|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Processor class for MiniCPMO. |
|
""" |
|
|
|
import math |
|
import re |
|
from typing import List |
|
from typing import Literal |
|
from typing import Optional |
|
from typing import Union |
|
|
|
import numpy as np |
|
import torch |
|
import torchaudio |
|
from transformers.image_utils import ImageInput |
|
from transformers.processing_utils import ProcessorMixin |
|
from transformers.tokenization_utils_base import PreTokenizedInput |
|
from transformers.tokenization_utils_base import TextInput |
|
from transformers.utils import TensorType |
|
|
|
from .image_processing_minicpmv import MiniCPMOBatchFeature |
|
|
|
|
|
class MiniCPMOProcessor(ProcessorMixin): |
|
r""" |
|
Constructs a MiniCPMV processor which wraps a MiniCPMV image processor and a MiniCPMV tokenizer into a single processor. |
|
|
|
[`MiniCPMVProcessor`] offers all the functionalities of [`MiniCPMVImageProcessor`] and [`LlamaTokenizerWrapper`]. See the |
|
[`~MiniCPMVProcessor.__call__`] and [`~MiniCPMVProcessor.decode`] for more information. |
|
|
|
Args: |
|
image_processor ([`MiniCPMVImageProcessor`], *optional*): |
|
The image processor is a required input. |
|
tokenizer ([`LlamaTokenizerWrapper`], *optional*): |
|
The tokenizer is a required input. |
|
""" |
|
|
|
attributes = ["image_processor", "feature_extractor", "tokenizer"] |
|
feature_extractor_class = "WhisperFeatureExtractor" |
|
image_processor_class = "AutoImageProcessor" |
|
tokenizer_class = "AutoTokenizer" |
|
|
|
def __init__(self, image_processor=None, feature_extractor=None, tokenizer=None): |
|
super().__init__(image_processor, feature_extractor, tokenizer) |
|
self.version = image_processor.version |
|
|
|
def __call__( |
|
self, |
|
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]], |
|
images: ImageInput = None, |
|
audios: Union[np.ndarray, List[np.ndarray], List[List[np.ndarray]]] = None, |
|
audio_parts: Optional[list] = None, |
|
max_length: Optional[int] = None, |
|
do_pad: Optional[bool] = True, |
|
max_slice_nums: int = None, |
|
use_image_id: bool = True, |
|
chunk_input: bool = False, |
|
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, |
|
sampling_rate: Optional[int] = 16000, |
|
**kwargs, |
|
) -> MiniCPMOBatchFeature: |
|
if images is not None: |
|
image_inputs = self.image_processor( |
|
images, do_pad=do_pad, max_slice_nums=max_slice_nums, return_tensors=return_tensors |
|
) |
|
else: |
|
image_inputs = None |
|
|
|
if audios is not None: |
|
audio_features, audio_feature_lens, audio_phs = self.audio_feature_extract( |
|
audios, audio_parts, chunk_input, sampling_rate |
|
) |
|
else: |
|
audio_features, audio_feature_lens, audio_phs = [], [], [] |
|
|
|
model_inputs = self._convert_omni_to_inputs( |
|
image_inputs, |
|
audio_phs, |
|
text, |
|
max_slice_nums=max_slice_nums, |
|
use_image_id=use_image_id, |
|
max_length=max_length, |
|
**kwargs, |
|
) |
|
|
|
model_inputs["audio_features"] = audio_features |
|
model_inputs["audio_feature_lens"] = audio_feature_lens |
|
|
|
return MiniCPMOBatchFeature(data={**model_inputs}) |
|
|
|
def audio_feature_extract( |
|
self, |
|
audios: Union[np.ndarray, List[np.ndarray], List[List[np.ndarray]]], |
|
audio_parts: Optional[list] = None, |
|
chunk_input: Optional[bool] = False, |
|
sampling_rate: Optional[int] = None, |
|
chunk_length: Optional[int] = 1, |
|
**kwargs, |
|
): |
|
def get_audio_placeholder(audio_lens, chunk_input): |
|
pool_step = 2 |
|
feature_lens = math.ceil(audio_lens / self.feature_extractor.hop_length) |
|
|
|
feature_lens = (feature_lens - 1) // 2 + 1 |
|
output_lens = (feature_lens - pool_step) // pool_step + 1 |
|
|
|
if chunk_input: |
|
fbank_feat_in_chunk = int(chunk_length * 100) |
|
cnn_feat_in_chunk = (fbank_feat_in_chunk - 1) // 2 + 1 |
|
audio_embeds_in_chunk = (cnn_feat_in_chunk - pool_step) // pool_step + 1 |
|
num_audio_chunks = (output_lens + audio_embeds_in_chunk - 1) // audio_embeds_in_chunk |
|
|
|
place_holders = "" |
|
total_unk_len = 0 |
|
for _ in range(num_audio_chunks): |
|
unk_len = min(audio_embeds_in_chunk, output_lens - total_unk_len) |
|
place_holders += self.tokenizer.audio_start + "<unk>" * unk_len + self.tokenizer.audio_end |
|
total_unk_len += unk_len |
|
audio_placeholder = place_holders |
|
else: |
|
audio_placeholder = self.tokenizer.audio_start + "<unk>" * output_lens + self.tokenizer.audio_end |
|
|
|
return audio_placeholder |
|
|
|
if isinstance(audios, np.ndarray): |
|
audios_list = [[audios]] |
|
elif isinstance(audios[0], np.ndarray): |
|
audios_list = [audios] |
|
else: |
|
audios_list = audios |
|
|
|
if audio_parts is not None: |
|
assert len(audio_parts) == len(audios_list) |
|
for parts, audios in zip(audio_parts, audios_list): |
|
assert len(parts) == len(audios) |
|
|
|
audio_feature_lens_list = [] |
|
audio_ph_list = [] |
|
|
|
audio_features_all = [] |
|
|
|
|
|
for audios in audios_list: |
|
if audios: |
|
audio_ph_list.append([get_audio_placeholder(len(a), chunk_input) for a in audios]) |
|
else: |
|
audio_ph_list.append([]) |
|
|
|
for idx, audios in enumerate(audios_list): |
|
if audio_parts is not None: |
|
|
|
audio_part = audio_parts[idx] |
|
merge_audio = [] |
|
cur_audio = [] |
|
for aid, (part, audio) in enumerate(zip(audio_part, audios)): |
|
if aid == 0 or audio_part[aid] == audio_part[aid - 1]: |
|
cur_audio.append(audio) |
|
else: |
|
merge_audio.append(np.hstack(cur_audio)) |
|
cur_audio = [audio] |
|
if cur_audio: |
|
merge_audio.append(np.hstack(cur_audio)) |
|
|
|
else: |
|
merge_audio = audios |
|
|
|
audio_feature_lens = [] |
|
|
|
|
|
final_merge_audio = [] |
|
max_audio_inp_len = 30 * sampling_rate |
|
for audio in merge_audio: |
|
if len(audio) <= max_audio_inp_len: |
|
final_merge_audio.append(audio) |
|
else: |
|
for i in range(math.ceil(len(audio) / max_audio_inp_len)): |
|
final_merge_audio.append(audio[i * max_audio_inp_len : (i + 1) * max_audio_inp_len]) |
|
|
|
if audios: |
|
audio_inputs = self.feature_extractor( |
|
final_merge_audio, |
|
sampling_rate=sampling_rate, |
|
return_attention_mask=True, |
|
padding="max_length", |
|
return_tensors="pt", |
|
**kwargs, |
|
) |
|
audio_feature = audio_inputs["input_features"] |
|
actual_lens = audio_inputs["attention_mask"].sum(dim=1) |
|
|
|
for feat, lens in zip(audio_feature, actual_lens): |
|
audio_features_all.append(feat[:, :lens]) |
|
audio_feature_lens.append(lens) |
|
|
|
audio_feature_lens = torch.hstack(audio_feature_lens) |
|
audio_feature_lens_list.append(audio_feature_lens) |
|
else: |
|
audio_feature_lens_list.append([]) |
|
|
|
if audio_features_all: |
|
audio_features = [i.permute(1, 0) for i in audio_features_all] |
|
audio_features = torch.nn.utils.rnn.pad_sequence( |
|
audio_features, batch_first=True, padding_value=0.0 |
|
).permute(0, 2, 1) |
|
else: |
|
audio_features = [] |
|
|
|
return audio_features, audio_feature_lens_list, audio_ph_list |
|
|
|
|
|
def batch_decode(self, *args, **kwargs): |
|
""" |
|
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please |
|
refer to the docstring of this method for more information. |
|
""" |
|
output_ids = args[0] |
|
result_text = [] |
|
for result in output_ids: |
|
result = result[result != 0] |
|
if result[0] == self.tokenizer.bos_id: |
|
result = result[1:] |
|
if result[-1] == self.tokenizer.eos_id: |
|
result = result[:-1] |
|
result_text.append(self.tokenizer.decode(result, *args[1:], **kwargs).strip()) |
|
return result_text |
|
|
|
|
|
|
|
def decode(self, *args, **kwargs): |
|
""" |
|
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to |
|
the docstring of this method for more information. |
|
""" |
|
result = args[0] |
|
result = result[result != 0] |
|
if result[0] == self.tokenizer.bos_id: |
|
result = result[1:] |
|
if result[-1] == self.tokenizer.eos_id or ( |
|
hasattr(self.tokenizer, "eot_id") and result[-1] == self.tokenizer.eot_id |
|
): |
|
result = result[:-1] |
|
return self.tokenizer.decode(result, *args[1:], **kwargs).strip() |
|
|
|
def _convert(self, input_str, max_inp_length: Optional[int] = None, **kwargs): |
|
input_ids = self.tokenizer.encode(input_str, **kwargs) |
|
if max_inp_length is not None: |
|
input_ids = input_ids[:max_inp_length] |
|
input_ids = torch.tensor(input_ids, dtype=torch.int32) |
|
|
|
|
|
start_cond = (input_ids == self.tokenizer.im_start_id) | (input_ids == self.tokenizer.slice_start_id) |
|
end_cond = (input_ids == self.tokenizer.im_end_id) | (input_ids == self.tokenizer.slice_end_id) |
|
|
|
image_start_idx = torch.where(start_cond)[0] |
|
image_start_idx += 1 |
|
image_end_idx = torch.where(end_cond)[0] |
|
|
|
valid_image_nums = max(len(image_start_idx), len(image_end_idx)) |
|
|
|
image_bounds = torch.hstack( |
|
[ |
|
image_start_idx[:valid_image_nums].unsqueeze(-1), |
|
image_end_idx[:valid_image_nums].unsqueeze(-1), |
|
] |
|
) |
|
|
|
|
|
audio_start_idx = torch.where(input_ids == self.tokenizer.audio_start_id)[0] |
|
audio_end_idx = torch.where(input_ids == self.tokenizer.audio_end_id)[0] |
|
assert len(audio_start_idx) == len(audio_end_idx) |
|
audio_bounds = torch.hstack([(audio_start_idx + 1).unsqueeze(-1), audio_end_idx.unsqueeze(-1)]) |
|
|
|
spk_start_idx = torch.where(input_ids == self.tokenizer.spk_start_id)[0] |
|
spk_end_idx = torch.where(input_ids == self.tokenizer.spk_end_id)[0] |
|
assert len(spk_start_idx) == len(spk_end_idx) |
|
spk_bounds = torch.hstack([(spk_start_idx + 1).unsqueeze(-1), spk_end_idx.unsqueeze(-1)]) |
|
|
|
return input_ids, image_bounds, audio_bounds, spk_bounds |
|
|
|
def _convert_omni_to_inputs( |
|
self, |
|
images, |
|
audio_phs, |
|
texts: Union[str, List[str]], |
|
truncation=None, |
|
max_length=None, |
|
max_slice_nums=None, |
|
use_image_id=None, |
|
return_tensors=None, |
|
**kwargs, |
|
): |
|
if images is None and audio_phs is None: |
|
model_inputs = self.tokenizer( |
|
texts, return_tensors=return_tensors, truncation=truncation, max_length=max_length, **kwargs |
|
) |
|
return MiniCPMOBatchFeature(data={**model_inputs}) |
|
|
|
image_tag = "(<image>./</image>)" |
|
image_pattern = "\(<image>./</image>\)" |
|
audio_tag = "(<audio>./</audio>)" |
|
audio_pattern = "\(<audio>./</audio>\)" |
|
split_pattern = f"({image_pattern}|{audio_pattern})" |
|
|
|
if isinstance(texts, str): |
|
texts = [texts] |
|
|
|
bs = len(texts) |
|
if images is not None: |
|
images, image_sizes, tgt_sizes = images["pixel_values"], images["image_sizes"], images["tgt_sizes"] |
|
else: |
|
images, image_sizes, tgt_sizes = [[]] * bs, [[]] * bs, [[]] * bs |
|
|
|
input_ids_list = [] |
|
image_bounds_list = [] |
|
audio_bounds_list = [] |
|
spk_bounds_list = [] |
|
|
|
for index, text in enumerate(texts): |
|
text_chunks = re.split(split_pattern, text) |
|
|
|
image_tags = re.findall(image_pattern, text) |
|
audio_tags = re.findall(audio_pattern, text) |
|
|
|
if image_tags: |
|
assert images is not None |
|
assert len(image_tags) == len(image_sizes[index]) |
|
if audio_tags: |
|
assert audio_phs is not None |
|
assert len(audio_tags) == len(audio_phs[index]) |
|
|
|
image_id = 0 |
|
audio_id = 0 |
|
for i, chunk in enumerate(text_chunks): |
|
if chunk == image_tag: |
|
image_placeholder = self.image_processor.get_slice_image_placeholder( |
|
image_sizes[index][image_id], image_id, max_slice_nums, use_image_id |
|
) |
|
image_id += 1 |
|
text_chunks[i] = image_placeholder |
|
elif chunk == audio_tag: |
|
audio_placeholder = audio_phs[index][audio_id] |
|
audio_id += 1 |
|
text_chunks[i] = audio_placeholder |
|
|
|
final_text = "".join(text_chunks) |
|
input_ids, image_bounds, audio_bounds, spk_bounds = self._convert(final_text, max_length, **kwargs) |
|
|
|
input_ids_list.append(input_ids) |
|
image_bounds_list.append(image_bounds) |
|
audio_bounds_list.append(audio_bounds) |
|
spk_bounds_list.append(spk_bounds) |
|
|
|
padded_input_ids, padding_lengths = self.pad(input_ids_list, padding_side="left") |
|
attention_mask = torch.ones_like(padded_input_ids, dtype=torch.bool) |
|
for i, length in enumerate(padding_lengths): |
|
image_bounds_list[i] = image_bounds_list[i] + length |
|
audio_bounds_list[i] = audio_bounds_list[i] + length |
|
spk_bounds_list[i] = spk_bounds_list[i] + length |
|
attention_mask[i, :length] = False |
|
|
|
data = { |
|
"input_ids": padded_input_ids, |
|
"attention_mask": attention_mask, |
|
"pixel_values": images, |
|
"image_sizes": image_sizes, |
|
"image_bound": image_bounds_list, |
|
"tgt_sizes": tgt_sizes, |
|
"audio_bounds": audio_bounds_list, |
|
"spk_bounds": spk_bounds_list, |
|
} |
|
|
|
return data |
|
|
|
@property |
|
|
|
def model_input_names(self): |
|
tokenizer_input_names = self.tokenizer.model_input_names |
|
image_processor_input_names = self.image_processor.model_input_names |
|
feature_extractor_input_names = self.feature_extractor.model_input_names |
|
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names + feature_extractor_input_names)) |
|
|
|
def pad(self, inputs, max_length=None, padding_value=0, padding_side="left"): |
|
items = [] |
|
if isinstance(inputs[0], list): |
|
assert isinstance(inputs[0][0], torch.Tensor) |
|
for it in inputs: |
|
for tr in it: |
|
items.append(tr) |
|
else: |
|
assert isinstance(inputs[0], torch.Tensor) |
|
items = inputs |
|
|
|
batch_size = len(items) |
|
shape = items[0].shape |
|
dim = len(shape) |
|
assert dim <= 2 |
|
if max_length is None: |
|
max_length = 0 |
|
max_length = max(max_length, max(item.shape[-1] for item in items)) |
|
min_length = min(item.shape[-1] for item in items) |
|
dtype = items[0].dtype |
|
|
|
if dim == 0: |
|
return torch.stack([item for item in items], dim=0), [0] |
|
elif dim == 1: |
|
if max_length == min_length: |
|
return torch.stack([item for item in items], dim=0), [0] * batch_size |
|
tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value |
|
else: |
|
tensor = torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype) + padding_value |
|
|
|
padding_length = [] |
|
for i, item in enumerate(items): |
|
if dim == 1: |
|
if padding_side == "left": |
|
tensor[i, -len(item) :] = item.clone() |
|
else: |
|
tensor[i, : len(item)] = item.clone() |
|
elif dim == 2: |
|
if padding_side == "left": |
|
tensor[i, -len(item) :, :] = item.clone() |
|
else: |
|
tensor[i, : len(item), :] = item.clone() |
|
padding_length.append(tensor.shape[-1] - len(item)) |
|
|
|
return tensor, padding_length |
|
|
|
|
|
class MelSpectrogramFeatures(torch.nn.Module): |
|
def __init__( |
|
self, |
|
sample_rate=24000, |
|
n_fft=1024, |
|
hop_length=256, |
|
n_mels=100, |
|
padding: Literal["center", "same"] = "center", |
|
): |
|
super().__init__() |
|
if padding not in ["center", "same"]: |
|
raise ValueError("Padding must be 'center' or 'same'.") |
|
self.padding = padding |
|
self.mel_spec = torchaudio.transforms.MelSpectrogram( |
|
sample_rate=sample_rate, |
|
n_fft=n_fft, |
|
hop_length=hop_length, |
|
n_mels=n_mels, |
|
center=padding == "center", |
|
power=1, |
|
) |
|
|
|
def __call__(self, audio: torch.Tensor) -> torch.Tensor: |
|
""" |
|
audio: Tensor([num_channels, num_samples]) |
|
""" |
|
return super().__call__(audio) |
|
|
|
def forward(self, audio: torch.Tensor) -> torch.Tensor: |
|
""" |
|
audio: Tensor([num_channels, num_samples]) |
|
""" |
|
mel: torch.Tensor = self.mel_spec(audio) |
|
features = torch.log(torch.clip(mel, min=1e-5)) |
|
return features |
|
|
|
|
|
class ChatTTSProcessor: |
|
def __init__(self, text_tokenizer): |
|
self.audio_processor = MelSpectrogramFeatures() |
|
self.text_tokenizer = text_tokenizer |
|
|
|
def __call__(self, text_list, audio_list): |
|
assert len(text_list) == len(audio_list) |
|
input_ids_varlen = [] |
|
for text in text_list: |
|
input_ids_ = self.text_tokenizer.encode(text, return_tensors="pt", add_special_tokens=False) |
|
input_ids_ = input_ids_.squeeze(0) |
|
input_ids_varlen.append(input_ids_) |
|
|
|
audio_features_varlen = [] |
|
for audio in audio_list: |
|
assert audio.shape.__len__() == 1 |
|
try: |
|
mel = self.audio_processor(audio) |
|
except Exception as e: |
|
raise e |
|
audio_features_varlen.append(mel) |
|
|
|
return { |
|
"tts_input_ids_varlen": input_ids_varlen, |
|
"tts_input_features_varlen": audio_features_varlen, |
|
} |
|
|