File size: 46,199 Bytes
0893f10 554254e 0893f10 554254e e3a1a6c 554254e 0893f10 da1b850 0893f10 4ac69b4 0893f10 4ac69b4 0893f10 4ac69b4 0893f10 4ac69b4 0893f10 8fd104c e4db629 0893f10 a8ee701 0893f10 4ac69b4 0893f10 6e9d129 0893f10 0f4c447 0893f10 0f4c447 0893f10 0f4c447 0893f10 6e9d129 0893f10 126e724 0893f10 0f4c447 0893f10 6e9d129 0893f10 9baca8a 0893f10 0f4c447 0893f10 4ac69b4 0893f10 8fd104c 0893f10 8fd104c 0893f10 e4db629 0893f10 8fd104c 0893f10 4ac69b4 0893f10 8fd104c 0893f10 4ac69b4 0893f10 a8ee701 0893f10 da1b850 0893f10 8fd104c 0893f10 c8c7670 0893f10 8fd104c 0893f10 9baca8a 0893f10 c8c7670 0893f10 640e05c 0893f10 640e05c 0893f10 640e05c 0893f10 640e05c 0893f10 640e05c 0893f10 640e05c 0893f10 640e05c 0893f10 554254e 640e05c 0893f10 8fd104c 0893f10 4923b93 0893f10 e89b46b 0893f10 e89b46b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 |
---
pipeline_tag: any-to-any
datasets:
- openbmb/RLAIF-V-Dataset
library_name: transformers
language:
- multilingual
tags:
- minicpm-o
- omni
- vision
- ocr
- multi-image
- video
- custom_code
- audio
- speech
- voice cloning
- live Streaming
- realtime speech conversation
- asr
- tts
---
<h1>A GPT-4o Level MLLM for Vision, Speech and Multimodal Live Streaming on Your Phone</h1>
[GitHub](https://github.com/OpenBMB/MiniCPM-o) | [Online Demo](https://minicpm-omni-webdemo-us.modelbest.cn)</a>
## MiniCPM-o 2.6
**MiniCPM-o 2.6** is the latest and most capable model in the MiniCPM-o series. The model is built in an end-to-end fashion based on SigLip-400M, Whisper-medium-300M, ChatTTS-200M, and Qwen2.5-7B with a total of 8B parameters. It exhibits a significant performance improvement over MiniCPM-V 2.6, and introduces new features for real-time speech conversation and multimodal live streaming. Notable features of MiniCPM-o 2.6 include:
- 🔥 **Leading Visual Capability.**
MiniCPM-o 2.6 achieves an average score of 70.2 on OpenCompass, a comprehensive evaluation over 8 popular benchmarks. **With only 8B parameters, it surpasses widely used proprietary models like GPT-4o-202405, Gemini 1.5 Pro, and Claude 3.5 Sonnet** for single image understanding. It also **outperforms GPT-4V and Claude 3.5 Sonnet** in mutli-image and video understanding, and shows promising in-context learning capability.
- 🎙 **State-of-the-art Speech Capability.** MiniCPM-o 2.6 supports **bilingual real-time speech conversation with configurable voices** in English and Chinese. It **outperforms GPT-4o-realtime on audio understanding tasks** such as ASR and STT translation, and shows **state-of-the-art performance on speech conversation in both semantic and acoustic evaluations in the open-source community**. It also allows for fun features such as emotion/speed/style control, end-to-end voice cloning, role play, etc.
- 🎬 **Strong Multimodal Live Streaming Capability.** As a new feature, MiniCPM-o 2.6 can **accept continous video and audio streams independent of user queries, and support real-time speech interaction**. It **outperforms GPT-4o-202408 and Claude 3.5 Sonnet and shows state-of-art performance in open-source community on StreamingBench**, a comprehensive benchmark for real-time video understanding, omni-source (video & audio) understanding, and multimodal contextual understanding.
- 💪 **Strong OCR Capability and Others.**
Advancing popular visual capabilites from MiniCPM-V series, MiniCPM-o 2.6 can process images with any aspect ratio and up to 1.8 million pixels (e.g., 1344x1344). It achieves **state-of-the-art performance on OCRBench for models under 25B, surpassing proprietary models such as GPT-4o-202405**.
Based on the the latest [RLAIF-V](https://github.com/RLHF-V/RLAIF-V/) and [VisCPM](https://github.com/OpenBMB/VisCPM) techniques, it features **trustworthy behaviors**, outperforming GPT-4o and Claude 3.5 Sonnet on MMHal-Bench, and supports **multilingual capabilities** on more than 30 languages.
- 🚀 **Superior Efficiency.**
In addition to its friendly size, MiniCPM-o 2.6 also shows **state-of-the-art token density** (i.e., number of pixels encoded into each visual token). **It produces only 640 tokens when processing a 1.8M pixel image, which is 75% fewer than most models**. This directly improves the inference speed, first-token latency, memory usage, and power consumption. As a result, MiniCPM-o 2.6 can efficiently support **multimodal live streaming** on end-side devices such as iPad.
- 💫 **Easy Usage.**
MiniCPM-o 2.6 can be easily used in various ways: (1) [llama.cpp](https://github.com/OpenBMB/llama.cpp/blob/minicpm-omni/examples/llava/README-minicpmo2.6.md) support for efficient CPU inference on local devices, (2) [int4](https://huggingface.co/openbmb/MiniCPM-o-2_6-int4) and [GGUF](https://huggingface.co/openbmb/MiniCPM-o-2_6-gguf) format quantized models in 16 sizes, (3) [vLLM](#efficient-inference-with-llamacpp-ollama-vllm) support for high-throughput and memory-efficient inference, (4) fine-tuning on new domains and tasks with [LLaMA-Factory](./docs/llamafactory_train.md), (5) quick local WebUI demo setup with [Gradio](#chat-with-our-demo-on-gradio), and (6) online web demo on [server](https://minicpm-omni-webdemo-us.modelbest.cn/).
**Model Architecture.**
- **End-to-end Omni-modal Architecture.** Different modality encoder/decoders are connected and trained in an **end-to-end** fashion to fully exploit rich multimodal knowledge.
- **Omni-modal Live Streaming Mechanism.** (1) We change the offline modality encoder/decoders into online ones for **streaminig inputs/outputs.** (2) We devise a **time-division multiplexing (TDM) mechanism** for omni-modality streaminig processing in the LLM backbone. It divides parallel omni-modality streams into sequential info within small periodic time slices.
- **Configurable Speech Modeling Design.** We devise a multimodal system prompt, including traditional text system prompt, and **a new audio system prompt to determine the assistant voice**. This enables flexible voice configurations in inference time, and also facilitates end-to-end voice cloning and description-based voice creation.
<div align="center">
<img src="https://github.com/OpenBMB/MiniCPM-o/raw/main/assets/minicpm-o-26-framework.png" , width=80%>
</div>
### Evaluation <!-- omit in toc -->
<div align="center">
<img src="https://github.com/OpenBMB/MiniCPM-o/raw/main/assets/radar.jpg" width=90% />
</div>
<details>
<summary>Click to view visual understanding results.</summary>
**Image Understanding**
<div align="center">
<table style="margin: 0px auto;">
<thead>
<tr>
<th align="left">Model</th>
<th>Size</th>
<th>Token Density<sup>+</sup></th>
<th>OpenCompass</th>
<th>OCRBench</th>
<th>MathVista mini</th>
<th>ChartQA</th>
<th>MMVet</th>
<th>MMStar</th>
<th>MME</th>
<th>MMB1.1 test</th>
<th>AI2D</th>
<th>MMMU val</th>
<th>HallusionBench</th>
<th>TextVQA val</th>
<th>DocVQA test</th>
<th>MathVerse mini</th>
<th>MathVision</th>
<th>MMHal Score</th>
</tr>
</thead>
<tbody align="center">
<tr>
<td colspan="19" align="left"><strong>Proprietary</strong></td>
</tr>
<tr>
<td nowrap="nowrap" align="left">GPT-4o-20240513</td>
<td>-</td>
<td>1088</td>
<td><u>69.9</u></td>
<td>736</td>
<td>61.3</td>
<td>85.7</td>
<td><strong>69.1</strong></td>
<td>63.9</td>
<td>2328.7</td>
<td>82.2</td>
<td>84.6</td>
<td><strong>69.2</strong></td>
<td><strong>55.0</strong></td>
<td>-</td>
<td>92.8</td>
<td><strong>50.2</strong></td>
<td><strong>30.4</strong></td>
<td><u>3.6</u></td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Claude3.5-Sonnet</td>
<td>-</td>
<td>750</td>
<td>67.9</td>
<td>788</td>
<td>61.6</td>
<td><strong>90.8</strong></td>
<td>66.0</td>
<td>62.2</td>
<td>1920.0</td>
<td>78.5</td>
<td>80.2</td>
<td><u>65.9</u></td>
<td>49.9</td>
<td>-</td>
<td><strong>95.2</strong></td>
<td>-</td>
<td>-</td>
<td>3.4</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Gemini 1.5 Pro</td>
<td>-</td>
<td>-</td>
<td>64.4</td>
<td>754</td>
<td>57.7</td>
<td>81.3</td>
<td>64.0</td>
<td>59.1</td>
<td>2110.6</td>
<td>73.9</td>
<td>79.1</td>
<td>60.6</td>
<td>45.6</td>
<td>73.5</td>
<td>86.5</td>
<td>-</td>
<td>19.2</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">GPT-4o-mini-20240718</td>
<td>-</td>
<td>1088</td>
<td>64.1</td>
<td>785</td>
<td>52.4</td>
<td>-</td>
<td>66.9</td>
<td>54.8</td>
<td>2003.4</td>
<td>76.0</td>
<td>77.8</td>
<td>60.0</td>
<td>46.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.3</td>
</tr>
<tr>
<td colspan="19" align="left"><strong>Open Source</strong></td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Cambrian-34B</td>
<td>34B</td>
<td><u>1820</u></td>
<td>58.3</td>
<td>591</td>
<td>50.3</td>
<td>75.6</td>
<td>53.2</td>
<td>54.2</td>
<td>2049.9</td>
<td>77.8</td>
<td>79.5</td>
<td>50.4</td>
<td>41.6</td>
<td>76.7</td>
<td>75.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">GLM-4V-9B</td>
<td>13B</td>
<td>784</td>
<td>59.1</td>
<td>776</td>
<td>51.1</td>
<td>-</td>
<td>58.0</td>
<td>54.8</td>
<td>2018.8</td>
<td>67.9</td>
<td>71.2</td>
<td>46.9</td>
<td>45.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Pixtral-12B</td>
<td>12B</td>
<td>256</td>
<td>61.0</td>
<td>685</td>
<td>56.9</td>
<td>81.8</td>
<td>58.5</td>
<td>54.5</td>
<td>-</td>
<td>72.7</td>
<td>79.0</td>
<td>51.1</td>
<td>47.0</td>
<td>75.7</td>
<td>90.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">DeepSeek-VL2-27B (4B)</td>
<td>27B</td>
<td>672</td>
<td>66.4</td>
<td>809</td>
<td>63.9</td>
<td>86.0</td>
<td>60.0</td>
<td>61.9</td>
<td>2253.0</td>
<td>81.2</td>
<td>83.8</td>
<td>54.0</td>
<td>45.3</td>
<td><u>84.2</u></td>
<td>93.3</td>
<td>-</td>
<td>-</td>
<td>3.0</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Qwen2-VL-7B</td>
<td>8B</td>
<td>784</td>
<td>67.1</td>
<td><u>866</u></td>
<td>58.2</td>
<td>83.0</td>
<td>62.0</td>
<td>60.7</td>
<td>2326.0</td>
<td>81.8</td>
<td>83.0</td>
<td>54.1</td>
<td>50.6</td>
<td><strong>84.3</strong></td>
<td><u>94.5</u></td>
<td>31.9</td>
<td>16.3</td>
<td>3.2</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">LLaVA-OneVision-72B</td>
<td>72B</td>
<td>182</td>
<td>68.1</td>
<td>741</td>
<td>67.5</td>
<td>83.7</td>
<td>60.6</td>
<td><strong>65.8</strong></td>
<td>2261.0</td>
<td><strong>85.0</strong></td>
<td><u>85.6</u></td>
<td>56.8</td>
<td>49.0</td>
<td>80.5</td>
<td>91.3</td>
<td>39.1</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">InternVL2.5-8B</td>
<td>8B</td>
<td>706</td>
<td>68.3</td>
<td>822</td>
<td><u>64.4</u></td>
<td>84.8</td>
<td>62.8</td>
<td>62.8</td>
<td>2344.0</td>
<td><u>83.6</u></td>
<td>84.5</td>
<td>56.0</td>
<td>50.1</td>
<td>79.1</td>
<td>93.0</td>
<td>39.5</td>
<td>19.7</td>
<td>3.4</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">MiniCPM-V 2.6</td>
<td>8B</td>
<td><strong>2822</strong></td>
<td>65.2</td>
<td>852*</td>
<td>60.6</td>
<td>79.4</td>
<td>60.0</td>
<td>57.5</td>
<td><u>2348.4*</u></td>
<td>78.0</td>
<td>82.1</td>
<td>49.8*</td>
<td>48.1*</td>
<td>80.1</td>
<td>90.8</td>
<td>25.7</td>
<td>18.3</td>
<td>3.6</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">MiniCPM-o 2.6</td>
<td>8B</td>
<td><strong>2822</strong></td>
<td><strong>70.2</strong></td>
<td><strong>897*</strong></td>
<td><strong>71.9*</strong></td>
<td><u>86.9*</u></td>
<td><u>67.5</u></td>
<td><u>64.0</u></td>
<td><strong>2372.0*</strong></td>
<td>80.5</td>
<td><strong>85.8</strong></td>
<td>50.4*</td>
<td><u>51.9</u></td>
<td>82.0</td>
<td>93.5</td>
<td><u>41.4*</u></td>
<td><u>23.1*</u></td>
<td><strong>3.8</strong></td>
</tr>
</tbody>
</table>
</div>
* We evaluate this benchmark using chain-of-thought prompting. Specifically, for MME, we used this technique only for the Cognition set.
<sup>+</sup> Token Density: number of pixels encoded into each visual token at maximum resolution, i.e., # pixels at maximum resolution / # visual tokens.
Note: For proprietary models, we calculate token density based on the image encoding charging strategy defined in the official API documentation, which provides an upper-bound estimation.
**Multi-image and Video Understanding**
<div align="center">
<table style="margin: 0px auto;">
<thead>
<tr>
<th align="left">Model</th>
<th>Size</th>
<th>BLINK val</th>
<th>Mantis Eval</th>
<th>MIRB</th>
<th>Video-MME (wo / w subs)</th>
</tr>
</thead>
<tbody align="center">
<tr>
<td colspan="6" align="left"><strong>Proprietary</strong></td>
</tr>
<tr>
<td nowrap="nowrap" align="left">GPT-4o-20240513</td>
<td>-</td>
<td><strong>68.0</strong></td>
<td>-</td>
<td>-</td>
<td><strong>71.9/77.2<strong></td>
</tr>
<tr>
<td nowrap="nowrap" align="left">GPT4V</td>
<td>-</td>
<td>54.6</td>
<td>62.7</td>
<td>53.1</td>
<td>59.9/63.3</td>
</tr>
<tr>
<td colspan="6" align="left"><strong>Open-source</strong></td>
</tr>
<tr>
<td nowrap="nowrap" align="left">LLaVA-NeXT-Interleave 14B</td>
<td>14B</td>
<td>52.6</td>
<td>66.4</td>
<td>30.2</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">LLaVA-OneVision-72B</td>
<td>72B</td>
<td>55.4</td>
<td><strong>77.6</strong></td>
<td>-</td>
<td><u>66.2/69.5</u></td>
</tr>
<tr>
<td nowrap="nowrap" align="left">MANTIS 8B</td>
<td>8B</td>
<td>49.1</td>
<td>59.5</td>
<td>34.8</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Qwen2-VL-7B</td>
<td>8B</td>
<td>53.2</td>
<td>69.6*</td>
<td><strong>67.6*</strong></td>
<td>63.3/69.0</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">InternVL2.5-8B</td>
<td>8B</td>
<td>54.8</td>
<td>67.7</td>
<td>52.5</td>
<td>64.2/66.9</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">MiniCPM-V 2.6</td>
<td>8B</td>
<td>53.0</td>
<td>69.1</td>
<td>53.8</td>
<td>60.9/63.6</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">MiniCPM-o 2.6</td>
<td>8B</td>
<td><u>56.7</u></td>
<td><u>71.9</u></td>
<td><u>58.6</u></td>
<td>63.9/67.9</td>
</tr>
</tbody>
</table>
</div>
* We evaluate officially released checkpoints by ourselves.
</details>
<details>
<summary>Click to view audio understanding and speech conversation results.</summary>
**Audio Understanding**
<div align="center">
<table style="margin: 0px auto;">
<thead>
<tr>
<th align="left">Task</th>
<th>Size</th>
<th colspan="3">ASR (zh)</th>
<th colspan="3">ASR (en)</th>
<th colspan="2">AST</th>
<th>Emotion</th>
</tr>
<tr>
<th align="left">Metric</th>
<td></td>
<th colspan="3">CER↓</th>
<th colspan="3">WER↓</th>
<th colspan="2">BLEU↑</th>
<th>ACC↑</th>
</tr>
<tr>
<th align="left">Dataset</th>
<td></td>
<th>AISHELL-1</th>
<th>Fleurs zh</th>
<th>WenetSpeech test-net</th>
<th>LibriSpeech test-clean</th>
<th>GigaSpeech</th>
<th>TED-LIUM</th>
<th>CoVoST en2zh</th>
<th>CoVoST zh2en</th>
<th>MELD emotion</th>
</tr>
</thead>
<tbody align="center">
<tr>
<td colspan="11" align="left"><strong>Proprietary</strong></td>
</tr>
<tr>
<td nowrap="nowrap" align="left">GPT-4o-Realtime</td>
<td>-</td>
<td>7.3*</td>
<td><u>5.4*</u></td>
<td>28.9*</td>
<td>2.6*</td>
<td>12.9*</td>
<td>4.8*</td>
<td>37.1*</td>
<td>15.7*</td>
<td>33.2*</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Gemini 1.5 Pro</td>
<td>-</td>
<td>4.5*</td>
<td>5.9*</td>
<td>14.3*</td>
<td>2.9*</td>
<td>10.6*</td>
<td><strong>3.0*</strong></td>
<td><u>47.3*</u></td>
<td>22.6*</td>
<td>48.4*</td>
</tr>
<tr>
<td colspan="11" align="left"><strong>Open-Source</strong></td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Qwen2-Audio-Base</td>
<td>8B</td>
<td>-</td>
<td>7.5</td>
<td>-</td>
<td><strong>1.6</strong></td>
<td>-</td>
<td>-</td>
<td>45.2</td>
<td><u>24.4</u></td>
<td><strong>55.3</strong></td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Qwen2-Audio-Instruction</td>
<td>8B</td>
<td>2.6*</td>
<td>6.9*</td>
<td><u>10.3*</u></td>
<td>3.1*</td>
<td><u>9.7</u>*</td>
<td>5.9*</td>
<td>39.5*</td>
<td>22.9*</td>
<td>17.4*</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">GLM-4-Voice-Base</td>
<td>9B</td>
<td><u>2.5</u></td>
<td>-</td>
<td>-</td>
<td>2.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">MiniCPM-o 2.6</td>
<td>8B</td>
<td><strong>1.6</strong></td>
<td><strong>4.4</strong></td>
<td><strong>6.9</strong></td>
<td><u>1.7</u></td>
<td><strong>8.7</strong></td>
<td><strong>3.0</strong></td>
<td><strong>48.2</strong></td>
<td><strong>27.2</strong></td>
<td><u>52.4</u></td>
</tr>
</tbody>
</table>
</div>
* We evaluate officially released checkpoints by ourselves.<br><br>
**Speech Generation**
<div align="center">
<table style="margin: 0px auto;">
<thead>
<tr>
<th align="left">Task</th>
<th>Size</th>
<th colspan="9">SpeechQA</th>
</tr>
<tr>
<th align="left">Metric</th>
<th></th>
<th colspan="3">ACC↑</th>
<th>G-Eval (10 point)↑</th>
<th>Semantic ELO score↑</th>
<th>Acoustic ELO score↑</th>
<th>Overall ELO score↑</th>
<th>UTMOS↑</th>
<th>ASR-WER↓</th>
</tr>
<tr>
<th align="left">Dataset</th>
<th></th>
<th>Speech Llama Q.</th>
<th>Speech Web Q.</th>
<th>Speech Trivia QA</th>
<th>Speech AlpacaEval</th>
<th colspan="5">AudioArena</th>
</tr>
</thead>
<tbody align="center">
<tr>
<td colspan="11" align="left"><strong>Proprietary</strong></td>
</tr>
<tr>
<td nowrap="nowrap" align="left">GPT-4o-Realtime</td>
<td></td>
<td><strong>71.7</strong></td>
<td><strong>51.6</strong></td>
<td><strong>69.7</strong></td>
<td><strong>7.4</strong></td>
<td><strong>1157</strong></td>
<td><strong>1203</strong></td>
<td><strong>1200</strong></td>
<td><strong>4.2</strong></td>
<td><strong>2.3</strong></td>
</tr>
<tr>
<td colspan="11" align="left"><strong>Open-Source</strong></td>
</tr>
<tr>
<td nowrap="nowrap" align="left">GLM-4-Voice</td>
<td>9B</td>
<td>50.0</td>
<td>32.0</td>
<td>36.4</td>
<td><u>5.1</u></td>
<td>999</td>
<td>1147</td>
<td>1035</td>
<td><u>4.1</u></td>
<td><u>11.7</u></td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Llama-Omni</td>
<td>8B</td>
<td>45.3</td>
<td>22.9</td>
<td>10.7</td>
<td>3.9</td>
<td>960</td>
<td>878</td>
<td>897</td>
<td>3.2</td>
<td>24.3</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Moshi</td>
<td>7B</td>
<td>43.7</td>
<td>23.8</td>
<td>16.7</td>
<td>2.4</td>
<td>871</td>
<td>808</td>
<td>875</td>
<td>2.8</td>
<td>8.2</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Mini-Omni</td>
<td>1B</td>
<td>22.0</td>
<td>12.8</td>
<td>6.9</td>
<td>2.5</td>
<td>926</td>
<td>803</td>
<td>865</td>
<td>3.4</td>
<td>10.0</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">MiniCPM-o 2.6</td>
<td>8B</td>
<td><u>61.0</u></td>
<td><u>40.0</u></td>
<td><u>40.2</u></td>
<td><u>5.1</u></td>
<td><u>1088</u></td>
<td><u>1163</u></td>
<td><u>1131</u></td>
<td><strong>4.2</strong></td>
<td>9.8</td>
</tr>
</tbody>
</table>
</div>
All results are from AudioEvals, and the evaluation methods along with further details can be found in <a href="https://github.com/OpenBMB/UltraEval-Audio" target="_blank">AudioEvals</a>.<br><br>
**End-to-end Voice Cloning**
<div align="center">
<table style="margin: 0px auto;">
<thead>
<tr>
<th align="left">Task</th>
<th colspan="2">Voice cloning</th>
</tr>
<tr>
<th align="left">Metric</th>
<th>SIMO↑</th>
<th>SIMO↑</th>
</tr>
<tr>
<th align="left">Dataset</th>
<th>Seed-TTS test-zh</th>
<th>Seed-TTS test-en</th>
</tr>
</thead>
<tbody align="center">
<tr>
<td nowrap="nowrap" align="left">F5-TTS</td>
<td><strong>76</strong></td>
<td><strong>67</strong></td>
</tr>
<tr>
<td nowrap="nowrap" align="left">CosyVoice</td>
<td><u>75</u></td>
<td><u>64</u></td>
</tr>
<tr>
<td nowrap="nowrap" align="left">FireRedTTS</td>
<td>63</td>
<td>46</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">MiniCPM-o 2.6</td>
<td>57</td>
<td>47</td>
</tr>
</tbody>
</table>
</div>
</details>
<details>
<summary>Click to view multimodal live streaming results.</summary>
**Multimodal Live Streaming**: results on StreamingBench
<table style="margin: 0px auto;">
<thead>
<tr>
<th align="left">Model</th>
<th>Size</th>
<th>Real-Time Video Understanding</th>
<th>Omni-Source Understanding</th>
<th>Contextual Understanding</th>
<th>Overall</th>
</tr>
</thead>
<tbody align="center">
<tr>
<td colspan="7" align="left"><strong>Proprietary</strong></td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Gemini 1.5 Pro</td>
<td>-</td>
<td><u>77.4</u></td>
<td><strong>67.8</strong></td>
<td><strong>51.1</strong></td>
<td><strong>70.3</strong></td>
</tr>
<tr>
<td nowrap="nowrap" align="left">GPT-4o-202408</td>
<td>-</td>
<td>74.5</td>
<td>51.0</td>
<td><u>48.0</u></td>
<td>64.1</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Claude-3.5-Sonnet</td>
<td>-</td>
<td>74.0</td>
<td>41.4</td>
<td>37.8</td>
<td>59.7</td>
</tr>
<tr>
<td colspan="9" align="left"><strong>Open-source</strong></td>
</tr>
<tr>
<td nowrap="nowrap" align="left">VILA-1.5</td>
<td>8B</td>
<td>61.5</td>
<td>37.5</td>
<td>26.7</td>
<td>49.5</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">LongVA</td>
<td>7B</td>
<td>63.1</td>
<td>35.9</td>
<td>30.2</td>
<td>50.7</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">LLaVA-Next-Video-34B</td>
<td>34B</td>
<td>69.8</td>
<td>41.7</td>
<td>34.3</td>
<td>56.7</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Qwen2-VL-7B</td>
<td>8B</td>
<td>71.2</td>
<td>40.7</td>
<td>33.1</td>
<td>57.0</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">InternVL2-8B</td>
<td>8B</td>
<td>70.1</td>
<td>42.7</td>
<td>34.1</td>
<td>57.0</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">VITA-1.5</td>
<td>8B</td>
<td>70.9</td>
<td>40.8</td>
<td>35.8</td>
<td>57.4</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">LLaVA-OneVision-7B</td>
<td>8B</td>
<td>74.3</td>
<td>40.8</td>
<td>31.0</td>
<td>58.4</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">InternLM-XC2.5-OL-7B</td>
<td>8B</td>
<td>75.4</td>
<td>46.2</td>
<td>33.6</td>
<td>60.8</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">MiniCPM-V 2.6</td>
<td>8B</td>
<td>72.4</td>
<td>40.2</td>
<td>33.4</td>
<td>57.7</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">MiniCPM-o 2.6</td>
<td>8B</td>
<td><strong>79.9</strong></td>
<td><u>53.4</u></td>
<td>38.5</td>
<td><u>66.0</u></td>
</tr>
</tbody>
</table>
</details>
### Examples <!-- omit in toc -->
We deploy MiniCPM-o 2.6 on end devices. The demo video is the raw-speed recording on an iPad Pro and a Web demo.
<div align="center">
<a href="https://youtu.be/JFJg9KZ_iZk"><img src="https://github.com/OpenBMB/MiniCPM-o/raw/main/assets/o-2dot6-demo-video-preview.png", width=70%></a>
</div>
<br>
<div style="display: flex; flex-direction: column; align-items: center;">
<img src="https://github.com/OpenBMB/MiniCPM-o/raw/main/assets/minicpmo2_6/minicpmo2_6_math_intersect.png" alt="math" style="margin-bottom: 5px;">
<img src="https://github.com/OpenBMB/MiniCPM-o/raw/main/assets/minicpmo2_6/minicpmo2_6_diagram_train_NN.png" alt="diagram" style="margin-bottom: 5px;">
<img src="https://github.com/OpenBMB/MiniCPM-o/raw/main/assets/minicpmo2_6/minicpmo2_6_multi-image_bike.png" alt="bike" style="margin-bottom: 5px;">
</div>
## Online Demo
Click here to try the online demo of [MiniCPM-o 2.6](https://minicpm-omni-webdemo-us.modelbest.cn).
## Usage
Inference using Huggingface transformers on NVIDIA GPUs. Requirements tested on python 3.10:
```
Pillow==10.1.0
torch==2.2.0
torchaudio==2.2.0
torchvision==0.17.0
transformers==4.44.2
librosa==0.9.0
soundfile==0.12.1
vector-quantize-pytorch==1.18.5
vocos==0.1.0
decord
moviepy
```
### Model initialization
```python
import torch
from PIL import Image
from transformers import AutoModel, AutoTokenizer
# load omni model default, the default init_vision/init_audio/init_tts is True
# if load vision-only model, please set init_audio=False and init_tts=False
# if load audio-only model, please set init_vision=False
model = AutoModel.from_pretrained(
'openbmb/MiniCPM-o-2_6',
trust_remote_code=True,
attn_implementation='sdpa', # sdpa or flash_attention_2
torch_dtype=torch.bfloat16,
init_vision=True,
init_audio=True,
init_tts=True
)
model = model.eval().cuda()
tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-o-2_6', trust_remote_code=True)
# In addition to vision-only mode, tts processor and vocos also needs to be initialized
model.init_tts()
model.tts.float()
```
### Omni mode
we provide two inference modes: chat and streaming
#### Chat inference
```python
import math
import numpy as np
from PIL import Image
from moviepy.editor import VideoFileClip
import tempfile
import librosa
import soundfile as sf
def get_video_chunk_content(video_path, flatten=True):
video = VideoFileClip(video_path)
print('video_duration:', video.duration)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=True) as temp_audio_file:
temp_audio_file_path = temp_audio_file.name
video.audio.write_audiofile(temp_audio_file_path, codec="pcm_s16le", fps=16000)
audio_np, sr = librosa.load(temp_audio_file_path, sr=16000, mono=True)
num_units = math.ceil(video.duration)
# 1 frame + 1s audio chunk
contents= []
for i in range(num_units):
frame = video.get_frame(i+1)
image = Image.fromarray((frame).astype(np.uint8))
audio = audio_np[sr*i:sr*(i+1)]
if flatten:
contents.extend(["<unit>", image, audio])
else:
contents.append(["<unit>", image, audio])
return contents
video_path="/path/to/video"
# if use voice clone prompt, please set ref_audio
ref_audio_path = 'assets/demo.wav'
ref_audio, _ = librosa.load(ref_audio_path, sr=16000, mono=True)
sys_msg = model.get_sys_prompt(ref_audio=ref_audio, mode='omni', language='en')
# or use default prompt
# sys_msg = model.get_sys_prompt(mode='omni', language='en')
contents = get_video_chunk_content(video_path)
msg = {"role":"user", "content": contents}
msgs = [sys_msg, msg]
# please set generate_audio=True and output_audio_path to save the tts result
generate_audio = True
output_audio_path = 'output.wav'
res = model.chat(
msgs=msgs,
tokenizer=tokenizer,
sampling=True,
temperature=0.5,
max_new_tokens=4096,
omni_input=True, # please set omni_input=True when omni inference
use_tts_template=True,
generate_audio=generate_audio,
output_audio_path=output_audio_path,
max_slice_nums=1,
use_image_id=False,
return_dict=True
)
print(res)
```
#### Streaming inference
```python
# a new conversation need reset session first, it will reset the kv-cache
model.reset_session()
contents = get_video_chunk_content(video_path, flatten=False)
session_id = '123'
generate_audio = True
# 1. prefill system prompt
res = model.streaming_prefill(
session_id=session_id,
msgs=[sys_msg],
tokenizer=tokenizer
)
# 2. prefill video/audio chunks
for content in contents:
msgs = [{"role":"user", "content": content}]
res = model.streaming_prefill(
session_id=session_id,
msgs=msgs,
tokenizer=tokenizer
)
# 3. generate
res = model.streaming_generate(
session_id=session_id,
tokenizer=tokenizer,
temperature=0.5,
generate_audio=generate_audio
)
audios = []
text = ""
if generate_audio:
for r in res:
audio_wav = r.audio_wav
sampling_rate = r.sampling_rate
txt = r.text
audios.append(audio_wav)
text += txt
res = np.concatenate(audios)
sf.write("output.wav", res, samplerate=sampling_rate)
print("text:", text)
print("audio saved to output.wav")
else:
for r in res:
text += r['text']
print("text:", text)
```
### Audio-Only mode
#### Mimick
`Mimick` task reflects a model's end-to-end speech modeling capability. The model takes audio input, and outputs an ASR transcription and subsequently reconstructs the original audio with high similarity. The higher the similarity between the reconstructed audio and the original audio, the stronger the model's foundational capability in end-to-end speech modeling.
```python
mimick_prompt = "Please repeat each user's speech, including voice style and speech content."
audio_input, _ = librosa.load('xxx.wav', sr=16000, mono=True)
msgs = [{'role': 'user', 'content': [mimick_prompt,audio_input]}]
res = model.chat(
msgs=msgs,
tokenizer=tokenizer,
sampling=True,
max_new_tokens=128,
use_tts_template=True,
temperature=0.3,
generate_audio=True,
output_audio_path='output.wav', # save the tts result to output_audio_path
)
```
#### General Speech Conversation with Configurable Voices
<details> <summary>Click to view the Python code for enabling MiniCPM-o 2.6 to interact with you in a specified voice.</summary>
```python
ref_audio, _ = librosa.load('assets/demo.wav', sr=16000, mono=True) # load the reference audio
# Choose the mode you want to use
# Audio RolePlay: # With this mode, model will role-play the character based on the audio prompt. (More human-like conversation but unstable)
# sys_prompt = model.get_sys_prompt(ref_audio=ref_audio, mode='audio_roleplay', language='en')
# user_question = {'role': 'user', 'content': [librosa.load('xxx.wav', sr=16000, mono=True)[0]]}
Audio Assistant: # With this mode, model will speak with the voice in ref_audio as a AI assistant. (Stable and more suitable for general conversation)
sys_prompt = model.get_sys_prompt(ref_audio=ref_audio, mode='audio_assistant', language='en')
user_question = {'role': 'user', 'content': [librosa.load('xxx.wav', sr=16000, mono=True)[0]]} # Try to ask something by recording it in 'xxx.wav'!!!
```
```python
msgs = [sys_prompt, user_question]
# round one
res = model.chat(
msgs=msgs,
tokenizer=tokenizer,
sampling=True,
max_new_tokens=128,
use_tts_template=True,
generate_audio=True,
temperature=0.3,
output_audio_path='result.wav',
)
# round two
history = msgs.append({'role': 'assistant', 'content': res})
user_question = {'role': 'user', 'content': [librosa.load('xxx.wav', sr=16000, mono=True)[0]]}
msgs = history.append(user_question)
res = model.chat(
msgs=msgs,
tokenizer=tokenizer,
sampling=True,
max_new_tokens=128,
use_tts_template=True,
generate_audio=True,
temperature=0.3,
output_audio_path='result_round_2.wav',
)
print(res)
```
</details>
#### Addressing various audio tasks
<details>
<summary> Click to show Python code running MiniCPM-o 2.6 with specific audioQA task. </summary>
```python
'''
Audio Understanding Task Prompt:
Speech:
ASR with ZH(same as AST en2zh): 请仔细听这段音频片段,并将其内容逐字记录。
ASR with EN(same as AST zh2en): Please listen to the audio snippet carefully and transcribe the content.
Speaker Analysis: Based on the speaker's content, speculate on their gender, condition, age range, and health status.
General Audio:
Audio Caption: Summarize the main content of the audio.
Sound Scene Tagging: Utilize one keyword to convey the audio's content or the associated scene.
'''
task_prompt = "" # Choose the task prompt above
audio_input, _ = librosa.load('xxx.wav', sr=16000, mono=True)
msgs = [{'role': 'user', 'content': [task_prompt,audio_input]}]
res = model.chat(
msgs=msgs,
tokenizer=tokenizer,
sampling=True,
max_new_tokens=128,
use_tts_template=True,
generate_audio=True,
temperature=0.3,
output_audio_path='result.wav',
)
print(res)
```
```python
'''
Speech Generation Task Prompt:
Human Instruction-to-Speech: see https://voxinstruct.github.io/VoxInstruct/
Example:
# 在新闻中,一个年轻男性兴致勃勃地说:“祝福亲爱的祖国母亲美丽富强!”他用低音调和低音量,慢慢地说出了这句话。
# Delighting in a surprised tone, an adult male with low pitch and low volume comments:"One even gave my little dog a biscuit" This dialogue takes place at a leisurely pace, delivering a sense of excitement and surprise in the context.
Voice Cloning or Voice Conversion: With this mode, model will act like a TTS model.
'''
# Human Instruction-to-Speech:
task_prompt = '' #Try to make some Human Instruction-to-Speech prompt (Voice Creation)
msgs = [{'role': 'user', 'content': [task_prompt]}] # you can also try to ask the same audio question
# Voice Cloning mode:
# sys_prompt = model.get_sys_prompt(ref_audio=ref_audio, mode='voice_cloning', language='en')
# text_prompt = f"Please read the text below."
# user_question = {'role': 'user', 'content': [text_prompt, "content that you want to read"]} # using same voice in sys_prompt to read the text. (Voice Cloning)
# user_question = {'role': 'user', 'content': [text_prompt, librosa.load('xxx.wav', sr=16000, mono=True)[0]]} # using same voice in sys_prompt to read 'xxx.wav'. (Voice Conversion)
# msgs = [sys_prompt, user_question]
res = model.chat(
msgs=msgs,
tokenizer=tokenizer,
sampling=True,
max_new_tokens=128,
use_tts_template=True,
generate_audio=True,
temperature=0.3,
output_audio_path='result.wav',
)
```
</details>
### Vision-Only mode
`MiniCPM-o-2_6` has the same inference methods as `MiniCPM-V-2_6`
#### Chat with single image
```python
# test.py
image = Image.open('xx.jpg').convert('RGB')
question = 'What is in the image?'
msgs = [{'role': 'user', 'content': [image, question]}]
res = model.chat(
image=None,
msgs=msgs,
tokenizer=tokenizer
)
print(res)
## if you want to use streaming, please make sure sampling=True and stream=True
## the model.chat will return a generator
res = model.chat(
msgs=msgs,
tokenizer=tokenizer,
sampling=True,
stream=True
)
generated_text = ""
for new_text in res:
generated_text += new_text
print(new_text, flush=True, end='')
```
#### Chat with multiple images
<details>
<summary> Click to show Python code running MiniCPM-o 2.6 with multiple images input. </summary>
```python
image1 = Image.open('image1.jpg').convert('RGB')
image2 = Image.open('image2.jpg').convert('RGB')
question = 'Compare image 1 and image 2, tell me about the differences between image 1 and image 2.'
msgs = [{'role': 'user', 'content': [image1, image2, question]}]
answer = model.chat(
msgs=msgs,
tokenizer=tokenizer
)
print(answer)
```
</details>
#### In-context few-shot learning
<details>
<summary> Click to view Python code running MiniCPM-o 2.6 with few-shot input. </summary>
```python
question = "production date"
image1 = Image.open('example1.jpg').convert('RGB')
answer1 = "2023.08.04"
image2 = Image.open('example2.jpg').convert('RGB')
answer2 = "2007.04.24"
image_test = Image.open('test.jpg').convert('RGB')
msgs = [
{'role': 'user', 'content': [image1, question]}, {'role': 'assistant', 'content': [answer1]},
{'role': 'user', 'content': [image2, question]}, {'role': 'assistant', 'content': [answer2]},
{'role': 'user', 'content': [image_test, question]}
]
answer = model.chat(
msgs=msgs,
tokenizer=tokenizer
)
print(answer)
```
</details>
#### Chat with video
<details>
<summary> Click to view Python code running MiniCPM-o 2.6 with video input. </summary>
```python
MAX_NUM_FRAMES=64 # if cuda OOM set a smaller number
def encode_video(video_path):
def uniform_sample(l, n):
gap = len(l) / n
idxs = [int(i * gap + gap / 2) for i in range(n)]
return [l[i] for i in idxs]
vr = VideoReader(video_path, ctx=cpu(0))
sample_fps = round(vr.get_avg_fps() / 1) # FPS
frame_idx = [i for i in range(0, len(vr), sample_fps)]
if len(frame_idx) > MAX_NUM_FRAMES:
frame_idx = uniform_sample(frame_idx, MAX_NUM_FRAMES)
frames = vr.get_batch(frame_idx).asnumpy()
frames = [Image.fromarray(v.astype('uint8')) for v in frames]
print('num frames:', len(frames))
return frames
video_path ="video_test.mp4"
frames = encode_video(video_path)
question = "Describe the video"
msgs = [
{'role': 'user', 'content': frames + [question]},
]
# Set decode params for video
params={}
params["use_image_id"] = False
params["max_slice_nums"] = 2 # use 1 if cuda OOM and video resolution > 448*448
answer = model.chat(
msgs=msgs,
tokenizer=tokenizer,
**params
)
print(answer)
```
</details>
Please look at [GitHub](https://github.com/OpenBMB/MiniCPM-o) for more detail about usage.
## Inference with llama.cpp<a id="llamacpp"></a>
MiniCPM-o 2.6 (vision-only mode) can run with llama.cpp. See our fork of [llama.cpp](https://github.com/OpenBMB/llama.cpp/tree/minicpm-omni) and [readme](https://github.com/OpenBMB/llama.cpp/blob/minicpm-omni/examples/llava/README-minicpmo2.6.md) for more detail.
## Int4 quantized version
Download the int4 quantized version for lower GPU memory (7GB) usage: [MiniCPM-o-2_6-int4](https://huggingface.co/openbmb/MiniCPM-o-2_6-int4).
## License
#### Model License
* The code in this repo is released under the [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE) License.
* The usage of MiniCPM-o and MiniCPM-V series model weights must strictly follow [MiniCPM Model License.md](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md).
* The models and weights of MiniCPM are completely free for academic research. After filling out a ["questionnaire"](https://modelbest.feishu.cn/share/base/form/shrcnpV5ZT9EJ6xYjh3Kx0J6v8g) for registration, MiniCPM-o 2.6 weights are also available for free commercial use.
#### Statement
* As an LMM, MiniCPM-o 2.6 generates contents by learning a large mount of multimodal corpora, but it cannot comprehend, express personal opinions or make value judgement. Anything generated by MiniCPM-o 2.6 does not represent the views and positions of the model developers
* We will not be liable for any problems arising from the use of the MinCPM-V models, including but not limited to data security issues, risk of public opinion, or any risks and problems arising from the misdirection, misuse, dissemination or misuse of the model.
## Key Techniques and Other Multimodal Projects
👏 Welcome to explore key techniques of MiniCPM-o 2.6 and other multimodal projects of our team:
[VisCPM](https://github.com/OpenBMB/VisCPM/tree/main) | [RLHF-V](https://github.com/RLHF-V/RLHF-V) | [LLaVA-UHD](https://github.com/thunlp/LLaVA-UHD) | [RLAIF-V](https://github.com/RLHF-V/RLAIF-V)
## Citation
If you find our work helpful, please consider citing our papers 📝 and liking this project ❤️!
```bib
@article{yao2024minicpm,
title={MiniCPM-V: A GPT-4V Level MLLM on Your Phone},
author={Yao, Yuan and Yu, Tianyu and Zhang, Ao and Wang, Chongyi and Cui, Junbo and Zhu, Hongji and Cai, Tianchi and Li, Haoyu and Zhao, Weilin and He, Zhihui and others},
journal={arXiv preprint arXiv:2408.01800},
year={2024}
}
```
|