File size: 7,498 Bytes
c248f01 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
# coding=utf-8
# Copyright 2025 The OpenBMB Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import Union
from transformers import PretrainedConfig
from transformers import Qwen2Config
from transformers import WhisperConfig
from transformers.utils import logging
from .modeling_navit_siglip import SiglipVisionConfig
logger = logging.get_logger(__name__)
class MiniCPMVSliceConfig(PretrainedConfig):
model_type = "minicpmv"
def __init__(
self,
patch_size=14,
max_slice_nums=9,
scale_resolution=448,
**kwargs,
):
super().__init__(**kwargs)
self.patch_size = patch_size
self.max_slice_nums = max_slice_nums
self.scale_resolution = scale_resolution
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
if config_dict.get("model_type") == "minicpmv":
config_dict = config_dict["slice_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class ConditionalChatTTSConfig(PretrainedConfig):
model_type = "conditional_chattts"
def __init__(
self,
llm_dim: int = 2560,
hidden_size: int = 768,
intermediate_size: int = 3072,
num_attention_heads: int = 12,
num_hidden_layers: int = 20,
max_position_embeddings: int = 4096,
num_audio_tokens: int = 626,
num_text_tokens: int = 21178,
num_mel_bins: int = 100,
num_vq: int = 4,
use_speaker_embedding: bool = True,
use_llm_hidden_state: bool = False,
spk_emb_token_id: int = 21143,
num_spk_embs: int = 1,
audio_bos_token_id: int = 21132,
text_eos_token_id: int = 21133,
use_text: bool = True,
streaming: bool = True,
streaming_text_chunk_size: int = 10,
streaming_text_reserved_len: int = 300,
streaming_audio_chunk_size: int = 50,
attn_implementation: str = "sdpa",
use_mlp: bool = True,
aug_loss_weight: bool = True,
do_sample: bool = True,
top_p: float = 0.7,
top_k: int = 20,
repetition_penalty: float = 1.0,
**kwargs,
):
super().__init__(**kwargs)
self.llm_dim = llm_dim
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_attention_heads = num_attention_heads
self.num_hidden_layers = num_hidden_layers
self.max_position_embeddings = max_position_embeddings
self.num_audio_tokens = num_audio_tokens
self.num_text_tokens = num_text_tokens
self.num_mel_bins = num_mel_bins
self.num_vq = num_vq
self.use_speaker_embedding = use_speaker_embedding
self.use_llm_hidden_state = use_llm_hidden_state
self.spk_emb_token_id = spk_emb_token_id
self.num_spk_embs = num_spk_embs
self.audio_bos_token_id = audio_bos_token_id
self.text_eos_token_id = text_eos_token_id
self.use_text = use_text
self.streaming = streaming
self.streaming_text_chunk_size = streaming_text_chunk_size
self.streaming_text_reserved_len = streaming_text_reserved_len
self.streaming_audio_chunk_size = streaming_audio_chunk_size
self.attn_implementation = attn_implementation
self.use_mlp = use_mlp
self.aug_loss_weight = aug_loss_weight
self.do_sample = do_sample
self.top_p = top_p
self.top_k = top_k
self.repetition_penalty = repetition_penalty
class MiniCPMOConfig(Qwen2Config):
model_type = "minicpmo"
keys_to_ignore_at_inference = ["past_key_values"]
default_vision_config = {
"hidden_size": 1152,
"image_size": 980,
"intermediate_size": 4304,
"model_type": "siglip",
"num_attention_heads": 16,
"num_hidden_layers": 27,
"patch_size": 14,
}
def __init__(
self,
use_cache=True,
query_num=64,
image_size=448,
drop_vision_last_layer=True,
batch_vision_input=True,
slice_config=None,
vision_config=None,
audio_config=None,
tts_config=None,
use_image_id=True,
vision_batch_size=16,
audio_pool_step=2,
audio_chunk_length=1.0,
stream_input=False,
init_vision=True,
init_audio=True,
init_tts=True,
**kwargs,
):
self.use_cache = use_cache
self.query_num = query_num
self.image_size = image_size
self.drop_vision_last_layer = drop_vision_last_layer
self.batch_vision_input = batch_vision_input
self.use_image_id = use_image_id
self.vision_batch_size = vision_batch_size
self.audio_pool_step = audio_pool_step
self.audio_chunk_length = audio_chunk_length
self.stream_input = stream_input
self.init_vision = init_vision
self.init_audio = init_audio
self.init_tts = init_tts
if slice_config is None:
self.slice_config = MiniCPMVSliceConfig(max_slice_nums=1)
else:
self.slice_config = MiniCPMVSliceConfig(**slice_config)
self.slice_mode = True
# same as HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit add tgt_sizes
if vision_config is None:
self.vision_config = SiglipVisionConfig(**self.default_vision_config)
logger.info("vision_config is None, using default vision config")
elif isinstance(vision_config, dict):
self.vision_config = SiglipVisionConfig(**vision_config)
elif isinstance(vision_config, SiglipVisionConfig):
self.vision_config = vision_config
if audio_config is None:
self.audio_config = WhisperConfig()
elif isinstance(audio_config, dict):
self.audio_config = WhisperConfig(**audio_config)
elif isinstance(audio_config, WhisperConfig):
self.audio_config = audio_config
if tts_config is None:
self.tts_config = ConditionalChatTTSConfig()
elif isinstance(tts_config, dict):
self.tts_config = ConditionalChatTTSConfig(**tts_config)
elif isinstance(tts_config, ConditionalChatTTSConfig):
self.tts_config = tts_config
self.patch_size = self.vision_config.patch_size
super().__init__(**kwargs)
|