10 tokens) using `prefill_text` method. ```python outputs = llm.generate(**kwargs) llm_tokens = some_function_to_extract_llm_tokens(outputs) lm_spk_emb_last_hidden_states = some_function_to_extract_lm_spk_emb_last_hidden_states(outputs) tts_text_input_ids = tts_tokenizer.encode(llm_tokenizer.decode(llm_tokens)) # here assume we are prefilling text token 0 to text token 9 (included), totally 10 tokens. begin = 0 end = 9+1 position_ids = torch.arange(begin, end, dtype=torch.long, device=device) past_key_values = model.prefill_text( input_ids=tts_text_input_ids, position_ids=position_ids, past_key_values=past_key_values, lm_spk_emb_last_hidden_states=lm_spk_emb_last_hidden_states, ) ``` 3. Make a `streaming_tts_text_mask` to denote which position contains valid text tokens, similar to `attention_mask` in standard causal attention. ```python streaming_tts_text_mask = torch.zeros(model.streaming_reserved_length) streaming_tts_text_mask[0:end] = 1 # denotes these post ``` 3. Generate audio codes using `generate` method. ```python outputs = model.generate( input_ids=audio_input_ids, past_key_values=past_key_values, streaming_tts_text_mask=streaming_tts_text_mask, max_new_token=50, ) # update past_key_values and input_ids past_key_values = outputs.past_key_values audio_input_ids = outputs.input_ids ``` The `past_key_values` is extended by `max_new_token=50`, and `audio_input_ids` is also extended by `max_new_token=50` after `generate` calling. 4. Notice that after prefilling `10` text tokens, the model can generate up to `50` audio tokens, if you want to generate more audio tokens, you need to prefill next `10` text tokens. And it is okay to only generate `25` audio tokens for faster initial response. 5. Repeat steps `2,3,4` as needed in your streaming audio generation cases, but ensure usage complies with the following guidelines discussed above. """ config_class = ConditionalChatTTSConfig def __init__(self, config: ConditionalChatTTSConfig): super().__init__(config) self.use_speaker_embedding = config.use_speaker_embedding self.use_llm_hidden_state = config.use_llm_hidden_state self.num_spk_embs = config.num_spk_embs self.spk_emb_token_id = config.spk_emb_token_id self.use_text = config.use_text self.streaming = config.streaming self.streaming_text_chunk_size = config.streaming_text_chunk_size self.streaming_audio_chunk_size = config.streaming_audio_chunk_size self.streaming_text_reserved_len = config.streaming_text_reserved_len self.audio_bos_token_id = config.audio_bos_token_id self.num_mel_bins = config.num_mel_bins self.num_vq = config.num_vq self.num_audio_tokens = config.num_audio_tokens self.top_p = config.top_p self.top_k = config.top_k self.repetition_penalty = config.repetition_penalty if self.config.use_mlp: self.projector = MultiModalProjector(config.llm_dim, config.hidden_size) else: self.projector = nn.Linear(config.llm_dim, config.hidden_size, bias=False) self.emb_code = nn.ModuleList( [nn.Embedding(config.num_audio_tokens, config.hidden_size) for _ in range(config.num_vq)] ) self.emb_text = nn.Embedding(config.num_text_tokens, config.hidden_size) self.head_code = nn.ModuleList( [ weight_norm( nn.Linear(config.hidden_size, config.num_audio_tokens, bias=False), name="weight", ) for _ in range(config.num_vq) ] ) dvae = DVAE() self.dvae = dvae model_config = LlamaConfig( hidden_size=config.hidden_size, intermediate_size=config.intermediate_size, num_attention_heads=config.num_attention_heads, num_hidden_layers=config.num_hidden_layers, max_position_embeddings=config.max_position_embeddings, attn_implementation=config.attn_implementation, ) model = LlamaModel(model_config) self.model = model @torch.inference_mode() def merge_inputs_embeds( self, input_ids: torch.Tensor, lm_spk_emb_last_hidden_states: Optional[torch.Tensor] = None, ): """Merge `input_ids` and `lm_spk_emb_last_hidden_states` to `inputs_embeds`. Args: input_ids (torch.Tensor): Input token IDs. lm_spk_emb_last_hidden_states (Optional[torch.Tensor], optional): Last hidden states of speaker embeddings from the language model. Defaults to None. Raises: NotImplementedError: If speaker embedding is not used and language model hidden states are not implemented. Returns: torch.Tensor: Prepared input embeddings for the model. """ assert input_ids.shape[0] == 1 # Embed input_ids to input_embeds inputs_embeds = self.emb_text(input_ids) # Inject speaker embedding to input_embeds if it exists if self.use_speaker_embedding: spk_emb_mask = input_ids == self.spk_emb_token_id if spk_emb_mask.any(): assert lm_spk_emb_last_hidden_states is not None # Project spk emb to tts hidden size first, [batch_size, num_spk_emb, llm_dim] -> [batch_size, num_spk_emb, self.hidden_size] lm_spk_emb_last_hidden_states = lm_spk_emb_last_hidden_states.to(self.projector.linear1.weight.dtype) projected_spk_emb = self.projector(lm_spk_emb_last_hidden_states) projected_spk_emb = F.normalize(projected_spk_emb, p=2, dim=-1) apply_spk_emb( input_ids=input_ids, spk_emb=projected_spk_emb, input_embeds=inputs_embeds, spk_emb_token_id=self.spk_emb_token_id, num_spk_embs=self.num_spk_embs, ) else: raise NotImplementedError return inputs_embeds @torch.inference_mode() def prefill_text( self, input_ids: torch.Tensor, position_ids: torch.LongTensor, past_key_values: List[Tuple[torch.Tensor, torch.Tensor]], lm_spk_emb_last_hidden_states: Optional[torch.Tensor] = None, ): """Prefill a chunk of new text tokens in streaming setting. Specifically speaking, update `past_key_values` using new text tokens, then the model will read the new text tokens. Args: input_ids (Tensor): Tensor of shape [batch_size, seq_len] position_ids (LongTensor): Tensor of shape [batch_size, seq_len] past_key_values (List[Tuple[Tensor]]): KV Cache of all layers, each layer is a tuple (Tensor, Tensor) denoting keys and values. Each tensor is of seq_len = `self.streaming_text_reserved_len`. `past_key_values` will be updated. lm_spk_emb_last_hidden_states (Tensor, optional): Tensor of shape [batch_size, num_spk_emb, llm_dim]. Defaults to None. lm_last_hidden_states (Tensor, optional): _description_. Defaults to None. Note that all `batch_size` should be `1`. """ assert input_ids.shape[0] == 1 assert past_key_values is not None # Merge text and LLM embeddings inputs_embeds = self.merge_inputs_embeds( input_ids=input_ids, lm_spk_emb_last_hidden_states=lm_spk_emb_last_hidden_states, ) # Clone KV Cache past_key_values_for_prefill = [] for i in range(len(past_key_values)): past_key_values_for_prefill.append( ( past_key_values[i][0][:, :, : position_ids[:, 0], :].clone(), past_key_values[i][1][:, :, : position_ids[:, 0], :].clone(), ) ) # Model forward outputs_prefill: BaseModelOutputWithPast = self.model( attention_mask=None, # because for text, it is standard causal attention mask, do nothing position_ids=position_ids, # position_ids denotes the position of new text tokens in the sequence past_key_values=past_key_values_for_prefill, # `past_key_values` will be updated by the model inputs_embeds=inputs_embeds, # contains text and language model embedding use_cache=True, output_attentions=False, cache_position=position_ids, # which new positions will use this cache, basically the same as position_ids ) # Get model updated KV Cache past_key_values_for_prefill_updated = outputs_prefill.past_key_values # Update generated KV Cache to input `past_key_values` for layer_idx in range(len(past_key_values)): # Update keys past_key_values[layer_idx][0][:, :, position_ids[:, 0] : position_ids[:, -1] + 1, :] = ( past_key_values_for_prefill_updated[layer_idx][0][ :, :, position_ids[:, 0] : position_ids[:, -1] + 1 ].clone() ) # Update values past_key_values[layer_idx][1][:, :, position_ids[:, 0] : position_ids[:, -1] + 1, :] = ( past_key_values_for_prefill_updated[layer_idx][1][ :, :, position_ids[:, 0] : position_ids[:, -1] + 1 ].clone() ) # TODO: del past_key_values_for_prefill_updated recursively # TODO: del outputs_prefill recursively return past_key_values @torch.inference_mode() def prefill_audio_ids( self, input_ids: torch.Tensor, past_key_values: List[Tuple[torch.Tensor, torch.Tensor]], streaming_tts_text_mask=None, add_audio_bos: bool = True, ): """Prefill a chunk of audio ids to the model. Used in sliding-window long audio generation. Specifically, prefill many audio ids (typically from last window) to the model in the new window. Args: input_ids (torch.Tensor): (1, seq_len, num_vq) Audio input token ids. past_key_values (List[Tuple[torch.Tensor, torch.Tensor]]): Past key values for attention mechanism. """ assert input_ids.shape[0] == 1 assert past_key_values is not None code_emb = [self.emb_code[i](input_ids[:, :, i]) for i in range(self.num_vq)] inputs_embeds = torch.stack(code_emb, 3).sum(3) # [1,seq_len,768] input_len = input_ids.shape[1] if add_audio_bos: narrowed_input_ids = torch.tensor([[self.audio_bos_token_id]], dtype=torch.long, device=self.device) bos_inputs_embeds = self.emb_text(narrowed_input_ids) inputs_embeds = torch.cat([bos_inputs_embeds, inputs_embeds], dim=1) input_len += 1 past_key_values_length = past_key_values[0][0].shape[2] position_ids = torch.arange( past_key_values_length, past_key_values_length + input_len, dtype=torch.long, device=self.device ).unsqueeze(0) cache_position = position_ids.clone() causal_mask = make_streaming_chunk_mask_generation( inputs_embeds=inputs_embeds, past_seen_tokens=past_key_values[0][0].shape[2], streaming_tts_text_mask=streaming_tts_text_mask, streaming_reserved_length=self.streaming_text_reserved_len, streaming_text_chunk_size=self.streaming_text_chunk_size, ) # [1, 1, 1, past_key_values_length + input_len] # Model forward outputs: BaseModelOutputWithPast = self.model( attention_mask=causal_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=True, output_attentions=False, cache_position=cache_position, ) past_key_values = outputs.past_key_values return past_key_values @torch.inference_mode() def generate( self, input_ids: torch.Tensor, past_key_values: List[Tuple[torch.Tensor, torch.Tensor]], temperature: torch.Tensor, eos_token: Union[int, torch.Tensor], streaming_tts_text_mask=None, force_no_stop=False, min_new_token=10, max_new_token=50, logits_warpers: List[LogitsWarper] = [], logits_processors: List[CustomRepetitionPenaltyLogitsProcessorRepeat] = [], show_tqdm=False, ): """Generate audio codes in streaming setting or non-streaming setting. Specifically speaking, generate audio codes when not all text tokens are prefilled. Always pass a valid `past_key_values` to the method. The method does not do `prefill` by itself. It relies on `prefill_text` method to provide valid `past_key_values`. Please refer to docstring of this class for more details. In this method, we borrowed a lot of codes from `https://github.com/2noise/ChatTTS/blob/main/ChatTTS/model/gpt.py`. Args: input_ids (torch.Tensor): Input token ids. past_key_values (List[Tuple[torch.Tensor, torch.Tensor]]): Past key values for attention mechanism. temperature (torch.Tensor): Temperature for sampling. eos_token (Union[int, torch.Tensor]): End of sequence token. streaming_tts_text_mask (Optional[torch.Tensor], optional): Mask for streaming TTS text. Defaults to None. max_new_token (int, optional): Maximum number of new tokens to generate. Defaults to 50. logits_warpers (List[LogitsWarper], optional): List of logits warpers. Defaults to []. logits_processors (List[CustomRepetitionPenaltyLogitsProcessorRepeat], optional): List of logits processors. Defaults to []. show_tqdm (bool, optional): Whether to show progress bar. Defaults to True. Returns: GenerationOutputs: Generation outputs. """ # We only support batch size `1` for now assert input_ids.shape[0] == 1 assert past_key_values is not None # fix: this should not be `input_ids.shape[1]` # start_idx = input_ids.shape[1] start_idx = 1 + self.num_spk_embs * self.use_speaker_embedding + self.streaming_text_reserved_len + 1 finish = torch.zeros(input_ids.shape[0], device=input_ids.device).bool() temperature = temperature.unsqueeze(0).expand(input_ids.shape[0], -1).contiguous().view(-1, 1) progress = input_ids.shape[1] # Pre-allocate input_ids, shape is [batch_size=1, max_possible_seq_len, self.num_vqs] input_ids_buf = torch.zeros( input_ids.shape[0], # batch_size progress + max_new_token, # max_possible_seq_len = input_ids.shape[1] + max_new_token input_ids.shape[2], # self.num_vqs dtype=input_ids.dtype, device=input_ids.device, ) # Copy existing `input_ids` to `input_ids_buf` input_ids_buf.narrow(1, 0, progress).copy_(input_ids) del input_ids input_ids = input_ids_buf.narrow(1, 0, progress) pbar: Optional[tqdm] = None if show_tqdm: pbar = tqdm( total=max_new_token, desc="code", bar_format="{l_bar}{bar}| {n_fmt}/{total_fmt}(max) [{elapsed}, {rate_fmt}{postfix}]", ) condition_length = 1 + self.num_spk_embs * self.use_speaker_embedding + self.streaming_text_reserved_len + 1 for i in range(max_new_token): # Prepare generation inputs audio_bos = False # If this is the first audio token, the case is SPECIAL if progress == condition_length: audio_bos = True assert progress == ( past_key_values[0][0].shape[2] + 1 ) # If you are using according to the guidelines, this should be passed. if audio_bos: # Generate the first token, activate the model with `self.audio_bos_token_id`, the model will predict a new audio token. This is a special case because without the `audio bos token`, it is impossible to generate the first audio token in our streaming setting. narrowed_input_ids = torch.tensor([[self.audio_bos_token_id]], dtype=torch.long, device=self.device) inputs_embeds = self.emb_text(narrowed_input_ids) del narrowed_input_ids else: # Generate the following audio tokens, it is applicable to all other cases, including second and the following calling of `generate`. narrowed_input_ids = input_ids.narrow(dim=1, start=input_ids.shape[1] - 1, length=1) code_emb = [self.emb_code[i](narrowed_input_ids[:, :, i]) for i in range(self.num_vq)] inputs_embeds = torch.stack(code_emb, 3).sum(3) position_ids = torch.tensor( [past_key_values[0][0].shape[2] + 1], dtype=torch.long, device=self.device ).unsqueeze(0) cache_position = position_ids.clone() # Make causal mask causal_mask = make_streaming_chunk_mask_generation( inputs_embeds=inputs_embeds, past_seen_tokens=past_key_values[0][0].shape[2], streaming_tts_text_mask=streaming_tts_text_mask, streaming_reserved_length=self.streaming_text_reserved_len, streaming_text_chunk_size=self.streaming_text_chunk_size, ) # Model forward outputs: BaseModelOutputWithPast = self.model( attention_mask=causal_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=True, output_attentions=False, cache_position=cache_position, ) del position_ids del inputs_embeds del cache_position del causal_mask hidden_states = outputs.last_hidden_state past_key_values = outputs.past_key_values with P.cached(): logits = torch.empty( hidden_states.size(0), hidden_states.size(1), self.num_audio_tokens, self.num_vq, dtype=torch.float, device=self.device, ) for num_vq_iter in range(self.num_vq): x: torch.Tensor = self.head_code[num_vq_iter](hidden_states) logits[..., num_vq_iter] = x del x del hidden_states # logits = logits[:, -1].float() logits = logits.narrow(1, -1, 1).squeeze_(1).float() # logits = rearrange(logits, "b c n -> (b n) c") logits = logits.permute(0, 2, 1) logits = logits.reshape(-1, logits.size(2)) # logits_token = rearrange(input_ids[:, start_idx:], "b c n -> (b n) c") input_ids_sliced = input_ids.narrow( 1, start_idx, input_ids.size(1) - start_idx, ).permute(0, 2, 1) logits_token = input_ids_sliced.reshape( input_ids_sliced.size(0) * input_ids_sliced.size(1), -1, ).to(self.device) del input_ids_sliced logits /= temperature if not audio_bos: for logitsProcessors in logits_processors: logits = logitsProcessors(logits_token, logits) if not audio_bos: for logitsWarpers in logits_warpers: logits = logitsWarpers(logits_token, logits) del logits_token if i < min_new_token: logits[:, eos_token] = -torch.inf if force_no_stop: logits[:, eos_token] = -torch.inf scores = F.softmax(logits, dim=-1) del logits idx_next = torch.multinomial(scores, num_samples=1) # .to(finish.device) del scores # idx_next = rearrange(idx_next, "(b n) 1 -> b n", n=self.num_vq) idx_next = idx_next.view(-1, self.num_vq) finish_or = idx_next.eq(eos_token).any(1) finish.logical_or_(finish_or) del finish_or # Store new `token` into `input_ids_buf` input_ids_buf.narrow(1, progress, 1).copy_(idx_next.unsqueeze_(1)) if i == 0 and finish.any(): # raise Exception break del idx_next progress += 1 input_ids = input_ids_buf.narrow(1, 0, progress) if finish.all(): break if pbar is not None: pbar.update(1) if pbar is not None: pbar.close() if not finish.all(): if show_tqdm: logger.info(f"incomplete result. hit max_new_token: {max_new_token}") del input_ids_buf if finish.all(): # the last may contains eos token genrated_input_ids = input_ids[:, condition_length:-1, :] else: # there is no eos token genrated_input_ids = input_ids[:, condition_length:, :] return ConditionalChatTTSGenerationOutput( new_ids=genrated_input_ids, audio_input_ids=input_ids, # for update purpose past_key_values=past_key_values, # for update purpose finished=finish.all(), ) @torch.inference_mode() def decode_to_mel_specs( self, result_list: List[torch.Tensor], ): """Decode discrete audio codes to mel spectrograms. Borrowed from `https://github.com/2noise/ChatTTS/blob/main/ChatTTS/core.py` Args: result_list (List[torch.Tensor]): Audio codes output from `generate`. Returns: torch.Tensor: Mel spectrograms. """ decoder = self.dvae max_x_len = -1 if len(result_list) == 0: return np.array([], dtype=np.float32) for result in result_list: if result.size(0) > max_x_len: max_x_len = result.size(0) batch_result = torch.zeros( (len(result_list), result_list[0].size(1), max_x_len), dtype=result_list[0].dtype, device=result_list[0].device, ) for i in range(len(result_list)): src = result_list[i] batch_result[i].narrow(1, 0, src.size(0)).copy_(src.permute(1, 0)) del src mel_specs = decoder(batch_result) del batch_result return mel_specs # Borrowed from `https://github.com/2noise/ChatTTS/blob/main/ChatTTS/model/processors.py` def gen_logits( num_code: int, top_P=0.7, top_K=20, repetition_penalty=1.0, ): logits_warpers = [] if top_P is not None: logits_warpers.append(TopPLogitsWarper(top_P, min_tokens_to_keep=3)) if top_K is not None: logits_warpers.append(TopKLogitsWarper(top_K, min_tokens_to_keep=3)) logits_processors = [] if repetition_penalty is not None and repetition_penalty != 1: logits_processors.append(CustomRepetitionPenaltyLogitsProcessorRepeat(repetition_penalty, num_code, 16)) return logits_warpers, logits_processors # Copy and modified from transformers.models.llama.modeling_llama.LlamaForCausalLM.prepare_inputs_for_generation def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, position_ids=None, use_cache=True, **kwargs, ): if past_key_values is not None: if isinstance(past_key_values, Cache): cache_length = past_key_values.get_seq_length() past_length = past_key_values.seen_tokens else: cache_length = past_length = past_key_values[0][0].shape[2] # Keep only the unprocessed tokens: # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as # input) if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard # input_ids based on the past_length. elif past_length < input_ids.shape[1]: input_ids = input_ids[:, past_length:] # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -input_ids.shape[1] :] # This clo≠clo≠clone call is needed to avoid recapturing cuda graphs with →rch.comπ≤→rch.comπ≤torch.compile's mode=reduce−overheadmode=reduce-overheadmode="reduce-overhead, as otherwise the input positionidspositionidsposition_ids would have various stride during the decoding. Here, simply using .contiguous().contiguous().contiguous() is not sufficient as in the batch size = 1 case, positionidspositionidsposition_ids is already contiguous but with varying stride which retriggers a capture. position_ids = position_ids.clone(memory_format=torch.contiguous_format) # if ∈putsembeds∈putsembedsinputs_embeds are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and cache_position[0] == 0: model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None} else: # The clone here is for the same reason as for positionidspositionidsposition_ids. model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None} if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2: if model_inputs["inputs_embeds"] is not None: batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape device = model_inputs["inputs_embeds"].device else: batch_size, sequence_length = model_inputs["input_ids"].shape device = model_inputs["input_ids"].device dtype = self.lm_head.weight.dtype min_dtype = torch.finfo(dtype).min attention_mask = _prepare_4d_causal_attention_mask_with_cache_position( attention_mask, sequence_length=sequence_length, target_length=past_key_values.get_max_length(), dtype=dtype, device=device, min_dtype=min_dtype, cache_position=cache_position, batch_size=batch_size, ) model_inputs.update( { "position_ids": position_ids, # "cache_position": cache_position, "past_key_values": past_key_values, "use_cache": use_cache, "attention_mask": attention_mask, } ) return model_inputs