File size: 139,561 Bytes
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0893f10
c248f01
 
 
 
 
0893f10
 
 
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
394a7aa
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
909a86b
 
c248f01
 
 
909a86b
c248f01
 
 
 
 
 
 
 
 
 
 
909a86b
c248f01
 
 
 
909a86b
c248f01
909a86b
c248f01
909a86b
c248f01
 
0893f10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0893f10
 
 
 
 
 
 
c248f01
0893f10
 
 
 
 
 
c248f01
0893f10
c248f01
0893f10
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
909a86b
c248f01
 
 
 
 
0893f10
 
 
 
 
c248f01
 
 
 
 
0893f10
 
 
 
 
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0893f10
 
 
 
 
 
 
 
 
9808eca
 
 
0893f10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c248f01
 
 
 
 
909a86b
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0893f10
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0893f10
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0893f10
c248f01
 
 
0893f10
 
c248f01
 
 
 
 
 
 
 
 
 
 
 
0893f10
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0893f10
c248f01
 
 
 
 
 
0893f10
 
 
 
 
c248f01
 
 
 
 
 
 
 
 
 
 
0893f10
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0893f10
c248f01
 
0893f10
c248f01
 
 
 
 
0893f10
c248f01
 
 
0893f10
c248f01
0893f10
c248f01
0893f10
c248f01
 
0893f10
c248f01
 
 
 
 
 
 
0893f10
 
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0893f10
c248f01
 
 
 
 
 
 
 
 
0893f10
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0893f10
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0893f10
 
 
 
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0893f10
 
c248f01
 
 
 
 
 
 
 
 
 
0893f10
 
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0893f10
c248f01
 
 
 
 
 
 
 
 
 
0893f10
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
0893f10
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0893f10
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0893f10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0893f10
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0893f10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0893f10
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0893f10
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0893f10
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0893f10
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0893f10
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0893f10
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0893f10
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0893f10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c248f01
909a86b
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0893f10
c248f01
 
 
 
0893f10
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0893f10
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
0893f10
 
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0893f10
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0893f10
 
 
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0893f10
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0893f10
c248f01
 
0893f10
c248f01
0893f10
c248f01
 
 
 
 
 
 
 
 
 
 
0893f10
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0893f10
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0893f10
 
c248f01
 
 
0893f10
 
 
 
c248f01
0893f10
c248f01
 
 
 
0893f10
c248f01
 
 
 
 
 
 
 
 
0893f10
 
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0893f10
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0893f10
 
 
 
 
 
 
 
 
 
 
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0893f10
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
# coding=utf-8
# Copyright 2025 The OpenBMB Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import logging
import math
import os
import types
from collections.abc import Iterator
from copy import deepcopy
from dataclasses import dataclass
from threading import Thread
from typing import List
from typing import Literal
from typing import Optional
from typing import Tuple
from typing import Union

import numpy as np
import soundfile as sf
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.utils.parametrize as P
from huggingface_hub import hf_hub_download
from PIL import Image
from torch.nn.utils.parametrizations import weight_norm
from tqdm import tqdm
from transformers import AutoProcessor
from transformers import BertTokenizerFast
from transformers import LlamaConfig
from transformers import LlamaModel
from transformers import LogitsWarper
from transformers import PreTrainedModel
from transformers import Qwen2ForCausalLM
from transformers import Qwen2PreTrainedModel
from transformers import TextIteratorStreamer
from transformers import TopKLogitsWarper
from transformers import TopPLogitsWarper
from transformers.cache_utils import Cache
from transformers.cache_utils import DynamicCache
from transformers.cache_utils import EncoderDecoderCache
from transformers.cache_utils import StaticCache
from transformers.modeling_outputs import BaseModelOutputWithPast
from transformers.modeling_outputs import ModelOutput
from transformers.models.whisper.modeling_whisper import ACT2FN
from transformers.models.whisper.modeling_whisper import WHISPER_ATTENTION_CLASSES
from transformers.models.whisper.modeling_whisper import WhisperConfig
from transformers.models.whisper.modeling_whisper import WhisperEncoder

try:
    from vector_quantize_pytorch import GroupedResidualFSQ
    from vocos import Vocos
    from vocos.pretrained import instantiate_class

    _tts_deps = True
except:
    _tts_deps = False

from .configuration_minicpm import ConditionalChatTTSConfig
from .configuration_minicpm import MiniCPMOConfig
from .modeling_navit_siglip import SiglipVisionTransformer
from .resampler import Resampler
from .utils import NumberToTextConverter
from .utils import sentence_end
from .utils import VoiceChecker

logger = logging.getLogger(__name__)


@dataclass
class OmniOutput(ModelOutput):
    text: Optional[Union[str, List[str], Iterator]] = None
    spk_embeds: Optional[torch.FloatTensor] = None
    audio_wav: Optional[np.ndarray] = None
    sampling_rate: Optional[int] = None


class MiniCPMOPreTrainedModel(Qwen2PreTrainedModel):
    config_class = MiniCPMOConfig


class MiniCPMO(MiniCPMOPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.llm = Qwen2ForCausalLM(config)
        self.llm.prepare_inputs_for_generation = types.MethodType(prepare_inputs_for_generation, self.llm)  # patch llm

        self.embed_dim = self.llm.config.hidden_size

        # init vision module
        if self.config.init_vision:
            self.vpm = self.init_vision_module()
            self.vision_dim = self.vpm.embed_dim
            self.resampler = self.init_resampler(self.embed_dim, self.vision_dim)

        # init audio module
        if self.config.init_audio:
            self.apm = self.init_audio_module()
            audio_output_dim = int(self.apm.config.encoder_ffn_dim // 4)
            self.audio_avg_pooler = nn.AvgPool1d(self.config.audio_pool_step, stride=self.config.audio_pool_step)
            self.audio_projection_layer = MultiModalProjector(in_dim=audio_output_dim, out_dim=self.embed_dim)
            self.audio_encoder_layer = -1

        # init tts module
        if self.config.init_tts:
            assert _tts_deps, "please make sure vector_quantize_pytorch and vocos are installed."
            self.tts = self.init_tts_module()

        self.processor = AutoProcessor.from_pretrained(self.config._name_or_path, trust_remote_code=True)

        self.terminators = ["<|im_end|>", "<|endoftext|>"]

        self.default_tts_chat_template = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n<|spk_bos|><|spk|><|spk_eos|><|tts_bos|>' }}{% endif %}"
        self.force_no_stop = False

        # for stream api
        self.reset_session()

    def reset_session(self):
        self.session_id = None
        self.new_user_msg = True
        self.llm_generated = False
        self.llm_generate_completed = False
        self.llm_past_key_values = None
        self.audio_past_key_values = None  # apm kv cache

    def init_tts(
        self,
        tts_text_tokenizer_path=None,
        vocos_ckpt_path=None,
    ):
        """
        load tts tokenizer and vocos
        1. try load form local 2. try load from huggingface
        """
        from .processing_minicpmo import ChatTTSProcessor

        if tts_text_tokenizer_path is None:
            tts_text_tokenizer_path = os.path.join(self.config._name_or_path, "assets/chattts_tokenizer")
        if not os.path.exists(tts_text_tokenizer_path):
            # try from hf model_id
            tts_text_tokenizer_path = "openbmb/chattts_tokenizer"

        tts_text_tokenizer = BertTokenizerFast.from_pretrained(tts_text_tokenizer_path)
        self.tts_processor = ChatTTSProcessor(text_tokenizer=tts_text_tokenizer)

        if vocos_ckpt_path is None:
            vocos_ckpt_path = os.path.join(self.config._name_or_path, "assets/Vocos.pt")
        if not os.path.exists(vocos_ckpt_path):
            vocos_ckpt_path = hf_hub_download(repo_id="openbmb/MiniCPM-o-2_6", subfolder="assets", filename="Vocos.pt")

        assert os.path.exists(vocos_ckpt_path)
        self.vocos = self.initialize_vocos(vocos_ckpt_path)

    def initialize_vocos(self, ckpt_path):
        feature_extractor = instantiate_class(
            args=(),
            init={
                "class_path": "vocos.feature_extractors.MelSpectrogramFeatures",
                "init_args": {"sample_rate": 24000, "n_fft": 1024, "hop_length": 256, "n_mels": 100},
            },
        )
        backbone = instantiate_class(
            args=(),
            init={
                "class_path": "vocos.models.VocosBackbone",
                "init_args": {"input_channels": 100, "dim": 512, "intermediate_dim": 1536, "num_layers": 8},
            },
        )
        head = instantiate_class(
            args=(),
            init={"class_path": "vocos.heads.ISTFTHead", "init_args": {"dim": 512, "n_fft": 1024, "hop_length": 256}},
        )
        vocos = Vocos(feature_extractor, backbone, head).to("cuda").eval().to(torch.float32)
        vocos.load_state_dict(torch.load(ckpt_path, weights_only=True, mmap=True))
        return vocos

    def init_vision_module(self):
        if self.config._attn_implementation == "flash_attention_2":
            self.config.vision_config._attn_implementation = "flash_attention_2"
        else:
            self.config.vision_config._attn_implementation = "eager"
        model = SiglipVisionTransformer(self.config.vision_config)
        if self.config.drop_vision_last_layer:
            model.encoder.layers = model.encoder.layers[:-1]

        setattr(model, "embed_dim", model.embeddings.embed_dim)
        setattr(model, "patch_size", model.embeddings.patch_size)

        return model

    def init_resampler(self, embed_dim, vision_dim):
        return Resampler(
            num_queries=self.config.query_num,
            embed_dim=embed_dim,
            num_heads=embed_dim // 128,
            kv_dim=vision_dim,
            adaptive=True,
        )

    def init_audio_module(self):
        model = MiniCPMWhisperEncoder(self.config.audio_config)
        return model

    def init_tts_module(self):
        model = ConditionalChatTTS(self.config.tts_config)
        return model

    def get_input_embeddings(self):
        return self.llm.get_input_embeddings()

    def set_input_embeddings(self, value):
        self.llm.embed_tokens = value

    def get_output_embeddings(self):
        return self.llm.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.llm.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.llm = decoder

    def get_decoder(self):
        return self.llm

    def subsequent_chunk_mask(
        self,
        size: int,
        chunk_size: int,
        num_left_chunks: int = -1,
        device: torch.device = torch.device("cpu"),
        num_lookhead: int = 0,
    ) -> torch.Tensor:
        """Create mask for subsequent steps (size, size) with chunk size,
        this is for streaming encoder

        Args:
            size (int): size of mask
            chunk_size (int): size of chunk
            num_left_chunks (int): number of left chunks
                <0: use full chunk
                >=0: use num_left_chunks
            device (torch.device): "cpu" or "cuda" or torch.Tensor.device

        Returns:
            torch.Tensor: mask

        Examples:
            >>> subsequent_chunk_mask(4, 2)
            [[1, 1, 0, 0],
            [1, 1, 0, 0],
            [1, 1, 1, 1],
            [1, 1, 1, 1]]
        """
        ret = torch.zeros(size, size, device=device, dtype=torch.bool)
        for i in range(size):
            if num_left_chunks < 0:
                start = 0
            else:
                start = max((i // chunk_size - num_left_chunks) * chunk_size, 0)
            ending = min((i // chunk_size + 1) * chunk_size + num_lookhead, size)
            ret[i, start:ending] = True
        return ret

    def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor):
        """
        Computes the output length of the convolutional layers and the output length of the audio encoder
        """
        input_lengths_after_cnn = (input_lengths - 1) // 2 + 1
        input_lengths_after_pooling = (
            input_lengths_after_cnn - self.config.audio_pool_step
        ) // self.config.audio_pool_step + 1
        input_lengths_after_pooling = input_lengths_after_pooling.to(dtype=torch.int32)

        return input_lengths_after_cnn, input_lengths_after_pooling

    def get_vllm_embedding(self, data):
        """
        Compute all visual embeddings, and set into llm embeddings.
        Args:
            data: Dict
                tgt_sizes: image size after patch embedding
                pixel_values: image features
                image_bound: position of each picture corresponding to input_ids
                input_ids: full input_ids, include placeholder
        Returns:
                embedding with vision, vision_hidden_states
        """
        if "vision_hidden_states" not in data:
            dtype = self.llm.model.embed_tokens.weight.dtype
            device = self.llm.model.embed_tokens.weight.device
            tgt_sizes = data["tgt_sizes"]
            pixel_values_list = data["pixel_values"]
            vision_hidden_states = []
            all_pixel_values = []
            img_cnt = []
            for pixel_values in pixel_values_list:
                img_cnt.append(len(pixel_values))
                all_pixel_values.extend([i.flatten(end_dim=1).permute(1, 0) for i in pixel_values])

            # exist image
            if all_pixel_values:
                tgt_sizes = [tgt_size for tgt_size in tgt_sizes if isinstance(tgt_size, torch.Tensor)]
                tgt_sizes = torch.vstack(tgt_sizes).type(torch.int32)

                max_patches = torch.max(tgt_sizes[:, 0] * tgt_sizes[:, 1])

                all_pixel_values = torch.nn.utils.rnn.pad_sequence(
                    all_pixel_values, batch_first=True, padding_value=0.0
                )
                B, L, _ = all_pixel_values.shape
                all_pixel_values = all_pixel_values.permute(0, 2, 1).reshape(B, 3, -1, L)

                patch_attn_mask = torch.zeros((B, 1, max_patches), dtype=torch.bool, device=device)
                for i in range(B):
                    patch_attn_mask[i, 0, : tgt_sizes[i][0] * tgt_sizes[i][1]] = True

                vision_batch_size = self.config.vision_batch_size
                all_pixel_values = all_pixel_values.type(dtype)
                if B > vision_batch_size:
                    hs = []
                    for i in range(0, B, vision_batch_size):
                        start_idx = i
                        end_idx = i + vision_batch_size
                        tmp_hs = self.vpm(
                            all_pixel_values[start_idx:end_idx],
                            patch_attention_mask=patch_attn_mask[start_idx:end_idx],
                            tgt_sizes=tgt_sizes[start_idx:end_idx],
                        ).last_hidden_state
                        hs.append(tmp_hs)
                    vision_embedding = torch.cat(hs, dim=0)
                else:
                    vision_embedding = self.vpm(
                        all_pixel_values, patch_attention_mask=patch_attn_mask, tgt_sizes=tgt_sizes
                    ).last_hidden_state
                vision_embedding = self.resampler(vision_embedding, tgt_sizes)

                start = 0
                for pixel_values in pixel_values_list:
                    img_cnt = len(pixel_values)
                    if img_cnt > 0:
                        vision_hidden_states.append(vision_embedding[start : start + img_cnt])
                        start += img_cnt
                    else:
                        vision_hidden_states.append([])
            else:  # no image
                if self.training:
                    dummy_image = torch.zeros((1, 3, 224, 224), device=device, dtype=dtype)
                    tgt_sizes = torch.Tensor(
                        [[(224 // self.config.patch_size), math.ceil(224 / self.config.patch_size)]]
                    ).type(torch.int32)
                    dummy_feature = self.resampler(self.vpm(dummy_image).last_hidden_state, tgt_sizes)
                else:
                    dummy_feature = []
                for _ in range(len(pixel_values_list)):
                    vision_hidden_states.append(dummy_feature)

        else:
            vision_hidden_states = data["vision_hidden_states"]

        if hasattr(self.llm.config, "scale_emb"):
            vllm_embedding = self.llm.model.embed_tokens(data["input_ids"]) * self.llm.config.scale_emb
        else:
            vllm_embedding = self.llm.model.embed_tokens(data["input_ids"])

        new_vllm_embedding = vllm_embedding.clone()
        
        vision_hidden_states = [
            i.type(vllm_embedding.dtype) if isinstance(i, torch.Tensor) else i for i in vision_hidden_states
        ]
        
        bs = len(data["input_ids"])
        for i in range(bs):
            cur_vs_hs = vision_hidden_states[i]
            if len(cur_vs_hs) > 0:
                cur_vllm_emb = vllm_embedding[i]
                cur_image_bound = data["image_bound"][i]
                if len(cur_image_bound) > 0:
                    image_indices = torch.stack(
                        [torch.arange(r[0], r[1], dtype=torch.long) for r in cur_image_bound]
                    ).to(vllm_embedding.device)

                    new_vllm_embedding[i] = cur_vllm_emb.scatter(
                        0,
                        image_indices.view(-1, 1).repeat(1, cur_vllm_emb.shape[-1]),
                        cur_vs_hs.view(-1, cur_vs_hs.shape[-1]),
                    )

                elif self.training:
                    new_vllm_embedding[i] += cur_vs_hs[0].mean() * 0

        return new_vllm_embedding, vision_hidden_states

    def get_audio_embedding_streaming(self, data):
        r"""
        Extract audio embeddings in a streaming manner using cached key-value pairs.

        This method processes incoming audio features incrementally and stores/updates `past_key_values`
        for faster inference on subsequent audio frames. It only supports batch_size=1 and is intended
        for streaming scenarios.

        Args:
            data (dict):
                - **"audio_features"** (`torch.FloatTensor`): Input mel-spectrograms of shape `(batch_size, 80, frames)`.
                - **"audio_feature_lens"** (List[List[int]]): Lengths of each audio segment for each item in the batch.

        Returns:
            List[List[torch.Tensor]]: audio embeddings
        """
        wavforms = data.get("audio_features", [])  # (bs, 80, frames) or [], multi audios need filled in advance
        audio_feature_lens_raw = data.get("audio_feature_lens", [])  # list, [[x1, x2], [y1], [z1]]

        # exist audio
        if len(wavforms) > 0:
            audio_feature_lens = torch.hstack(audio_feature_lens_raw)
            batch_size, _, max_mel_seq_len = wavforms.shape
            assert batch_size == 1
            max_seq_len = (max_mel_seq_len - 1) // 2 + 1

            if self.audio_past_key_values is not None:
                cache_length = self.audio_past_key_values[0][0].shape[2]
                apm_max_len = self.apm.embed_positions.weight.shape[0]
                if cache_length + max_seq_len >= apm_max_len:
                    logger.warning(
                        f"audio_past_key_values length {cache_length + max_seq_len} exceed {apm_max_len}, reset."
                    )
                    self.audio_past_key_values = None

            audio_outputs = self.apm(wavforms, past_key_values=self.audio_past_key_values, use_cache=True)
            audio_states = audio_outputs.last_hidden_state  # [:, :audio_feat_lengths, :]
            self.audio_past_key_values = audio_outputs.past_key_values

            audio_embeds = self.audio_projection_layer(audio_states)

            audio_embeds = audio_embeds.transpose(1, 2)
            audio_embeds = self.audio_avg_pooler(audio_embeds)
            audio_embeds = audio_embeds.transpose(1, 2)

            _, feature_lens_after_pooling = self._get_feat_extract_output_lengths(audio_feature_lens)

            num_audio_tokens = feature_lens_after_pooling

            final_audio_embeds = []
            idx = 0
            for i in range(len(audio_feature_lens_raw)):
                target_audio_embeds = []
                for _ in range(len(audio_feature_lens_raw[i])):
                    target_audio_embeds.append(audio_embeds[idx, : num_audio_tokens[idx], :])
                    idx += 1
                final_audio_embeds.append(target_audio_embeds)
            return final_audio_embeds
        else:
            return []

    def get_audio_embedding(self, data, chunk_length=-1):
        r"""
        Extract full audio embeddings with optional chunk-based attention.

        This method computes embeddings for all audio frames at once, either using full attention (when
        `chunk_length` is -1) or chunk-based attention (when `chunk_length` is a positive number). It does
        not use key-value caching and is suitable for non-streaming inference.

        Args:
            data (dict):
                - **"audio_features"** (`torch.FloatTensor`): Input mel-spectrograms of shape `(batch_size, 80, frames)`.
                - **"audio_feature_lens"** (List[List[int]]): Lengths of each audio segment for each item in the batch.
            chunk_length (int, optional): Determines whether to use full attention (-1) or chunk-based
                attention (>0) during embedding computation.

        Returns:
            List[List[torch.Tensor]]: audio embeddings
        """

        wavforms = data.get("audio_features", [])  # (bs, 80, frames) or [], multi audios need filled in advance
        audio_feature_lens_raw = data.get("audio_feature_lens", [])  # list, [[x1, x2], [y1], [z1]]

        # exist audio
        if len(wavforms) > 0:
            audio_feature_lens = torch.hstack(audio_feature_lens_raw)
            batch_size, _, max_mel_seq_len = wavforms.shape
            max_seq_len = (max_mel_seq_len - 1) // 2 + 1

            # Create a sequence tensor of shape (batch_size, max_seq_len)
            seq_range = (
                torch.arange(0, max_seq_len, dtype=audio_feature_lens.dtype, device=audio_feature_lens.device)
                .unsqueeze(0)
                .expand(batch_size, max_seq_len)
            )
            lengths_expand = audio_feature_lens.unsqueeze(1).expand(batch_size, max_seq_len)
            # Create mask
            padding_mask = seq_range >= lengths_expand  # 1 for padded values

            audio_attention_mask_ = padding_mask.view(batch_size, 1, 1, max_seq_len).expand(
                batch_size, 1, max_seq_len, max_seq_len
            )
            audio_attention_mask = audio_attention_mask_.to(
                dtype=self.apm.conv1.weight.dtype, device=self.apm.conv1.weight.device
            )

            if chunk_length > 0:
                chunk_num_frame = int(chunk_length * 50)
                chunk_mask = self.subsequent_chunk_mask(
                    size=max_seq_len,
                    chunk_size=chunk_num_frame,
                    num_left_chunks=-1,
                    device=audio_attention_mask_.device,
                )
                audio_attention_mask_ = torch.logical_or(audio_attention_mask_, torch.logical_not(chunk_mask))

            audio_attention_mask[audio_attention_mask_] = float("-inf")
            audio_states = self.apm(
                wavforms, output_hidden_states=True, attention_mask=audio_attention_mask
            ).hidden_states[self.audio_encoder_layer]
            audio_embeds = self.audio_projection_layer(audio_states)

            audio_embeds = audio_embeds.transpose(1, 2)
            audio_embeds = self.audio_avg_pooler(audio_embeds)
            audio_embeds = audio_embeds.transpose(1, 2)

            _, feature_lens_after_pooling = self._get_feat_extract_output_lengths(audio_feature_lens)

            num_audio_tokens = feature_lens_after_pooling

            final_audio_embeds = []
            idx = 0
            for i in range(len(audio_feature_lens_raw)):
                target_audio_embeds = []
                for _ in range(len(audio_feature_lens_raw[i])):
                    target_audio_embeds.append(audio_embeds[idx, : num_audio_tokens[idx], :])
                    idx += 1
                final_audio_embeds.append(target_audio_embeds)
            return final_audio_embeds
        else:
            return []

    def get_omni_embedding(self, data, input_embeddings, chunk_length=-1, stream_input=False):
        """
        Args:
            data:
            input_embeddings:
            chunk_length: whisper use full attention or chunk attention
            stream_input: use streaming audio embedding
        Returns:
            final embeddings with audio feature
        """
        if stream_input:
            audio_embeddings = self.get_audio_embedding_streaming(data)
        else:
            audio_embeddings = self.get_audio_embedding(data, chunk_length)

        bs = len(input_embeddings)
        if len(data.get("audio_features", [])) > 0:
            assert len(audio_embeddings) == len(input_embeddings)
            if len(audio_embeddings) > 0:
                audio_bounds = data["audio_bounds"]

                if self.config.chunk_input:
                    for i in range(bs):
                        audio_embs = torch.cat(audio_embeddings[i], dim=0).to(
                            device=input_embeddings.device, dtype=input_embeddings.dtype
                        )
                        audio_start_pos = 0
                        for bound in audio_bounds[i]:
                            audio_len = bound[1] - bound[0]
                            input_embeddings[0, bound[0] : bound[1]] = audio_embs[
                                audio_start_pos : audio_start_pos + audio_len, :
                            ]
                            audio_start_pos += audio_len
                else:
                    for i in range(bs):
                        audio_embs = audio_embeddings[i]
                        bounds = audio_bounds[i]
                        for embs, bound in zip(audio_embs, bounds):
                            audio_indices = torch.arange(bound[0], bound[1], dtype=torch.long).to(
                                input_embeddings.device
                            )

                            if embs.shape[0] != len(audio_indices):
                                raise ValueError(
                                    f"Shape mismatch: Trying to assign embeddings of shape {embs.shape} "
                                    f"to input indices of length {len(audio_indices)}"
                                )
                            input_embeddings[i, audio_indices] = embs.to(input_embeddings.dtype)
        elif self.training:
            for i in range(bs):
                # dummy audio_embeddings
                input_embeddings = input_embeddings + audio_embeddings[0].mean() * 0

        return input_embeddings

    def forward(self, data, **kwargs):
        vllm_embedding, vision_hidden_states = self.get_vllm_embedding(data)

        if self.config.init_audio:
            vllm_embedding = self.get_omni_embedding(
                data, input_embeddings=vllm_embedding, chunk_length=self.config.audio_chunk_length
            )

        position_ids = data["position_ids"]
        if position_ids.dtype != torch.int64:
            position_ids = position_ids.long()

        # compatible with llama factory
        for key in ["input_ids", "inputs_embeds", "position_ids"]:
            if key in kwargs:
                del kwargs[key]

        return self.llm(input_ids=None, position_ids=position_ids, inputs_embeds=vllm_embedding, **kwargs)

    def _decode(self, inputs_embeds, tokenizer, attention_mask, **kwargs):
        terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
        outputs = self.llm.generate(
            inputs_embeds=inputs_embeds,
            pad_token_id=0,
            eos_token_id=terminators,
            attention_mask=attention_mask,
            output_hidden_states=True,
            return_dict_in_generate=True,
            **kwargs,
        )
        return outputs

    def _decode_stream(self, inputs_embeds, tokenizer, **kwargs):
        terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
        streamer = TextIteratorStreamer(tokenizer=tokenizer)
        generation_kwargs = {
            "inputs_embeds": inputs_embeds,
            "pad_token_id": 0,
            "eos_token_id": terminators,
            "streamer": streamer,
        }
        generation_kwargs.update(kwargs)

        thread = Thread(target=self.llm.generate, kwargs=generation_kwargs)
        thread.start()

        return streamer

    def _decode_text(self, result_ids, tokenizer):
        terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
        result_text = []
        for result in result_ids:
            result = result[result != 0]
            if result[0] == tokenizer.bos_id:
                result = result[1:]
            if result[-1] in terminators:
                result = result[:-1]
            result_text.append(tokenizer.decode(result))
        return result_text

    def get_sys_prompt(self, ref_audio=None, mode="default", language="zh"):
        """
        Choose different system prompts according to different tasks
        Args:
            ref_audio: if ref_audio is not None, will use the voice cloning prompts, and the voice
                       generated by the model will refer to the timbre of ref audio
            mode:
                "default": default system prompt and not refer to any task
                "omni": input video and audio simultaneously
                "audio_assistant": Default voice-only mode, the model will use the ref_audio's voice to reply user's question as a helpful assistant.
                "audio_roleplay": Roleplay voice-only mode, the model will use the ref_audio's voice to reply, and also role-play the character based on the audio prompt.
                "voice_cloning": TTS mode, the model will clone the voice of ref_audio.
            language: prompts language, the model has the ability to automatically select the response language
                    based on the question language
        Returns:

        """
        if ref_audio is not None:
            assert isinstance(ref_audio, np.ndarray), "ref_audio error"
        if mode == "omni":
            if language == "zh":
                sys_prompt = "你是一个AI助手。你能接受视频,音频和文本输入并输出语音和文本。"
                vc_prompt_prefix = sys_prompt + "模仿输入音频中的声音特征。"
                vc_prompt_suffix = "作为助手,你将使用这种声音风格说话。"
            else:
                sys_prompt = "You are a helpful assistant. You can accept video, audio and text input and output voice and text. "
                vc_prompt_prefix = sys_prompt + "Clone the voice in the provided audio prompt."
                vc_prompt_suffix = "As an assistant, you will speak using this voice style."

            if ref_audio is not None:
                sys_msgs = {"role": "user", "content": [vc_prompt_prefix, ref_audio, vc_prompt_suffix]}

            else:
                sys_msgs = {"role": "user", "content": [sys_prompt]}

            return sys_msgs
        elif mode == "audio_assistant":
            if language == "zh":
                vc_prompt_prefix = "模仿输入音频中的声音特征。"
                vc_prompt_suffix = "作为助手,你将使用这种声音风格说话。"
            else:
                vc_prompt_prefix = "Clone the voice in the provided audio prompt."
                vc_prompt_suffix = "As an assistant, you will speak using this voice style."

            if ref_audio is not None:
                sys_msgs = {"role": "user", "content": [vc_prompt_prefix, ref_audio, vc_prompt_suffix]}

            else:
                logger.warning(
                    "Warning: ref_audio is None, speech generation will be performed based on the default voice."
                )
                sys_msgs = {"role": "user", "content": ["Use the <reserved_53> voice.", vc_prompt_suffix]}

            return sys_msgs
        elif mode == "audio_roleplay":
            if language == "zh":
                vc_prompt_prefix = "模仿输入音频中的声音特征。"
                vc_prompt_suffix = "假装你是上述音频中的人物,与我进行对话。"
            else:
                vc_prompt_prefix = "Clone the voice in the provided audio prompt."
                vc_prompt_suffix = "Try to role-play the character based on the audio prompt above."

            if ref_audio is not None:
                sys_msgs = {"role": "user", "content": [vc_prompt_prefix, ref_audio, vc_prompt_suffix]}
            else:
                print("Warning: ref_audio is None, speech generation will be performed based on the default voice.")
                sys_msgs = {"role": "user", "content": ["Use the <reserved_53> voice.", vc_prompt_suffix]}

            return sys_msgs
        elif mode == "voice_cloning":
            if language == "zh":
                vc_prompt_prefix = "模仿输入音频中的声音特征。"
            else:
                vc_prompt_prefix = "Clone the voice in the provided audio prompt."

            if ref_audio is not None:
                sys_msgs = {"role": "user", "content": [vc_prompt_prefix, ref_audio]}
            else:
                raise ValueError("ref_audio con't be None in voice_cloning mode.")

            return sys_msgs
        else:
            sys_prompt = "You are a helpful assistant. You can accept audio and text input and output voice and text."
            sys_msgs = {"role": "user", "content": [sys_prompt]}

            return sys_msgs

    def generate(
        self,
        input_ids=None,
        pixel_values=None,
        tgt_sizes=None,
        audio_features=[],
        audio_feature_lens=None,
        image_bound=None,
        audio_bounds=None,
        spk_bounds=None,
        attention_mask=None,
        tokenizer=None,
        vision_hidden_states=None,
        stream=False,
        **kwargs,
    ):
        assert input_ids is not None
        assert len(input_ids) == len(pixel_values)

        model_inputs = {
            "input_ids": input_ids,
            "audio_features": audio_features,
            "audio_feature_lens": audio_feature_lens,
            "image_bound": image_bound,
            "audio_bounds": audio_bounds,
            "spk_bounds": spk_bounds,
        }

        if vision_hidden_states is None:
            model_inputs["pixel_values"] = pixel_values
            model_inputs["tgt_sizes"] = tgt_sizes
        else:
            model_inputs["vision_hidden_states"] = vision_hidden_states

        model_output = {}
        with torch.inference_mode():
            model_inputs["inputs_embeds"], vision_hidden_states = self.get_vllm_embedding(model_inputs)
            model_inputs["inputs_embeds"] = self.get_omni_embedding(
                model_inputs,
                input_embeddings=model_inputs["inputs_embeds"],
                chunk_length=self.config.audio_chunk_length,
            )

            if stream:
                result = self._decode_stream(model_inputs["inputs_embeds"], tokenizer, **kwargs)
                # if stream return TextIteratorStreamer and output is empty
                outputs = {}
            else:
                outputs = self._decode(model_inputs["inputs_embeds"], tokenizer, attention_mask, **kwargs)

                result = self._decode_text(outputs.sequences, tokenizer)

        return result, outputs

    def chat(
        self,
        image=None,
        msgs=None,
        tokenizer=None,
        processor=None,
        vision_hidden_states=None,
        max_new_tokens=2048,
        min_new_tokens=0,
        sampling=True,
        max_inp_length=32768,
        stream=False,
        chunk_input=True,
        omni_input=False,
        max_slice_nums=None,
        use_image_id=None,
        use_tts_template=False,
        generate_audio=False,
        return_spk_embed=False,
        return_dict=False,
        output_audio_path=None,
        **kwargs,
    ):
        """
        Unified chat function

        Args:
            image: use for batch_size=1 vqa, It is not recommended to continue to use this parameter
            msgs: the input chat msgs, support text: (string)  / image: (PIL.Image) / audio (numpy.ndarray)
            tokenizer: tokenizer for llm
            processor: if None, use the default processor
            max_new_tokens: the maximum length of the generation
            min_new_tokens: the minimum length of the generation
            sampling: whether to use sampling decoding or beam search decoding
            max_inp_length: the maximum length of input
            stream: whether to return generator, only used when tts is not required
            chunk_input: whether to split audio into 1s chunks
            omni_input: determine whether it is omni mode
            max_slice_nums: control the maximum number of image slices
            use_image_id: for video understanding or omni understanding, use_image_id should be False
            use_tts_template: if the msgs contain audio, use_tts_template should be True
            generate_audio: whether to generate audio output, only used when return_dict=True
            return_spk_embed: whether to return spk embedding, only used when return_dict=True
            return_dict: whether to return dict
            output_audio_path: audio save path when generate_audio
            **kwargs:
        """
        if isinstance(msgs[0], list):
            batched = True
        else:
            batched = False

        if generate_audio or return_spk_embed:
            return_dict = True

        msgs_list = msgs
        images_list = image

        if batched is False:
            images_list, msgs_list = [images_list], [msgs_list]
        else:
            assert images_list is None, "Please integrate image to msgs when using batch inference."
            images_list = [None] * len(msgs_list)
        assert len(images_list) == len(msgs_list), "The batch dim of images_list and msgs_list should be the same."

        if processor is None:
            if self.processor is None:
                self.processor = AutoProcessor.from_pretrained(self.config._name_or_path, trust_remote_code=True)
            processor = self.processor

        assert (
            self.config.query_num == processor.image_processor.image_feature_size
        ), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
        assert (
            self.config.patch_size == processor.image_processor.patch_size
        ), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
        assert (
            self.config.use_image_id == processor.image_processor.use_image_id
        ), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
        assert (
            self.config.slice_config.max_slice_nums == processor.image_processor.max_slice_nums
        ), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
        assert (
            self.config.slice_mode == processor.image_processor.slice_mode
        ), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."

        prompts_lists = []
        input_images_list = []
        input_audios_list = []
        audio_parts_list = []

        for image, msgs in zip(images_list, msgs_list):
            if isinstance(msgs, str):
                msgs = json.loads(msgs)
            copy_msgs = deepcopy(msgs)

            assert len(msgs) > 0, "msgs is empty"
            assert sampling or not stream, "if use stream mode, make sure sampling=True"

            if image is not None and isinstance(copy_msgs[0]["content"], str):
                copy_msgs[0]["content"] = [image, copy_msgs[0]["content"]]

            images = []
            audios = []
            audio_parts = []
            for i, msg in enumerate(copy_msgs):
                role = msg["role"]
                content = msg["content"]
                assert role in ["system", "user", "assistant"]
                if i == 0:
                    assert role in ["user", "system"], "The role of first msg should be user"
                if isinstance(content, str):
                    content = [content]
                cur_msgs = []
                for c in content:
                    if isinstance(c, Image.Image):
                        images.append(c)
                        cur_msgs.append("(<image>./</image>)")
                    elif isinstance(c, np.ndarray):  # audio
                        audios.append(c)
                        audio_parts.append(i)
                        cur_msgs.append("(<audio>./</audio>)")
                        use_tts_template = True
                    elif isinstance(c, str):
                        cur_msgs.append(c)
                if omni_input:
                    msg["content"] = "".join(cur_msgs)
                else:
                    msg["content"] = "\n".join(cur_msgs)

            prompts_lists.append(
                processor.tokenizer.apply_chat_template(
                    copy_msgs,
                    tokenize=False,
                    add_generation_prompt=True,
                    chat_template=self.default_tts_chat_template if use_tts_template else None,
                )
            )
            input_images_list.append(images)
            input_audios_list.append(audios)
            audio_parts_list.append(audio_parts)

        inputs = processor(
            prompts_lists,
            input_images_list,
            input_audios_list,
            audio_parts_list,
            max_slice_nums=max_slice_nums,
            use_image_id=use_image_id,
            chunk_input=chunk_input,
            return_tensors="pt",
            max_length=max_inp_length,
        ).to(self.device)

        if sampling:
            generation_config = {
                "top_p": 0.8,
                "top_k": 100,
                "temperature": 0.7,
                "do_sample": True,
                "repetition_penalty": 1.01,
            }
        else:
            generation_config = {
                "num_beams": 3,
                "repetition_penalty": 1.2,
            }

        if min_new_tokens > 0:
            generation_config["min_new_tokens"] = min_new_tokens

        generation_config.update((k, kwargs[k]) for k in generation_config.keys() & kwargs.keys())

        inputs.pop("image_sizes")
        with torch.inference_mode():
            res, outputs = self.generate(
                **inputs,
                tokenizer=tokenizer,
                max_new_tokens=max_new_tokens,
                vision_hidden_states=vision_hidden_states,
                stream=stream,
                **generation_config,
            )

        if stream:

            def stream_gen():
                for text in res:
                    for term in self.terminators:
                        text = text.replace(term, "")
                    yield text

            if return_dict:
                return OmniOutput(text=stream_gen())
            else:
                return stream_gen()

        else:
            spk_embeds = wav_numpy = sr = None

            if batched:
                answer = res
            else:
                answer = res[0]

                if use_tts_template and generate_audio:
                    mel_spec = self._generate_mel_spec(inputs, outputs, answer)
                    wav_numpy, sr = self.decode_mel_to_audio(mel_spec, output_audio_path)

            if return_spk_embed:
                spk_embeds = self._get_last_spk_embeds(inputs, outputs)

            if isinstance(answer, list):
                answer = [i.replace(tokenizer.tts_end, "") for i in answer]
            else:
                answer = answer.replace(tokenizer.tts_end, "")

            if return_dict:
                return OmniOutput(text=answer, spk_embeds=spk_embeds, audio_wav=wav_numpy, sampling_rate=sr)
            else:
                return answer

    @torch.inference_mode()
    def streaming_prefill(
        self,
        session_id,
        msgs,
        tokenizer,
        omni_input=True,
        max_slice_nums=None,
        ls_temperature=1.0,
        **kwargs,
    ):
        """
        Streaming video/audio input and output audio stream, Only support batch_size=1
        Args:
            session_id: Note: new connection should use a new session_id
        """
        assert session_id is not None
        if self.session_id is None or session_id != self.session_id:  # new session
            self.is_first = True
        else:
            self.is_first = False

        images = []
        audios = []

        assert len(msgs) == 1
        copy_msgs = deepcopy(msgs)
        msg = copy_msgs[0]

        assert msg["role"] in ["system", "user", "assistant"]

        content = msg["content"]
        cur_msgs = []
        for j, c in enumerate(content):
            if isinstance(c, Image.Image):
                images.append(c)
                cur_msgs.append("(<image>./</image>)")
            elif isinstance(c, np.ndarray):  # audio
                audios.append(c)
                cur_msgs.append("(<audio>./</audio>)")
            elif isinstance(c, str):
                cur_msgs.append(c)
            else:
                logger.error("Invalid content type:", c)

        cur_contents = "".join(cur_msgs) if omni_input else "\n".join(omni_input)
        if not self.is_first and self.new_user_msg and msg["role"] == "user":  # new user add im_start
            if self.llm_generated:
                if self.llm_generate_completed:
                    msg["content"] = "<|im_end|>\n<|im_start|>user\n" + cur_contents
                else:  # break llm gen, add tts_eos
                    msg["content"] = "<|tts_eos|><|im_end|>\n<|im_start|>user\n" + cur_contents
            else:
                msg["content"] = "<|im_start|>user\n" + cur_contents
            self.new_user_msg = False
        else:
            msg["content"] = cur_contents

        if msg["role"] in ["system", "assistant"]:
            self.new_user_msg = True
            self.audio_past_key_values = None  # apm kv cache

        if self.is_first:
            # init pask_key_values
            logger.info(f"new session_id: {session_id}, reset kv cache")
            self.reset_session()
            self.session_id = session_id

            prompt = tokenizer.apply_chat_template(
                copy_msgs, tokenize=False, add_generation_prompt=False, chat_template=self.default_tts_chat_template
            )
            add_special_tokens = True  # add bos
        else:
            prompt = copy_msgs[0]["content"]
            add_special_tokens = False

        model_inputs = self.processor(
            [prompt],
            [images],
            [audios],
            max_slice_nums=1 if max_slice_nums is None else max_slice_nums,
            use_image_id=False,
            chunk_input=True,
            return_tensors="pt",
            max_length=None,
            sampling_rate=16000,
            add_special_tokens=add_special_tokens,
        ).to(self.device)

        # 1. prepare input embeddings
        model_inputs["inputs_embeds"], _ = self.get_vllm_embedding(model_inputs)
        # get audio embedding with audio_past_key_values
        inputs_embeds = self.get_omni_embedding(
            model_inputs, input_embeddings=model_inputs["inputs_embeds"], stream_input=True
        )

        if self.is_first:
            # clean audio_past_key_values after first prefill
            self.audio_past_key_values = None

        if self.llm_past_key_values is not None:
            cache_length = self.llm_past_key_values[0][0].shape[2]
        else:
            cache_length = 0

        attention_mask = torch.ones((1, cache_length + inputs_embeds.shape[1]), dtype=torch.bool, device=self.device)

        # 2. do prefill and predict listen/speak label
        outputs = self.llm(
            past_key_values=self.llm_past_key_values,
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            position_ids=None,  # position_ids,
            use_cache=True,
            return_dict=True,
        )
        self.llm_past_key_values = outputs["past_key_values"]
        return

    @torch.inference_mode()
    def streaming_generate(
        self,
        session_id,
        tokenizer,
        max_new_tokens=512,
        min_new_tokens=0,
        sampling=True,
        generate_audio=True,
        enable_regenerate=False,
        **kwargs,
    ):
        """
        Streaming video/audio input and output audio stream
        Args:
        """
        if sampling:
            generation_config = {
                "top_p": 0.8,
                "top_k": 100,
                "temperature": 0.7,
                "do_sample": True,
                "repetition_penalty": 1.01,
            }
        else:
            generation_config = {
                "num_beams": 3,
                "repetition_penalty": 1.2,
            }
        generation_config["min_new_tokens"] = min_new_tokens
        generation_config.update((k, kwargs[k]) for k in generation_config.keys() & kwargs.keys())

        # do generate
        # reset buffer
        self.new_user_msg = True
        self.llm_generated = True
        self.llm_generate_completed = False
        self.audio_past_key_values = None  # apm kv cache

        terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
        generate_prompt = "<|im_end|>\n<|im_start|>assistant\n<|spk_bos|><|spk|><|spk_eos|><|tts_bos|>"
        input_ids = tokenizer(generate_prompt, return_tensors="pt", add_special_tokens=False)["input_ids"].cuda()

        spk_start_idx = torch.where(input_ids[0] == tokenizer.spk_start_id)[0]
        spk_end_idx = torch.where(input_ids[0] == tokenizer.spk_end_id)[0]
        spk_bounds = [
            torch.hstack([(spk_start_idx + 1).unsqueeze(-1), spk_end_idx.unsqueeze(-1)])
        ]  # List[Tensor], (1,2)

        cache_length = past_length = self.llm_past_key_values[0][0].shape[2]
        attention_mask = torch.ones((1, cache_length + input_ids.shape[1]), dtype=torch.bool, device=self.device)

        generation_config["max_new_tokens"] = max_new_tokens
        streamer = self.llm_generate_chunk(input_ids, attention_mask, tokenizer, terminators, generation_config)

        if generate_audio:
            result = self._generate_mel_spec_audio_streaming(
                spk_bounds, streamer, output_chunk_size=25, enable_regenerate=enable_regenerate
            )
            return result
        else:
            return streamer

    def llm_generate_chunk(self, input_ids, attention_mask, tokenizer, terminators, generation_config):
        def check_uncompleted_token(ids):
            cur_text = tokenizer.decode(ids)
            end = len(ids)
            while cur_text[-1] == "�":
                end -= 1
                if end == 0:
                    break
                cur_text = tokenizer.decode(ids[:end])
            return end

        max_new_tokens = int(generation_config.pop("max_new_tokens", 2048))
        new_len = 0
        first_chunk = True
        eos = False
        left_ids = None

        while True:
            outputs = self.llm.generate(
                input_ids=input_ids,
                past_key_values=self.llm_past_key_values,
                attention_mask=attention_mask,
                use_cache=True,
                max_new_tokens=3,  # reduce first token delay
                pad_token_id=0,
                output_hidden_states=True if first_chunk else False,
                return_dict_in_generate=True,
                eos_token_id=terminators,
                **generation_config,
            )
            if outputs.sequences[0, -1] in terminators:
                eos = True
            input_len = input_ids.shape[1]
            cur_ids = outputs.sequences[:, input_len:]
            new_len += cur_ids.shape[1]

            if left_ids is not None and left_ids.shape[1] > 0:
                cur_ids = torch.cat([left_ids, cur_ids], dim=1)
            end = check_uncompleted_token(cur_ids[0])
            left_ids = cur_ids[:, end:]
            cur_ids = cur_ids[:, :end]
            text = self._decode_text(cur_ids, tokenizer)[0] if end > 0 else ""

            self.llm_past_key_values = outputs.past_key_values
            input_ids = outputs.sequences[:, -1:]
            cache_length = past_length = self.llm_past_key_values[0][0].shape[2]
            attention_mask = torch.ones((1, cache_length + input_ids.shape[1]), dtype=torch.bool, device=self.device)

            res = {"text": text}
            if first_chunk:
                res["hidden_states"] = outputs.hidden_states
                first_chunk = False
            yield res

            if eos:
                self.llm_generate_completed = True
                break
            if new_len >= max_new_tokens:
                logger.debug(f"LLM generation {new_len} exceeds max_new_tokens({max_new_tokens}), break.")
                break

    def prepare_tts_text(self, text):
        tts_tokens = self.tts_processor.text_tokenizer.encode(text, add_special_tokens=False)
        tts_tokens_len = len(tts_tokens)
        if tts_tokens_len < self.tts.streaming_text_reserved_len:
            num_pad_tokens = self.tts.streaming_text_reserved_len - tts_tokens_len

            pad_str = "[Etts]" + "[PAD]" * (num_pad_tokens - 1)
        else:
            tts_tokens = tts_tokens[0 : self.tts.streaming_text_reserved_len]
            tts_tokens_len = len(tts_tokens)
            text = self.tts_processor.text_tokenizer.decode(tts_tokens, add_special_tokens=False)
            pad_str = ""
        spk_emb_placeholder_tts = "[spk_emb]" * self.tts.num_spk_embs

        new_text_tts = f"[Stts]{spk_emb_placeholder_tts}{text}{pad_str}[Ptts]"
        return new_text_tts, tts_tokens_len

    def get_tts_text_start_token_ids(self):
        text = "[Stts]" + "[spk_emb]" * self.tts.num_spk_embs
        tts_input_ids = self.tts_processor.text_tokenizer(text, return_tensors="pt", add_special_tokens=False)[
            "input_ids"
        ].cuda()
        return tts_input_ids

    def _build_streaming_mask(self, tts_tokens_len):
        tts_sequence_full_length = (
            1 + self.tts.num_spk_embs * self.tts.use_speaker_embedding + self.tts.streaming_text_reserved_len + 1
        )
        streaming_attention_mask = torch.zeros(tts_sequence_full_length, dtype=torch.int8)
        streaming_attention_mask[0 : 1 + 1 + tts_tokens_len + 1] = 1
        streaming_attention_mask[-1] = 1
        return streaming_attention_mask

    def _get_last_spk_embeds(self, inputs, outputs):
        last_hidden_states = [hs[-1] for hs in outputs.hidden_states]

        # batch = 1
        last_hidden_states = torch.vstack([i[0] for i in last_hidden_states])

        # last spk
        spk_bound = inputs["spk_bounds"][0][-1]

        spk_embeds = last_hidden_states[spk_bound[0] : spk_bound[1]]
        return spk_embeds

    def _generate_mel_spec(self, inputs, outputs, text, output_chunk_size=25, tts_max_new_tokens=2048):
        spk_embeds = self._get_last_spk_embeds(inputs, outputs)

        text = text.split("<|tts_bos|>")[-1]
        gen_text = text.split("<|tts_eos|>")[0]
        tts_text, tts_token_lens = self.prepare_tts_text(gen_text)
        tts_inputs = self.tts_processor.text_tokenizer.encode(tts_text, add_special_tokens=False)
        tts_input_ids = torch.Tensor(tts_inputs).unsqueeze(0).to("cuda", dtype=torch.long)
        streaming_tts_text_mask = self._build_streaming_mask(tts_token_lens).to(device=self.tts.device)

        logits_warpers, logits_processors = gen_logits(
            num_code=626, top_P=self.tts.top_p, top_K=self.tts.top_k, repetition_penalty=self.tts.repetition_penalty
        )

        condition_length = (
            1 + self.tts.use_speaker_embedding * self.tts.num_spk_embs + self.tts.streaming_text_reserved_len + 1
        )

        dtype = self.tts.emb_text.weight.dtype
        emb = torch.zeros(1, condition_length, self.tts.num_vq, dtype=dtype, device=self.tts.device)
        past_key_values = [
            (
                torch.zeros(
                    1,
                    self.tts.config.num_attention_heads,
                    condition_length - 1,
                    self.tts.config.hidden_size // self.tts.config.num_attention_heads,
                    dtype=emb.dtype,
                    device=self.tts.device,
                ),
                torch.zeros(
                    1,
                    self.tts.config.num_attention_heads,
                    condition_length - 1,
                    self.tts.config.hidden_size // self.tts.config.num_attention_heads,
                    dtype=emb.dtype,
                    device=self.tts.device,
                ),
            )
            for _ in range(self.tts.config.num_hidden_layers)
        ]

        audio_input_ids = torch.zeros(1, condition_length, self.tts.num_vq, dtype=torch.long, device=self.tts.device)

        eos_lab = False
        for chunk_idx in range(math.ceil(emb.shape[1] / self.tts.streaming_text_chunk_size)):
            if chunk_idx == 0:
                begin = chunk_idx * self.tts.streaming_text_chunk_size + 0
                end = (
                    (chunk_idx + 1) * self.tts.streaming_text_chunk_size
                    + 1
                    + self.tts.use_speaker_embedding * self.tts.num_spk_embs
                )
            else:
                begin = (
                    chunk_idx * self.tts.streaming_text_chunk_size
                    + 1
                    + self.tts.use_speaker_embedding * self.tts.num_spk_embs
                )
                end = min(
                    (chunk_idx + 1) * self.tts.streaming_text_chunk_size
                    + 1
                    + self.tts.use_speaker_embedding * self.tts.num_spk_embs,
                    condition_length - 1,
                )

            if end - begin > 0:
                text_input_ids = tts_input_ids[:, begin:end]
                position_ids = torch.arange(begin, end, dtype=torch.long, device=self.tts.device).unsqueeze(0)

                if begin == 0:
                    past_key_values = self.tts.prefill_text(
                        input_ids=text_input_ids,
                        position_ids=position_ids,
                        past_key_values=past_key_values,
                        lm_spk_emb_last_hidden_states=spk_embeds,
                    )
                else:
                    past_key_values = self.tts.prefill_text(
                        input_ids=text_input_ids, position_ids=position_ids, past_key_values=past_key_values
                    )

            outputs = self.tts.generate(
                input_ids=audio_input_ids,
                past_key_values=past_key_values,
                streaming_tts_text_mask=streaming_tts_text_mask,
                max_new_token=output_chunk_size,
                force_no_stop=self.force_no_stop,
                temperature=torch.tensor([0.1, 0.3, 0.1, 0.3], dtype=torch.float, device=self.tts.device),
                eos_token=torch.tensor([625], dtype=torch.long, device=self.tts.device),
                logits_warpers=logits_warpers,
                logits_processors=logits_processors,
            )
            audio_input_ids = outputs.audio_input_ids
            past_key_values = outputs.past_key_values

            if outputs.finished:
                logger.debug("Generation finished.")
                eos_lab = True
                break

        if not eos_lab:
            logger.debug("eos_lab False, Generation continue.")
            while True:
                outputs = self.tts.generate(
                    input_ids=audio_input_ids,
                    past_key_values=past_key_values,
                    streaming_tts_text_mask=streaming_tts_text_mask,
                    max_new_token=output_chunk_size,
                    force_no_stop=self.force_no_stop,
                    temperature=torch.tensor([0.1, 0.3, 0.1, 0.3], dtype=torch.float, device=self.tts.device),
                    eos_token=torch.tensor([625], dtype=torch.long, device=self.tts.device),
                    logits_warpers=logits_warpers,
                    logits_processors=logits_processors,
                )

                audio_input_ids = outputs.audio_input_ids
                past_key_values = outputs.past_key_values

                if outputs.finished:
                    logger.debug("Generation finished.")
                    break
                if outputs.new_ids.shape[1] > tts_max_new_tokens:
                    logger.debug(f"Generation length > {tts_max_new_tokens}, stopped.")
                    break

        mel_spec = self.tts.decode_to_mel_specs(outputs.new_ids)
        return mel_spec

    def _linear_overlap_add2_wav(self, frames: List[torch.Tensor], overlap: int):
        """
        Merge two audio waveforms with smooth in streaming audio generation.
        Borrowed some codes from `https://github.com/huggingface/transformers/blob/main/src/transformers/models/encodec/modeling_encodec.py`
        """
        assert len(frames) == 2
        device = frames[0].device
        dtype = frames[0].dtype
        # shape = frames[0].shape[:-1]

        frame0_length = frames[0].shape[-1]
        frame1_length = frames[1].shape[-1]
        total_size = frame0_length + frame1_length - overlap
        weight_len = max(frame0_length, frame1_length) + overlap
        t = torch.linspace(0, 1, weight_len + 2, device=device, dtype=dtype)[1:-1]
        weight = 0.5 - (t - 0.5).abs()

        sum_weight = torch.zeros(total_size, device=device, dtype=dtype)
        out = torch.zeros(total_size, device=device, dtype=dtype)
        offset: int = 0

        out[offset : offset + frame0_length] += weight[-frame0_length:] * frames[0]
        sum_weight[offset : offset + frame0_length] += weight[-frame0_length:]
        offset += frame0_length - overlap
        out[offset : offset + frame1_length] += weight[:frame1_length] * frames[1]
        sum_weight[offset : offset + frame1_length] += weight[:frame1_length]

        assert sum_weight.min() > 0
        out = out / sum_weight
        return out[:frame0_length], out[frame0_length:]

    def _generate_mel_spec_audio_streaming(
        self,
        spk_bounds,
        streamer,
        output_chunk_size=25,
        spk_embeds=None,
        prev_seg_text_ids=None,
        prev_seg_text_left="",
        prev_seg_audio_ids=None,
        enable_regenerate=False,
    ):
        # get spk_embedding
        gen_text = ""
        tts_text = ""
        new_segment_gen = False
        if spk_embeds is None:
            spk_bound = spk_bounds[0][-1]
            r = next(streamer)
            txt = r["text"]
            gen_text += txt.split("<|tts_eos|>")[0]
            tts_text, tts_token_lens = self.prepare_tts_text(gen_text)
            last_hidden_states = r["hidden_states"][0][-1][0]  # output: (input_seq_len, dim)
            spk_embeds = last_hidden_states[spk_bound[0] : spk_bound[1]]

        # init past_key_values
        logits_warpers, logits_processors = gen_logits(
            num_code=626, top_P=self.tts.top_p, top_K=self.tts.top_k, repetition_penalty=self.tts.repetition_penalty
        )
        condition_length = (
            1 + self.tts.use_speaker_embedding * self.tts.num_spk_embs + self.tts.streaming_text_reserved_len + 1
        )
        tts_start_token_len = 1 + self.tts.use_speaker_embedding * self.tts.num_spk_embs
        dtype = self.tts.emb_text.weight.dtype
        past_key_values = [
            (
                torch.zeros(
                    1,
                    self.tts.config.num_attention_heads,
                    condition_length - 1,
                    self.tts.config.hidden_size // self.tts.config.num_attention_heads,
                    dtype=dtype,
                    device=self.tts.device,
                ),
                torch.zeros(
                    1,
                    self.tts.config.num_attention_heads,
                    condition_length - 1,
                    self.tts.config.hidden_size // self.tts.config.num_attention_heads,
                    dtype=dtype,
                    device=self.tts.device,
                ),
            )
            for _ in range(self.tts.config.num_hidden_layers)
        ]
        audio_input_ids = torch.zeros(1, condition_length, self.tts.num_vq, dtype=torch.long, device=self.tts.device)

        # prefill prev segment for smooth
        chunk_idx = 0
        new_ids_len = 0
        prev_text_len = 0
        if prev_seg_text_ids is not None and prev_seg_audio_ids is not None:
            tts_token_lens = prev_seg_text_ids.shape[1]
            # assert tts_token_lens % self.tts.streaming_text_chunk_size == 0
            streaming_tts_text_mask = self._build_streaming_mask(tts_token_lens).to(device=self.tts.device)
            position_ids = torch.arange(
                0, tts_token_lens + tts_start_token_len, dtype=torch.long, device=self.tts.device
            ).unsqueeze(0)

            text_input_ids = self.get_tts_text_start_token_ids()
            text_input_ids = torch.cat([text_input_ids, prev_seg_text_ids], dim=1)
            past_key_values = self.tts.prefill_text(
                input_ids=text_input_ids,
                position_ids=position_ids,
                past_key_values=past_key_values,
                lm_spk_emb_last_hidden_states=spk_embeds,
            )
            past_key_values = self.tts.prefill_audio_ids(
                input_ids=prev_seg_audio_ids[:, :-1, :],
                # not prefill last id, which will be input_id of next generation
                past_key_values=past_key_values,
                streaming_tts_text_mask=streaming_tts_text_mask,
            )

            # update init
            chunk_idx += int(tts_token_lens / self.tts.streaming_text_chunk_size)
            audio_input_ids = torch.cat([audio_input_ids, prev_seg_audio_ids], dim=1)
            text = self.tts_processor.text_tokenizer.decode(prev_seg_text_ids[0].tolist(), add_special_tokens=False)

            gen_text += text
            gen_text += prev_seg_text_left
            prev_text_len = len(gen_text)  # takecare the position
            new_ids_len += prev_seg_audio_ids.shape[1]

        prev_wav = None
        eos_lab = False
        stop = False
        shift_len = 180
        voice_checker = VoiceChecker()
        number_converter = NumberToTextConverter()
        lang = None
        gen_text_raw = gen_text
        for t, r in enumerate(streamer):
            t += 1
            txt = r["text"]
            txt = txt.split("<|tts_eos|>")[0]
            gen_text_raw += txt
            if t == 1 and txt == "" and prev_seg_text_ids is not None:
                logger.warning("New segment is empty, generation finished.")
                return
            if t <= 2:  # do just one time, more token greater certainty
                lang = number_converter.detect_language(gen_text_raw)
            gen_text += number_converter.replace_numbers_with_text(txt, lang).replace("*", "")  # markdown **

            # TODO speed up
            tts_text, tts_token_lens = self.prepare_tts_text(gen_text)

            if tts_token_lens >= self.tts.streaming_text_reserved_len - shift_len:
                end_c = sentence_end(txt)
                if end_c:
                    end_c_idx = gen_text.rfind(end_c)
                    assert end_c_idx != -1
                    text_left = gen_text[end_c_idx + 1 :]
                    gen_text = gen_text[: end_c_idx + 1]
                    tts_text, tts_token_lens = self.prepare_tts_text(gen_text)
                    new_segment_gen = True
                    logger.debug(
                        f"tts_text tokens {tts_token_lens} exceed {self.tts.streaming_text_reserved_len - shift_len}, starting a new segment generation"
                    )
                    break

            if tts_token_lens >= (chunk_idx + 1) * self.tts.streaming_text_chunk_size:

                # do prefill and generate
                if chunk_idx == 0:
                    begin = 0
                    end = (chunk_idx + 1) * self.tts.streaming_text_chunk_size + tts_start_token_len
                else:
                    begin = chunk_idx * self.tts.streaming_text_chunk_size + tts_start_token_len
                    end = min(
                        (chunk_idx + 1) * self.tts.streaming_text_chunk_size + tts_start_token_len, condition_length - 1
                    )

                tts_input_ids = self.tts_processor.text_tokenizer(
                    tts_text, return_tensors="pt", add_special_tokens=False
                )["input_ids"].cuda()
                text_input_ids = tts_input_ids[:, begin:end]
                streaming_tts_text_mask = self._build_streaming_mask(tts_token_lens).to(device=self.tts.device)
                position_ids = torch.arange(begin, end, dtype=torch.long, device=self.tts.device).unsqueeze(0)

                past_key_values = self.tts.prefill_text(
                    input_ids=text_input_ids,
                    position_ids=position_ids,
                    past_key_values=past_key_values,
                    lm_spk_emb_last_hidden_states=spk_embeds if chunk_idx == 0 else None,
                )
                outputs = self.tts.generate(
                    input_ids=audio_input_ids,
                    past_key_values=past_key_values,
                    streaming_tts_text_mask=streaming_tts_text_mask,
                    max_new_token=output_chunk_size,
                    force_no_stop=self.force_no_stop,
                    temperature=torch.tensor([0.1, 0.3, 0.1, 0.3], dtype=torch.float, device=self.tts.device),
                    eos_token=torch.tensor([625], dtype=torch.long, device=self.tts.device),
                    logits_warpers=logits_warpers,
                    logits_processors=logits_processors,
                )
                audio_input_ids = (
                    outputs.audio_input_ids
                )  # [1,seq_len,4] seq_len=tts.streaming_text_reserved_len + 3 + len(new_ids)
                past_key_values = outputs.past_key_values
                chunk_idx += 1

                mel_spec = self.tts.decode_to_mel_specs(outputs.new_ids[:, max(new_ids_len - 4, 0) :, :])
                new_ids_len = outputs.new_ids.shape[1]  # [1, seq_len, 4]

                wav_np, sr = self.decode_mel_to_audio(mel_spec)  # [1,100,50] -> [50*256]

                if enable_regenerate:
                    if prev_wav is not None:
                        check_wav_np = wav_np[2048:].cpu().numpy()  # 2*4*256(hop)
                        check_mel = mel_spec[0, :, 8:].cpu().numpy()  # 2*4
                    else:
                        check_wav_np = wav_np.cpu().numpy()
                        check_mel = mel_spec[0].cpu().numpy()
                if enable_regenerate and voice_checker.is_bad(check_wav_np, check_mel, chunk_size=2560):
                    voice_checker.reset()
                    # regenerate
                    N = output_chunk_size if prev_wav is None else output_chunk_size * 2
                    past_kv = []
                    for i in range(len(past_key_values)):
                        past_kv.append(
                            (
                                past_key_values[i][0][:, :, :-N, :],  # .clone(),
                                past_key_values[i][1][:, :, :-N, :],  # .clone(),
                            )
                        )
                    outputs = self.tts.generate(
                        input_ids=audio_input_ids[:, :-N, :],
                        past_key_values=past_kv,
                        streaming_tts_text_mask=streaming_tts_text_mask,
                        max_new_token=N,
                        force_no_stop=self.force_no_stop,
                        temperature=torch.tensor([0.1, 0.3, 0.1, 0.3], dtype=torch.float, device=self.tts.device),
                        eos_token=torch.tensor([625], dtype=torch.long, device=self.tts.device),
                        logits_warpers=logits_warpers,
                        logits_processors=logits_processors,
                    )
                    audio_input_ids = outputs.audio_input_ids
                    past_key_values = outputs.past_key_values

                    new_ids_len -= N
                    mel_spec = self.tts.decode_to_mel_specs(outputs.new_ids[:, new_ids_len:, :])
                    new_ids_len = outputs.new_ids.shape[1]  # [1, seq_len, 4]
                    wav_np, sr = self.decode_mel_to_audio(mel_spec)

                    if prev_wav is not None:
                        wav_y = wav_np[: len(prev_wav)]
                        prev_wav = wav_np[len(prev_wav) :]
                        cur_text = gen_text_raw[prev_text_len:]
                        prev_text_len = len(gen_text_raw)
                        yield OmniOutput(text=cur_text, audio_wav=wav_y, sampling_rate=sr)

                    else:
                        prev_wav = wav_np
                else:
                    # smooth wav
                    if prev_wav is not None:
                        wav_np, prev_wav = self._linear_overlap_add2_wav(
                            [prev_wav, wav_np], overlap=512 * 4
                        )  # tts_hop256*2
                        cur_text = gen_text_raw[prev_text_len:]
                        prev_text_len = len(gen_text_raw)
                        yield OmniOutput(text=cur_text, audio_wav=wav_np, sampling_rate=sr)

                    else:
                        prev_wav = wav_np

                if outputs.finished:
                    logger.debug("Generation finished.")
                    eos_lab = True
                    break

        if not eos_lab and tts_text:
            logger.debug("eos_lab False, Generation continue.")

            if chunk_idx == 0:
                begin = 0
            else:
                begin = chunk_idx * self.tts.streaming_text_chunk_size + tts_start_token_len
            end = tts_token_lens + tts_start_token_len + 1  # 1 for [Etts]
            if end > begin:
                tts_input_ids = self.tts_processor.text_tokenizer(
                    tts_text, return_tensors="pt", add_special_tokens=False
                )["input_ids"].cuda()
                text_input_ids = tts_input_ids[:, begin:end]
                streaming_tts_text_mask = self._build_streaming_mask(tts_token_lens).to(device=self.tts.device)
                position_ids = torch.arange(begin, end, dtype=torch.long, device=self.tts.device).unsqueeze(0)

                past_key_values = self.tts.prefill_text(
                    input_ids=text_input_ids,
                    position_ids=position_ids,
                    past_key_values=past_key_values,
                    lm_spk_emb_last_hidden_states=spk_embeds if chunk_idx == 0 else None,
                )

            while True:
                # temp = [0.1, 0.3, 0.1, 0.3] if chunk_idx < 21 else [0.1] * self.tts.num_vq
                outputs = self.tts.generate(
                    input_ids=audio_input_ids,
                    past_key_values=past_key_values,
                    streaming_tts_text_mask=streaming_tts_text_mask,
                    max_new_token=output_chunk_size,
                    force_no_stop=self.force_no_stop,
                    # temperature=torch.tensor([0.1] * self.tts.num_vq, dtype=torch.float, device=self.tts.device),
                    temperature=torch.tensor([0.1, 0.3, 0.1, 0.3], dtype=torch.float, device=self.tts.device),
                    eos_token=torch.tensor([625], dtype=torch.long, device=self.tts.device),
                    logits_warpers=logits_warpers,
                    logits_processors=logits_processors,
                )
                audio_input_ids = outputs.audio_input_ids
                past_key_values = outputs.past_key_values
                chunk_idx += 1

                mel_spec = self.tts.decode_to_mel_specs(outputs.new_ids[:, max(new_ids_len - 4, 0) :, :])
                new_ids_len = outputs.new_ids.shape[1]  # [1, seq_len, 4]

                wav_np, sr = self.decode_mel_to_audio(mel_spec)

                if enable_regenerate:
                    if prev_wav is not None:
                        check_wav_np = wav_np[2048:].cpu().numpy()  # 2*4*256(hop)
                        check_mel = mel_spec[0, :, 8:].cpu().numpy()  # 2*4
                    else:
                        check_wav_np = wav_np.cpu().numpy()
                        check_mel = mel_spec[0].cpu().numpy()
                if enable_regenerate and voice_checker.is_bad(check_wav_np, check_mel, chunk_size=2560):
                    voice_checker.reset()
                    # regenerate
                    N = output_chunk_size if prev_wav is None else output_chunk_size * 2
                    past_kv = []
                    for i in range(len(past_key_values)):
                        past_kv.append(
                            (
                                past_key_values[i][0][:, :, :-N, :],  # .clone(),
                                past_key_values[i][1][:, :, :-N, :],  # .clone(),
                            )
                        )
                    outputs = self.tts.generate(
                        input_ids=audio_input_ids[:, :-N, :],
                        past_key_values=past_kv,
                        streaming_tts_text_mask=streaming_tts_text_mask,
                        max_new_token=N,
                        force_no_stop=self.force_no_stop,
                        temperature=torch.tensor([0.1, 0.3, 0.1, 0.3], dtype=torch.float, device=self.tts.device),
                        eos_token=torch.tensor([625], dtype=torch.long, device=self.tts.device),
                        logits_warpers=logits_warpers,
                        logits_processors=logits_processors,
                    )
                    audio_input_ids = outputs.audio_input_ids
                    past_key_values = outputs.past_key_values

                    new_ids_len -= N
                    mel_spec = self.tts.decode_to_mel_specs(outputs.new_ids[:, new_ids_len:, :])
                    new_ids_len = outputs.new_ids.shape[1]  # [1, seq_len, 4]
                    wav_np, sr = self.decode_mel_to_audio(mel_spec)

                    if prev_wav is not None:
                        wav_y = wav_np[: len(prev_wav)]
                        prev_wav = wav_np[len(prev_wav) :]
                        cur_text = gen_text_raw[prev_text_len:]
                        prev_text_len = len(gen_text_raw)
                        yield OmniOutput(text=cur_text, audio_wav=wav_y, sampling_rate=sr)
                    else:
                        prev_wav = wav_np
                else:
                    # smooth wav
                    if prev_wav is not None:
                        wav_np, prev_wav = self._linear_overlap_add2_wav(
                            [prev_wav, wav_np], overlap=512 * 4
                        )  # tts_hop256*2
                        cur_text = gen_text_raw[prev_text_len:]
                        prev_text_len = len(gen_text_raw)
                        yield OmniOutput(text=cur_text, audio_wav=wav_np, sampling_rate=sr)
                    else:
                        prev_wav = wav_np

                if outputs.finished:
                    logger.debug("Generation finished.")
                    break
                if outputs.new_ids.shape[1] > 2048:
                    stop = True
                    logger.debug("Generation length > 2048, stopped.")
                    break

        if prev_wav is not None:
            cur_text = gen_text_raw[prev_text_len:]
            yield OmniOutput(text=cur_text, audio_wav=prev_wav, sampling_rate=sr)  # yield last chunk wav without smooth

        if new_segment_gen and not stop:
            logger.debug(
                f"tts_text tokens {tts_token_lens} exceed {self.tts.streaming_text_reserved_len - shift_len}, start a new segment generation"
            )
            tid_len = 5  # self.tts.streaming_text_chunk_size
            prev_seg_text_ids = tts_input_ids[:, end - 1 - tid_len : end - 1]  # exclude last Etts
            aid_len = 50  # int(tid_len * new_ids_len / tts_token_lens)
            prev_seg_audio_ids = outputs.new_ids[:, -aid_len:, :]

            result = self._generate_mel_spec_audio_streaming(
                spk_bounds,
                streamer,
                output_chunk_size,
                spk_embeds,
                prev_seg_text_ids,
                text_left,
                prev_seg_audio_ids,
                enable_regenerate=enable_regenerate,
            )
            for res in result:
                yield res

    def decode_mel_to_audio(self, mel_spec, output_path=""):
        with torch.inference_mode():
            wav_numpy = self.vocos.decode(mel_spec.float()).cpu().squeeze()
            sr = 24000
        if output_path:
            sf.write(output_path, wav_numpy.numpy(), samplerate=sr)
            logger.info(f"Audio saved to {output_path}")
        return wav_numpy, sr


# Copied from transformers.models.whisper.modeling_whisper.WhisperEncoderLayer and add use_cache for streaming inference
class MiniCPMWhisperEncoderLayer(nn.Module):
    def __init__(self, config: WhisperConfig, layer_idx: int = None):
        super().__init__()
        self.embed_dim = config.d_model
        self.self_attn = WHISPER_ATTENTION_CLASSES[config._attn_implementation](
            embed_dim=self.embed_dim,
            num_heads=config.encoder_attention_heads,
            dropout=config.attention_dropout,
            config=config,
            layer_idx=layer_idx,
        )
        self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
        self.dropout = config.dropout
        self.activation_fn = ACT2FN[config.activation_function]
        self.activation_dropout = config.activation_dropout
        self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
        self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
        self.final_layer_norm = nn.LayerNorm(self.embed_dim)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: torch.Tensor,
        layer_head_mask: torch.Tensor,
        output_attentions: bool = False,
        past_key_values: Optional[EncoderDecoderCache] = None,
        use_cache: Optional[bool] = False,
    ) -> torch.Tensor:
        r"""
        Args:
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, embed_dim)`):
                Hidden states to be fed into the encoder layer.
            attention_mask (`torch.FloatTensor` of shape `(batch_size, 1, tgt_len, src_len)`):
                Attention mask where padding elements are indicated by large negative values.
            layer_head_mask (`torch.FloatTensor` of shape `(encoder_attention_heads,)`):
                Mask to nullify selected heads of the attention modules.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attention weights.
            past_key_values (`EncoderDecoderCache`, *optional*):
                Past key-value pairs used for incremental decoding.
            use_cache (`bool`, *optional*):
                Whether or not to return updated `past_key_values` for caching.

        Returns:
            A tuple of shape `(hidden_states, optional(attn_weights), optional(past_key_values))`.
        """
        residual = hidden_states
        hidden_states = self.self_attn_layer_norm(hidden_states)
        hidden_states, attn_weights, past_key_values = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            layer_head_mask=layer_head_mask,
            output_attentions=output_attentions,
            past_key_value=past_key_values,
        )
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states

        residual = hidden_states
        hidden_states = self.final_layer_norm(hidden_states)
        hidden_states = self.activation_fn(self.fc1(hidden_states))
        hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
        hidden_states = self.fc2(hidden_states)
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states

        if hidden_states.dtype == torch.float16 and (
            torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
        ):
            clamp_value = torch.finfo(hidden_states.dtype).max - 1000
            hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (attn_weights,)

        if use_cache:
            outputs += (past_key_values,)

        return outputs


# Copied from from transformers.models.whisper.modeling_whisper.WhisperEncoder and add use_cache for streaming inference
class MiniCPMWhisperEncoder(WhisperEncoder):

    def __init__(self, config: WhisperConfig):
        super().__init__(config)
        self.layers = nn.ModuleList(
            [MiniCPMWhisperEncoderLayer(config, layer_idx=i) for i in range(config.encoder_layers)]
        )

    def forward(
        self,
        input_features,
        attention_mask=None,
        head_mask=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        past_key_values: Optional[EncoderDecoderCache] = None,
        use_cache: Optional[bool] = None,
    ):
        r"""
        Forward pass of the Whisper encoder.

        Args:
            input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, sequence_length)`):
                Float values of log-mel features extracted from the raw audio waveform. Typically generated
                by a feature extractor (e.g., `WhisperFeatureExtractor`) that processes `.flac` or `.wav`
                files into padded 2D mel spectrogram frames. These features are projected via convolution layers
                (`conv1` and `conv2`) and then transformed into embeddings for the encoder.

            attention_mask (`torch.Tensor`, *optional*):
                Not used by Whisper for masking `input_features`, but included for API compatibility with
                other models. If provided, it is simply ignored within the model. By default, Whisper
                effectively ignores silence in the input log-mel spectrogram.

            head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
                Mask to nullify selected attention heads. The elements should be either 1 or 0, where:
                - 1 indicates the head is **not masked**,
                - 0 indicates the head is **masked** (i.e., the attention head is dropped).

            output_attentions (`bool`, *optional*):
                Whether or not to return the attention tensors of all encoder layers. If set to `True`, the
                returned tuple (or `BaseModelOutputWithPast`) will contain an additional element with
                attention weights for each encoder layer.

            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. If set to `True`, the returned
                tuple (or `BaseModelOutputWithPast`) will contain a tuple of hidden states, including the
                initial embedding output as well as the outputs of each layer.

            return_dict (`bool`, *optional*):
                Whether or not to return a `BaseModelOutputWithPast` (a subclass of `ModelOutput`) instead
                of a plain tuple. If set to `True`, the output will be a `BaseModelOutputWithPast` object,
                otherwise it will be a tuple.

            past_key_values (`EncoderDecoderCache`, *optional*):
                When using caching for faster inference, this is an object that stores the key-value pairs
                for attention states. If provided, the model will append new states to the existing cache
                and return the updated cache. This speeds up sequential decoding or chunked inference.

                - If `past_key_values` is `None`, no past states are used or returned.
                - If `past_key_values` is not `None` and `use_cache=True`, the model will use the provided
                cache and return the updated cache (as `next_encoder_cache`).

            use_cache (`bool`, *optional*):
                Whether or not the model should use caching (`past_key_values`) to speed up processing
                during inference. When set to `True`, the model will:
                - Inspect and use `past_key_values` if provided.
                - Return updated `past_key_values` (under the name `next_encoder_cache` in
                    `BaseModelOutputWithPast`).

        Returns:
            `BaseModelOutputWithPast` or `tuple` (depending on `return_dict`):
                If `return_dict=True`, a `BaseModelOutputWithPast` is returned, which contains:
                - **last_hidden_state** (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
                The output of the final encoder layer.
                - **hidden_states** (`tuple(torch.FloatTensor)`, *optional*, returned if `output_hidden_states=True`):
                Hidden states of the model at each layer (including the initial projection).
                - **attentions** (`tuple(torch.FloatTensor)`, *optional*, returned if `output_attentions=True`):
                Attention weights from each encoder layer.
                - **past_key_values** (an object of type `EncoderDecoderCache` or `None`, *optional*):
                Updated cache of key-value pairs if `use_cache=True`.

                If `return_dict=False`, a tuple is returned, where the format is:
                `(last_hidden_state, hidden_states, attentions)`, with `hidden_states` and `attentions`
                only present if their respective `output_*` arguments are set to `True`.

        Example:
            >>> from transformers import AutoFeatureExtractor, WhisperConfig, WhisperForConditionalGeneration
            >>> import torch

            >>> # Load a feature extractor and a Whisper model
            >>> feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-tiny.en")
            >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")

            >>> # Assume you have audio (list of floats or numpy array) loaded from a file
            >>> # Then extract the mel features:
            >>> input_features = feature_extractor(audio, sampling_rate=16000, return_tensors="pt").input_features

            >>> # Forward pass
            >>> outputs = model.encoder(
            ...     input_features=input_features,
            ...     output_hidden_states=True,
            ...     output_attentions=True,
            ...     use_cache=True
            ... )

            >>> # Retrieve the last hidden state
            >>> last_hidden_state = outputs.last_hidden_state
            >>> print(last_hidden_state.shape)
            torch.Size([batch_size, seq_length, hidden_size])

            >>> # Retrieve the intermediate hidden states if output_hidden_states=True
            >>> all_encoder_hidden_states = outputs.hidden_states

            >>> # Retrieve attention weights if output_attentions=True
            >>> all_encoder_attentions = outputs.attentions

            >>> # Retrieve updated past key values if use_cache=True
            >>> encoder_cache = outputs.past_key_values
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # Ignore copy
        input_features = input_features.to(dtype=self.conv1.weight.dtype, device=self.conv1.weight.device)

        inputs_embeds = nn.functional.gelu(self.conv1(input_features))
        inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds))

        inputs_embeds = inputs_embeds.permute(0, 2, 1)

        embed_pos = self.embed_positions.weight
        past_key_values_length = 0
        if use_cache:
            if past_key_values is None:
                past_key_values = EncoderDecoderCache(DynamicCache(), DynamicCache())
            elif isinstance(past_key_values, list):
                past_key_values = EncoderDecoderCache(DynamicCache.from_legacy_cache(past_key_values), DynamicCache())
            elif isinstance(past_key_values, DynamicCache):
                past_key_values = EncoderDecoderCache(past_key_values, DynamicCache())
            else:
                pass
            past_key_values_length = past_key_values.self_attention_cache.get_usable_length(inputs_embeds.shape[1])
            if inputs_embeds.shape[1] + past_key_values_length > embed_pos.shape[0]:
                logger.warning("seems the audio is longer than 30s. repeating the last part of the audio")
                embed_pos_front = embed_pos[past_key_values_length:, :]
                embed_pos = torch.cat(
                    (
                        embed_pos_front,
                        torch.repeat_interleave(
                            embed_pos[-1, :].unsqueeze(0),
                            inputs_embeds.shape[1] - embed_pos.shape[0] + past_key_values_length,
                            dim=0,
                        ),
                    )
                )
            else:
                embed_pos = embed_pos[past_key_values_length : inputs_embeds.shape[1] + past_key_values_length, :]
        else:
            embed_pos = embed_pos[: inputs_embeds.shape[1], :]

        hidden_states = inputs_embeds + embed_pos
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)

        encoder_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None

        # check if head_mask has a correct number of layers specified if desired
        if head_mask is not None:
            assert head_mask.size()[0] == (
                len(self.layers)
            ), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."

        for idx, encoder_layer in enumerate(self.layers):
            if output_hidden_states:
                encoder_states = encoder_states + (hidden_states,)
            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
            to_drop = False
            if self.training:
                dropout_probability = torch.rand([])
                if dropout_probability < self.layerdrop:  # skip the layer
                    to_drop = True

            # Ignore copy
            if to_drop:
                layer_outputs = (None, None)
            else:
                if self.gradient_checkpointing and self.training:
                    layer_outputs = self._gradient_checkpointing_func(
                        encoder_layer.__call__,
                        hidden_states,
                        attention_mask,
                        (head_mask[idx] if head_mask is not None else None),
                        output_attentions,
                        past_key_values,
                        use_cache,
                    )
                else:
                    layer_outputs = encoder_layer(
                        hidden_states,
                        attention_mask,
                        layer_head_mask=(head_mask[idx] if head_mask is not None else None),
                        output_attentions=output_attentions,
                        past_key_values=past_key_values,
                        use_cache=use_cache,
                    )

                hidden_states = layer_outputs[0]

            if use_cache:
                next_encoder_cache = layer_outputs[2 if output_attentions else 1]
            else:
                next_encoder_cache = None

            if output_attentions:
                all_attentions = all_attentions + (layer_outputs[1],)

        hidden_states = self.layer_norm(hidden_states)
        if output_hidden_states:
            encoder_states = encoder_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            hidden_states=encoder_states,
            attentions=all_attentions,
            past_key_values=next_encoder_cache,
        )


# Borrowed from `https://github.com/2noise/ChatTTS/blob/main/ChatTTS/model/dvae.py`
class ConvNeXtBlock(nn.Module):
    def __init__(
        self,
        dim: int,
        intermediate_dim: int,
        kernel: int,
        dilation: int,
        layer_scale_init_value: float = 1e-6,
    ):
        # ConvNeXt Block copied from Vocos.
        super().__init__()
        self.dwconv = nn.Conv1d(
            dim,
            dim,
            kernel_size=kernel,
            padding=dilation * (kernel // 2),
            dilation=dilation,
            groups=dim,
        )

        self.norm = nn.LayerNorm(dim, eps=1e-6)
        self.pwconv1 = nn.Linear(dim, intermediate_dim)
        self.act = nn.GELU()
        self.pwconv2 = nn.Linear(intermediate_dim, dim)
        self.coef = (
            nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True)
            if layer_scale_init_value > 0
            else None
        )

    def forward(self, x: torch.Tensor, cond=None) -> torch.Tensor:
        residual = x

        y = self.dwconv(x)
        y.transpose_(1, 2)  # (B, C, T) -> (B, T, C)
        x = self.norm(y)
        del y
        y = self.pwconv1(x)
        del x
        x = self.act(y)
        del y
        y = self.pwconv2(x)
        del x
        if self.coef is not None:
            y *= self.coef
        y.transpose_(1, 2)  # (B, T, C) -> (B, C, T)

        x = y + residual
        del y

        return x


# Borrowed from `https://github.com/2noise/ChatTTS/blob/main/ChatTTS/model/dvae.py`
class GFSQ(nn.Module):
    def __init__(
        self,
        dim: int,
        levels: List[int],
        G: int,
        R: int,
        eps=1e-5,
        transpose=True,
    ):
        super(GFSQ, self).__init__()
        self.quantizer = GroupedResidualFSQ(
            dim=dim,
            levels=list(levels),
            num_quantizers=R,
            groups=G,
        )
        self.n_ind = math.prod(levels)
        self.eps = eps
        self.transpose = transpose
        self.G = G
        self.R = R

    def _embed(self, x: torch.Tensor):
        if self.transpose:
            x = x.transpose(1, 2)
        x = x.view(x.size(0), x.size(1), self.G, self.R).permute(2, 0, 1, 3)
        feat = self.quantizer.get_output_from_indices(x)
        return feat.transpose_(1, 2) if self.transpose else feat

    def __call__(self, x: torch.Tensor) -> torch.Tensor:
        return super().__call__(x)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        if self.transpose:
            x.transpose_(1, 2)
        _, ind = self.quantizer(x)
        ind = ind.permute(1, 2, 0, 3).contiguous()
        ind = ind.view(ind.size(0), ind.size(1), -1)
        return ind.transpose_(1, 2) if self.transpose else ind


# Borrowed from `https://github.com/2noise/ChatTTS/blob/main/ChatTTS/model/dvae.py`
class DVAEDecoder(nn.Module):
    def __init__(
        self,
        idim: int,
        odim: int,
        n_layer=12,
        bn_dim=64,
        hidden=256,
        kernel=7,
        dilation=2,
        up=False,
    ):
        super().__init__()
        self.up = up
        self.conv_in = nn.Sequential(
            nn.Conv1d(idim, bn_dim, 3, 1, 1),
            nn.GELU(),
            nn.Conv1d(bn_dim, hidden, 3, 1, 1),
        )
        self.decoder_block = nn.ModuleList(
            [
                ConvNeXtBlock(
                    hidden,
                    hidden * 4,
                    kernel,
                    dilation,
                )
                for _ in range(n_layer)
            ]
        )
        self.conv_out = nn.Conv1d(hidden, odim, kernel_size=1, bias=False)

    def forward(self, x: torch.Tensor, conditioning=None) -> torch.Tensor:
        # B, C, T
        y = self.conv_in(x)
        del x
        for f in self.decoder_block:
            y = f(y, conditioning)

        x = self.conv_out(y)
        del y
        return x


# Borrowed from `https://github.com/2noise/ChatTTS/blob/main/ChatTTS/model/dvae.py`
class DVAE(nn.Module):
    def __init__(
        self,
    ):
        super().__init__()

        coef = torch.rand(100)
        self.coef = nn.Parameter(coef.unsqueeze(0).unsqueeze_(2))

        self.downsample_conv = nn.Sequential(
            nn.Conv1d(100, 512, 3, 1, 1),
            nn.GELU(),
            nn.Conv1d(512, 512, 4, 2, 1),
            nn.GELU(),
        )

        self.encoder = DVAEDecoder(
            idim=512,
            odim=1024,
            hidden=256,
            n_layer=12,
            bn_dim=128,
        )

        self.decoder = DVAEDecoder(
            idim=512,
            odim=512,
            hidden=256,
            n_layer=12,
            bn_dim=128,
        )

        self.out_conv = nn.Conv1d(512, 100, 3, 1, 1, bias=False)

        self.vq_layer = GFSQ(
            dim=1024,
            levels=(5, 5, 5, 5),
            G=2,
            R=2,
        )

    @torch.inference_mode()
    def forward(self, inp: torch.Tensor, mode: Literal["encode", "decode"] = "decode") -> torch.Tensor:
        if mode == "encode" and hasattr(self, "encoder") and self.vq_layer is not None:
            mel = inp.clone()
            x: torch.Tensor = self.downsample_conv(
                torch.div(mel, self.coef.view(100, 1).expand(mel.shape), out=mel),
            ).unsqueeze_(0)
            del mel
            x = self.encoder(x)
            ind = self.vq_layer(x)
            del x
            return ind

        if self.vq_layer is not None:
            vq_feats = self.vq_layer._embed(inp)
        else:
            vq_feats = inp

        vq_feats = (
            vq_feats.view(
                (vq_feats.size(0), 2, vq_feats.size(1) // 2, vq_feats.size(2)),
            )
            .permute(0, 2, 3, 1)
            .flatten(2)
        )

        dec_out = self.out_conv(
            self.decoder(
                x=vq_feats,
            ),
        )

        del vq_feats

        return torch.mul(dec_out, self.coef, out=dec_out)


def apply_spk_emb(
    input_ids: torch.Tensor = None,
    spk_emb: torch.Tensor = None,
    input_embeds: torch.Tensor = None,
    spk_emb_token_id: int = 0,
    num_spk_embs: int = 1,
):
    """
    Replace consecutive `num_spk_embs` speaker embedding placeholders in input_embeds with pre-prepared speaker embeddings. This is an in-place replacement, no new tensor is created, so no value is returned.

    Args:
        input_ids (torch.Tensor): Input ID tensor, shape [batch_size, seq_len_max]
        spk_emb (torch.Tensor): Speaker embedding tensor, shape [batch_size, num_spk_emb, hidden_dim]
        input_embeds (torch.Tensor): Input embedding tensor, shape [batch_size, seq_len_max, hidden_dim]
        spk_emb_token_id (int): ID of the speaker embedding token
        num_spk_embs (int): Number of speaker embeddings

    Returns:
        None
    """

    batch_size = input_ids.shape[0]

    for idx in range(batch_size):
        input_ids_ = input_ids[idx]  # [seq_len_max]
        spk_emb_ = spk_emb[idx]  # [num_spk_emb]
        mask_ = input_ids_ == spk_emb_token_id  # [batch_size, seq_len_max]
        nonzero_position_idx = mask_.nonzero(as_tuple=False)  # [num_spk_emb, 1]
        assert nonzero_position_idx.shape[0] == num_spk_embs
        begin_idx = nonzero_position_idx.min()
        end_idx = nonzero_position_idx.max()
        input_embeds[idx, begin_idx : end_idx + 1, :] = spk_emb_

    return


def make_streaming_chunk_mask_generation(
    inputs_embeds: torch.Tensor,
    past_seen_tokens: int,
    streaming_tts_text_mask: torch.Tensor,
    streaming_reserved_length: int = 300,
    streaming_audio_chunk_size: int = 50,
    streaming_text_chunk_size: int = 10,
    num_spk_emb: int = 1,
    use_spk_emb: bool = True,
) -> torch.Tensor:
    """
    In streaming audio generation, determine which `text` positions the TTS model can attend to when generating each chunk of `audio` tokens.

    This function creates a mask that allows the model to attend to a specific chunk of text
    tokens when generating each chunk of audio tokens, enabling streaming TTS generation.

    Args:
        inputs_embeds (torch.Tensor): Input embeddings tensor.
        past_seen_tokens (int): Number of tokens already seen by the model.
        streaming_tts_text_mask (torch.Tensor): Mask for the text tokens.
        streaming_reserved_length (int, optional): Number of reserved tokens for streaming. Defaults to 300.
        streaming_chunk_length (int, optional): Length of each streaming chunk. Defaults to 50.
        streaming_text_chunk_size (int, optional): Size of each text chunk. Defaults to 7.

    Returns:
        torch.Tensor: Causal mask for streaming TTS generation, shape is [batch_size=1, 1, seq_len=1, past_seen_tokens+1]

    Raises:
        AssertionError: If the batch size is not 1 (only supports batch size of 1 for inference).
    """
    assert inputs_embeds.shape[0] == 1

    dtype = inputs_embeds.dtype
    device = inputs_embeds.device
    min_dtype = torch.finfo(dtype).min

    # Add `1` to the past seen tokens to account for new `tokens` during `generate`
    causal_mask = torch.full((1, past_seen_tokens + inputs_embeds.shape[1]), fill_value=0, dtype=dtype, device=device)

    # Calculate the start of invisible text tokens
    invisible_text_tokens_start = (
        min(
            math.ceil((past_seen_tokens - streaming_reserved_length) / streaming_audio_chunk_size)
            * streaming_text_chunk_size,
            streaming_reserved_length,
        )
        + 1
        + num_spk_emb * use_spk_emb
    )  # Add 1 for [Stts] and N for [spk_emb] tokens if `use_spk_emb` is True

    invisible_text_tokens_end = (
        streaming_reserved_length + 1 + num_spk_emb * use_spk_emb + 1
    )  # Add 1 for [Ptts] (aka `audio_bos_token_id`)

    # Set invisible text tokens to min_dtype (effectively -inf)
    causal_mask[0, invisible_text_tokens_start:invisible_text_tokens_end] = min_dtype

    # Mask padding positions in the text mask
    causal_mask[0, 0 : 1 + num_spk_emb * use_spk_emb + streaming_reserved_length + 1].masked_fill_(
        streaming_tts_text_mask == 0, min_dtype
    )

    # Add extra dimensions for batch and heads
    causal_mask = causal_mask.unsqueeze(0).unsqueeze(0)

    return causal_mask


# Borrowed from `https://github.com/2noise/ChatTTS/blob/main/ChatTTS/model/processors.py`
class CustomRepetitionPenaltyLogitsProcessorRepeat:
    def __init__(self, penalty: float, max_input_ids: int, past_window: int):
        if not isinstance(penalty, float) or not (penalty > 0):
            raise ValueError(f"`penalty` has to be a strictly positive float, but is {penalty}")

        self.penalty = penalty
        self.max_input_ids = max_input_ids
        self.past_window = past_window

    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        if input_ids.size(1) > self.past_window:
            input_ids = input_ids.narrow(1, -self.past_window, self.past_window)
        freq = F.one_hot(input_ids, scores.size(1)).sum(1)
        if freq.size(0) > self.max_input_ids:
            freq.narrow(0, self.max_input_ids, freq.size(0) - self.max_input_ids).zero_()
        alpha = torch.pow(self.penalty, freq)
        scores = scores.contiguous()
        inp = scores.multiply(alpha)
        oth = scores.divide(alpha)
        con = scores < 0
        out = torch.where(con, inp, oth)
        del inp, oth, scores, con, alpha
        return out


@dataclass
class ConditionalChatTTSGenerationOutput(ModelOutput):
    """
    Output class for ConditionalChatTTS generation.

    Args:
        new_ids (torch.LongTensor): Newly generated audio code sequence, shape (batch_size, sequence_length, num_vq).
        audio_input_ids (torch.LongTensor): Updated input IDs including condition and generated audio codes, shape (batch_size, full_sequence_length, num_vq).
        past_key_values (Tuple[Tuple[torch.FloatTensor]]): Tuple containing pre-computed keys and values used for attention mechanism. Each element has shape (batch_size, num_heads, sequence_length, embed_size_per_head).
        finished (bool): Boolean indicating whether generation is complete.

    """

    new_ids: torch.LongTensor = None
    audio_input_ids: torch.LongTensor = None
    past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    finished: bool = None


class MultiModalProjector(nn.Module):
    def __init__(self, in_dim, out_dim):
        super().__init__()
        self.linear1 = nn.Linear(in_features=in_dim, out_features=out_dim, bias=True)
        self.relu = nn.ReLU()
        self.linear2 = nn.Linear(in_features=out_dim, out_features=out_dim, bias=True)

    def forward(self, audio_features):
        hidden_states = self.relu(self.linear1(audio_features))
        hidden_states = self.linear2(hidden_states)
        return hidden_states


class ConditionalChatTTS(PreTrainedModel):
    """A conditional text-to-speech model that can generate speech from text with speaker conditioning.

    This model extends PreTrainedModel to provide text-to-speech capabilities with:
    - LLM hidden state conditioning
    - Streaming generation

    The model uses a transformer architecture with LLM hidden states and can operate in both
    streaming and non-streaming modes for flexible deployment.

    The model process sequence in the following format:
    | text bos token | LLM embedding projected to tts embedding space | text tokens (fixed length, reserved for future tokens) | audio bos token | audio tokens (audio token length is not fixed)| audio eos token |

    The format is designed to support LLM-conditioned streaming audio generation.

    Usage:
    To support streaming generation, two global variables should be maintained outside of the model.
        1. `audio_input_ids`: stores *discrete* audio codes. It is a tensor with shape [1, sequence length+1, num_vq].
        2. `past_key_values`: stores the KV cache for both text tokens and audio codes. It is a list of tuples, each tuple contains two tensors with shape [1, num_attention_heads, sequence length, hidden_size // num_attention_heads]

    where `num_vq` is the number of audio codebooks, in default setting, it is `4`.

    1. Create an empty `past_key_values` with
    ```python
    initial_kv_cache_length = 1 + model.num_spk_embs + model.streaming_text_reserved_len # where `1` denotes the `bos` token
    dtype = model.emb_text.weight.dtype
    device = model.emb_text.weight.device
    past_key_values = [
        (
            torch.zeros(1, model.config.num_attention_heads, initial_kv_cache_length, model.config.hidden_size // model.config.num_attention_heads, dtype=dtype, device=device),
            torch.zeros(1, model.config.num_attention_heads, initial_kv_cache_length, model.config.hidden_size // model.config.num_attention_heads, dtype=dtype, device=device)
        )
        for _ in range(model.config.num_hidden_layers)
    ]

    2. At the same time, create an empty `audio_input_ids` with shape [1, sequence length, num_vq], `num_vq` denotes multiple layer audio codebooks. But here we also include text tokens in the sequence, but they will be zeros, and will not be used, just a placeholder.

    ```python
    initial_audio_input_ids_length = 1 + model.num_spk_embs + model.streaming_text_reserved_len + 1
    # [bos token, speaker embeddings, text tokens, audio bos token]
    audio_input_ids = torch.zeros(batch_size=1, initial_audio_input_ids_length, model.num_vq)
    ```

    2. Prefill some text tokens to TTS model (for example, 10 tokens) using `prefill_text` method.

    ```python
    outputs = llm.generate(**kwargs)
    llm_tokens = some_function_to_extract_llm_tokens(outputs)
    lm_spk_emb_last_hidden_states = some_function_to_extract_lm_spk_emb_last_hidden_states(outputs)
    tts_text_input_ids = tts_tokenizer.encode(llm_tokenizer.decode(llm_tokens))
    # here assume we are prefilling text token 0 to text token 9 (included), totally 10 tokens.
    begin = 0
    end = 9+1
    position_ids = torch.arange(begin, end, dtype=torch.long, device=device)

    past_key_values = model.prefill_text(
        input_ids=tts_text_input_ids,
        position_ids=position_ids,
        past_key_values=past_key_values,
        lm_spk_emb_last_hidden_states=lm_spk_emb_last_hidden_states,
    )
    ```

    3. Make a `streaming_tts_text_mask` to denote which position contains valid text tokens, similar to `attention_mask` in standard causal attention.

    ```python
    streaming_tts_text_mask = torch.zeros(model.streaming_reserved_length)
    streaming_tts_text_mask[0:end] = 1 # denotes these post
    ```

    3. Generate audio codes using `generate` method.

    ```python
    outputs = model.generate(
        input_ids=audio_input_ids,
        past_key_values=past_key_values,
        streaming_tts_text_mask=streaming_tts_text_mask,
        max_new_token=50,
    )

    # update past_key_values and input_ids
    past_key_values = outputs.past_key_values
    audio_input_ids = outputs.input_ids
    ```

    The `past_key_values` is extended by `max_new_token=50`, and `audio_input_ids` is also extended by `max_new_token=50` after `generate` calling.

    4. Notice that after prefilling `10` text tokens, the model can generate up to `50` audio tokens, if you want to generate more audio tokens, you need to prefill next `10` text tokens. And it is okay to only generate `25` audio tokens for faster initial response.

    5. Repeat steps `2,3,4` as needed in your streaming audio generation cases, but ensure usage complies with the following guidelines discussed above.
    """

    config_class = ConditionalChatTTSConfig
    _no_split_modules = []

    def __init__(self, config: ConditionalChatTTSConfig):
        super().__init__(config)

        self.use_speaker_embedding = config.use_speaker_embedding
        self.use_llm_hidden_state = config.use_llm_hidden_state
        self.num_spk_embs = config.num_spk_embs
        self.spk_emb_token_id = config.spk_emb_token_id

        self.use_text = config.use_text
        self.streaming = config.streaming
        self.streaming_text_chunk_size = config.streaming_text_chunk_size
        self.streaming_audio_chunk_size = config.streaming_audio_chunk_size
        self.streaming_text_reserved_len = config.streaming_text_reserved_len
        self.audio_bos_token_id = config.audio_bos_token_id
        self.num_mel_bins = config.num_mel_bins
        self.num_vq = config.num_vq
        self.num_audio_tokens = config.num_audio_tokens

        self.top_p = config.top_p
        self.top_k = config.top_k
        self.repetition_penalty = config.repetition_penalty

        if self.config.use_mlp:
            self.projector = MultiModalProjector(config.llm_dim, config.hidden_size)
        else:
            self.projector = nn.Linear(config.llm_dim, config.hidden_size, bias=False)
        self.emb_code = nn.ModuleList(
            [nn.Embedding(config.num_audio_tokens, config.hidden_size) for _ in range(config.num_vq)]
        )
        self.emb_text = nn.Embedding(config.num_text_tokens, config.hidden_size)
        self.head_code = nn.ModuleList(
            [
                weight_norm(
                    nn.Linear(config.hidden_size, config.num_audio_tokens, bias=False),
                    name="weight",
                )
                for _ in range(config.num_vq)
            ]
        )
        dvae = DVAE()
        self.dvae = dvae

        model_config = LlamaConfig(
            hidden_size=config.hidden_size,
            intermediate_size=config.intermediate_size,
            num_attention_heads=config.num_attention_heads,
            num_hidden_layers=config.num_hidden_layers,
            max_position_embeddings=config.max_position_embeddings,
            attn_implementation=config.attn_implementation,
        )

        model = LlamaModel(model_config)
        self.model = model

    @torch.inference_mode()
    def merge_inputs_embeds(
        self,
        input_ids: torch.Tensor,
        lm_spk_emb_last_hidden_states: Optional[torch.Tensor] = None,
    ):
        """Merge `input_ids` and `lm_spk_emb_last_hidden_states` to `inputs_embeds`.

        Args:
            input_ids (torch.Tensor): Input token IDs.
            lm_spk_emb_last_hidden_states (Optional[torch.Tensor], optional): Last hidden states of speaker embeddings from the language model. Defaults to None.

        Raises:
            NotImplementedError: If speaker embedding is not used and language model hidden states are not implemented.

        Returns:
            torch.Tensor: Prepared input embeddings for the model.
        """
        assert input_ids.shape[0] == 1

        # Embed input_ids to input_embeds
        inputs_embeds = self.emb_text(input_ids)

        # Inject speaker embedding to input_embeds if it exists
        if self.use_speaker_embedding:
            spk_emb_mask = input_ids == self.spk_emb_token_id
            if spk_emb_mask.any():
                assert lm_spk_emb_last_hidden_states is not None
                # Project spk emb to tts hidden size first, [batch_size, num_spk_emb, llm_dim] -> [batch_size, num_spk_emb, self.hidden_size]
                lm_spk_emb_last_hidden_states = lm_spk_emb_last_hidden_states.to(self.projector.linear1.weight.dtype)
                projected_spk_emb = self.projector(lm_spk_emb_last_hidden_states)
                projected_spk_emb = F.normalize(projected_spk_emb, p=2, dim=-1)
                apply_spk_emb(
                    input_ids=input_ids,
                    spk_emb=projected_spk_emb,
                    input_embeds=inputs_embeds,
                    spk_emb_token_id=self.spk_emb_token_id,
                    num_spk_embs=self.num_spk_embs,
                )
        else:
            raise NotImplementedError

        return inputs_embeds

    @torch.inference_mode()
    def prefill_text(
        self,
        input_ids: torch.Tensor,
        position_ids: torch.LongTensor,
        past_key_values: List[Tuple[torch.Tensor, torch.Tensor]],
        lm_spk_emb_last_hidden_states: Optional[torch.Tensor] = None,
    ):
        """Prefill a chunk of new text tokens in streaming setting.
        Specifically speaking, update `past_key_values` using new text tokens, then the model will read the new text tokens.

        Args:
            input_ids (Tensor): Tensor of shape [batch_size, seq_len]
            position_ids (LongTensor): Tensor of shape [batch_size, seq_len]
            past_key_values (List[Tuple[Tensor]]): KV Cache of all layers, each layer is a tuple (Tensor, Tensor) denoting keys and values. Each tensor is of seq_len = `self.streaming_text_reserved_len`. `past_key_values` will be updated.
            lm_spk_emb_last_hidden_states (Tensor, optional): Tensor of shape [batch_size, num_spk_emb, llm_dim]. Defaults to None.
            lm_last_hidden_states (Tensor, optional): _description_. Defaults to None.

        Note that all `batch_size` should be `1`.
        """
        assert input_ids.shape[0] == 1
        assert past_key_values is not None

        # Merge text and LLM embeddings
        inputs_embeds = self.merge_inputs_embeds(
            input_ids=input_ids,
            lm_spk_emb_last_hidden_states=lm_spk_emb_last_hidden_states,
        )

        # Clone KV Cache
        past_key_values_for_prefill = []
        for i in range(len(past_key_values)):
            past_key_values_for_prefill.append(
                (
                    past_key_values[i][0][:, :, : position_ids[:, 0], :].clone(),
                    past_key_values[i][1][:, :, : position_ids[:, 0], :].clone(),
                )
            )

        # Model forward
        outputs_prefill: BaseModelOutputWithPast = self.model(
            attention_mask=None,  # because for text, it is standard causal attention mask, do nothing
            position_ids=position_ids,  # position_ids denotes the position of new text tokens in the sequence
            past_key_values=past_key_values_for_prefill,  # `past_key_values` will be updated by the model
            inputs_embeds=inputs_embeds,  # contains text and language model embedding
            use_cache=True,
            output_attentions=False,
            cache_position=position_ids,  # which new positions will use this cache, basically the same as position_ids
        )

        # Get model updated KV Cache
        past_key_values_for_prefill_updated = outputs_prefill.past_key_values

        # Update generated KV Cache to input `past_key_values`
        for layer_idx in range(len(past_key_values)):
            # Update keys
            past_key_values[layer_idx][0][:, :, position_ids[:, 0] : position_ids[:, -1] + 1, :] = (
                past_key_values_for_prefill_updated[layer_idx][0][
                    :, :, position_ids[:, 0] : position_ids[:, -1] + 1
                ].clone()
            )
            # Update values
            past_key_values[layer_idx][1][:, :, position_ids[:, 0] : position_ids[:, -1] + 1, :] = (
                past_key_values_for_prefill_updated[layer_idx][1][
                    :, :, position_ids[:, 0] : position_ids[:, -1] + 1
                ].clone()
            )

        # TODO: del past_key_values_for_prefill_updated recursively
        # TODO: del outputs_prefill recursively

        return past_key_values

    @torch.inference_mode()
    def prefill_audio_ids(
        self,
        input_ids: torch.Tensor,
        past_key_values: List[Tuple[torch.Tensor, torch.Tensor]],
        streaming_tts_text_mask=None,
        add_audio_bos: bool = True,
    ):
        """Prefill a chunk of audio ids to the model. Used in sliding-window long audio generation.
        Specifically, prefill many audio ids (typically from last window) to the model in the new window.

        Args:
            input_ids (torch.Tensor): (1, seq_len, num_vq) Audio input token ids.
            past_key_values (List[Tuple[torch.Tensor, torch.Tensor]]): Past key values for attention mechanism.
        """
        assert input_ids.shape[0] == 1
        assert past_key_values is not None

        code_emb = [self.emb_code[i](input_ids[:, :, i]) for i in range(self.num_vq)]
        inputs_embeds = torch.stack(code_emb, 3).sum(3)  # [1,seq_len,768]
        input_len = input_ids.shape[1]

        if add_audio_bos:
            narrowed_input_ids = torch.tensor([[self.audio_bos_token_id]], dtype=torch.long, device=self.device)
            bos_inputs_embeds = self.emb_text(narrowed_input_ids)
            inputs_embeds = torch.cat([bos_inputs_embeds, inputs_embeds], dim=1)
            input_len += 1

        past_key_values_length = past_key_values[0][0].shape[2]
        position_ids = torch.arange(
            past_key_values_length, past_key_values_length + input_len, dtype=torch.long, device=self.device
        ).unsqueeze(0)

        cache_position = position_ids.clone()
        causal_mask = make_streaming_chunk_mask_generation(
            inputs_embeds=inputs_embeds,
            past_seen_tokens=past_key_values[0][0].shape[2],
            streaming_tts_text_mask=streaming_tts_text_mask,
            streaming_reserved_length=self.streaming_text_reserved_len,
            streaming_text_chunk_size=self.streaming_text_chunk_size,
        )  # [1, 1, 1, past_key_values_length + input_len]

        # Model forward
        outputs: BaseModelOutputWithPast = self.model(
            attention_mask=causal_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=True,
            output_attentions=False,
            cache_position=cache_position,
        )
        past_key_values = outputs.past_key_values
        return past_key_values

    @torch.inference_mode()
    def generate(
        self,
        input_ids: torch.Tensor,
        past_key_values: List[Tuple[torch.Tensor, torch.Tensor]],
        temperature: torch.Tensor,
        eos_token: Union[int, torch.Tensor],
        streaming_tts_text_mask=None,
        force_no_stop=False,
        min_new_token=10,
        max_new_token=50,
        logits_warpers: List[LogitsWarper] = [],
        logits_processors: List[CustomRepetitionPenaltyLogitsProcessorRepeat] = [],
        show_tqdm=False,
    ):
        """Generate audio codes in streaming setting or non-streaming setting.
        Specifically speaking, generate audio codes when not all text tokens are prefilled.

        Always pass a valid `past_key_values` to the method. The method does not do `prefill` by itself. It relies on `prefill_text` method to provide valid `past_key_values`. Please refer to docstring of this class for more details.

        In this method, we borrowed a lot of codes from `https://github.com/2noise/ChatTTS/blob/main/ChatTTS/model/gpt.py`.

        Args:
            input_ids (torch.Tensor): Input token ids.
            past_key_values (List[Tuple[torch.Tensor, torch.Tensor]]): Past key values for attention mechanism.
            temperature (torch.Tensor): Temperature for sampling.
            eos_token (Union[int, torch.Tensor]): End of sequence token.
            streaming_tts_text_mask (Optional[torch.Tensor], optional): Mask for streaming TTS text. Defaults to None.
            max_new_token (int, optional): Maximum number of new tokens to generate. Defaults to 50.
            logits_warpers (List[LogitsWarper], optional): List of logits warpers. Defaults to [].
            logits_processors (List[CustomRepetitionPenaltyLogitsProcessorRepeat], optional): List of logits processors. Defaults to [].
            show_tqdm (bool, optional): Whether to show progress bar. Defaults to True.

        Returns:
            GenerationOutputs: Generation outputs.
        """

        # We only support batch size `1` for now
        assert input_ids.shape[0] == 1
        assert past_key_values is not None

        # fix: this should not be `input_ids.shape[1]`
        # start_idx = input_ids.shape[1]
        start_idx = 1 + self.num_spk_embs * self.use_speaker_embedding + self.streaming_text_reserved_len + 1

        finish = torch.zeros(input_ids.shape[0], device=input_ids.device).bool()

        temperature = temperature.unsqueeze(0).expand(input_ids.shape[0], -1).contiguous().view(-1, 1)

        progress = input_ids.shape[1]

        # Pre-allocate input_ids, shape is [batch_size=1, max_possible_seq_len, self.num_vqs]
        input_ids_buf = torch.zeros(
            input_ids.shape[0],  # batch_size
            progress + max_new_token,  # max_possible_seq_len = input_ids.shape[1] + max_new_token
            input_ids.shape[2],  # self.num_vqs
            dtype=input_ids.dtype,
            device=input_ids.device,
        )

        # Copy existing `input_ids` to `input_ids_buf`
        input_ids_buf.narrow(1, 0, progress).copy_(input_ids)

        del input_ids
        input_ids = input_ids_buf.narrow(1, 0, progress)

        pbar: Optional[tqdm] = None
        if show_tqdm:
            pbar = tqdm(
                total=max_new_token,
                desc="code",
                bar_format="{l_bar}{bar}| {n_fmt}/{total_fmt}(max) [{elapsed}, {rate_fmt}{postfix}]",
            )

        condition_length = 1 + self.num_spk_embs * self.use_speaker_embedding + self.streaming_text_reserved_len + 1

        for i in range(max_new_token):
            # Prepare generation inputs
            audio_bos = False

            # If this is the first audio token, the case is SPECIAL
            if progress == condition_length:
                audio_bos = True

            assert progress == (
                past_key_values[0][0].shape[2] + 1
            )  # If you are using according to the guidelines, this should be passed.

            if audio_bos:
                # Generate the first token, activate the model with `self.audio_bos_token_id`, the model will predict a new audio token. This is a special case because without the `audio bos token`, it is impossible to generate the first audio token in our streaming setting.
                narrowed_input_ids = torch.tensor([[self.audio_bos_token_id]], dtype=torch.long, device=self.device)
                inputs_embeds = self.emb_text(narrowed_input_ids)
                del narrowed_input_ids
            else:
                # Generate the following audio tokens, it is applicable to all other cases, including second and the following calling of `generate`.
                narrowed_input_ids = input_ids.narrow(dim=1, start=input_ids.shape[1] - 1, length=1)
                code_emb = [self.emb_code[i](narrowed_input_ids[:, :, i]) for i in range(self.num_vq)]
                inputs_embeds = torch.stack(code_emb, 3).sum(3)

            position_ids = torch.tensor(
                [past_key_values[0][0].shape[2] + 1], dtype=torch.long, device=self.device
            ).unsqueeze(0)

            cache_position = position_ids.clone()

            # Make causal mask
            causal_mask = make_streaming_chunk_mask_generation(
                inputs_embeds=inputs_embeds,
                past_seen_tokens=past_key_values[0][0].shape[2],
                streaming_tts_text_mask=streaming_tts_text_mask,
                streaming_reserved_length=self.streaming_text_reserved_len,
                streaming_text_chunk_size=self.streaming_text_chunk_size,
            )

            # Model forward
            outputs: BaseModelOutputWithPast = self.model(
                attention_mask=causal_mask,
                position_ids=position_ids,
                past_key_values=past_key_values,
                inputs_embeds=inputs_embeds,
                use_cache=True,
                output_attentions=False,
                cache_position=cache_position,
            )

            del position_ids
            del inputs_embeds
            del cache_position
            del causal_mask

            hidden_states = outputs.last_hidden_state
            past_key_values = outputs.past_key_values

            with P.cached():
                logits = torch.empty(
                    hidden_states.size(0),
                    hidden_states.size(1),
                    self.num_audio_tokens,
                    self.num_vq,
                    dtype=torch.float,
                    device=self.device,
                )
                for num_vq_iter in range(self.num_vq):
                    x: torch.Tensor = self.head_code[num_vq_iter](hidden_states)
                    logits[..., num_vq_iter] = x
                    del x

            del hidden_states

            # logits = logits[:, -1].float()
            logits = logits.narrow(1, -1, 1).squeeze_(1).float()

            # logits = rearrange(logits, "b c n -> (b n) c")
            logits = logits.permute(0, 2, 1)
            logits = logits.reshape(-1, logits.size(2))
            # logits_token = rearrange(input_ids[:, start_idx:], "b c n -> (b n) c")
            input_ids_sliced = input_ids.narrow(
                1,
                start_idx,
                input_ids.size(1) - start_idx,
            ).permute(0, 2, 1)
            logits_token = input_ids_sliced.reshape(
                input_ids_sliced.size(0) * input_ids_sliced.size(1),
                -1,
            ).to(self.device)
            del input_ids_sliced

            logits /= temperature

            if not audio_bos:
                for logitsProcessors in logits_processors:
                    logits = logitsProcessors(logits_token, logits)
            if not audio_bos:
                for logitsWarpers in logits_warpers:
                    logits = logitsWarpers(logits_token, logits)

            del logits_token

            if i < min_new_token:
                logits[:, eos_token] = -torch.inf

            if force_no_stop:
                logits[:, eos_token] = -torch.inf

            scores = F.softmax(logits, dim=-1)

            del logits
            idx_next = torch.multinomial(scores, num_samples=1)  # .to(finish.device)

            del scores

            # idx_next = rearrange(idx_next, "(b n) 1 -> b n", n=self.num_vq)
            idx_next = idx_next.view(-1, self.num_vq)
            finish_or = idx_next.eq(eos_token).any(1)
            finish.logical_or_(finish_or)

            del finish_or
            # Store new `token` into `input_ids_buf`
            input_ids_buf.narrow(1, progress, 1).copy_(idx_next.unsqueeze_(1))

            if i == 0 and finish.any():
                # raise Exception
                break

            del idx_next
            progress += 1
            input_ids = input_ids_buf.narrow(1, 0, progress)

            if finish.all():
                break

            if pbar is not None:
                pbar.update(1)

        if pbar is not None:
            pbar.close()

        if not finish.all():
            if show_tqdm:
                logger.info(f"incomplete result. hit max_new_token: {max_new_token}")

        del input_ids_buf

        if finish.all():
            # the last may contains eos token
            genrated_input_ids = input_ids[:, condition_length:-1, :]
        else:
            # there is no eos token
            genrated_input_ids = input_ids[:, condition_length:, :]

        return ConditionalChatTTSGenerationOutput(
            new_ids=genrated_input_ids,
            audio_input_ids=input_ids,  # for update purpose
            past_key_values=past_key_values,  # for update purpose
            finished=finish.all(),
        )

    @torch.inference_mode()
    def decode_to_mel_specs(
        self,
        result_list: List[torch.Tensor],
    ):
        """Decode discrete audio codes to mel spectrograms.

        Borrowed from `https://github.com/2noise/ChatTTS/blob/main/ChatTTS/core.py`

        Args:
            result_list (List[torch.Tensor]): Audio codes output from `generate`.

        Returns:
            torch.Tensor: Mel spectrograms.
        """

        decoder = self.dvae
        max_x_len = -1
        if len(result_list) == 0:
            return np.array([], dtype=np.float32)
        for result in result_list:
            if result.size(0) > max_x_len:
                max_x_len = result.size(0)
        batch_result = torch.zeros(
            (len(result_list), result_list[0].size(1), max_x_len),
            dtype=result_list[0].dtype,
            device=result_list[0].device,
        )
        for i in range(len(result_list)):
            src = result_list[i]
            batch_result[i].narrow(1, 0, src.size(0)).copy_(src.permute(1, 0))
            del src

        mel_specs = decoder(batch_result)
        del batch_result
        return mel_specs


# Borrowed from `https://github.com/2noise/ChatTTS/blob/main/ChatTTS/model/processors.py`
def gen_logits(
    num_code: int,
    top_P=0.7,
    top_K=20,
    repetition_penalty=1.0,
):
    logits_warpers = []
    if top_P is not None:
        logits_warpers.append(TopPLogitsWarper(top_P, min_tokens_to_keep=3))
    if top_K is not None:
        logits_warpers.append(TopKLogitsWarper(top_K, min_tokens_to_keep=3))

    logits_processors = []
    if repetition_penalty is not None and repetition_penalty != 1:
        logits_processors.append(CustomRepetitionPenaltyLogitsProcessorRepeat(repetition_penalty, num_code, 16))

    return logits_warpers, logits_processors


# Copy and modified from transformers.models.llama.modeling_llama.LlamaForCausalLM.prepare_inputs_for_generation
def prepare_inputs_for_generation(
    self,
    input_ids,
    past_key_values=None,
    attention_mask=None,
    inputs_embeds=None,
    cache_position=None,
    position_ids=None,
    use_cache=True,
    **kwargs,
):
    if past_key_values is not None:
        if isinstance(past_key_values, Cache):
            cache_length = past_key_values.get_seq_length()
            past_length = past_key_values.seen_tokens
        else:
            cache_length = past_length = past_key_values[0][0].shape[2]

        # Keep only the unprocessed tokens:
        # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
        # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
        # input)
        if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
            input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
        # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
        # input_ids based on the past_length.
        elif past_length < input_ids.shape[1]:
            input_ids = input_ids[:, past_length:]
        # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.

    if attention_mask is not None and position_ids is None:
        # create position_ids on the fly for batch generation
        position_ids = attention_mask.long().cumsum(-1) - 1
        position_ids.masked_fill_(attention_mask == 0, 1)
        if past_key_values:
            position_ids = position_ids[:, -input_ids.shape[1] :]

            # This clo≠clo≠clone call is needed to avoid recapturing cuda graphs with →rch.comπ≤→rch.comπ≤torch.compile's  mode=reduce−overheadmode=reduce-overheadmode="reduce-overhead, as otherwise the input positionidspositionidsposition_ids would have various stride during the decoding. Here, simply using .contiguous().contiguous().contiguous() is not sufficient as in the batch size = 1 case, positionidspositionidsposition_ids is already contiguous but with varying stride which retriggers a capture.
            position_ids = position_ids.clone(memory_format=torch.contiguous_format)

    # if ∈putsembeds∈putsembedsinputs_embeds are passed, we only want to use them in the 1st generation step
    if inputs_embeds is not None and cache_position[0] == 0:
        model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
    else:
        # The clone here is for the same reason as for positionidspositionidsposition_ids.
        model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}

    if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
        if model_inputs["inputs_embeds"] is not None:
            batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
            device = model_inputs["inputs_embeds"].device
        else:
            batch_size, sequence_length = model_inputs["input_ids"].shape
            device = model_inputs["input_ids"].device

        dtype = self.lm_head.weight.dtype
        min_dtype = torch.finfo(dtype).min

        attention_mask = _prepare_4d_causal_attention_mask_with_cache_position(
            attention_mask,
            sequence_length=sequence_length,
            target_length=past_key_values.get_max_length(),
            dtype=dtype,
            device=device,
            min_dtype=min_dtype,
            cache_position=cache_position,
            batch_size=batch_size,
        )

    model_inputs.update(
        {
            "position_ids": position_ids,
            # "cache_position": cache_position,
            "past_key_values": past_key_values,
            "use_cache": use_cache,
            "attention_mask": attention_mask,
        }
    )
    return model_inputs