File size: 7,241 Bytes
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0893f10
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0893f10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0893f10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0893f10
 
 
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# coding=utf-8
# Copyright 2025 The OpenBMB Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import re

import librosa
import numpy as np

logger = logging.getLogger(__name__)


def is_silent(data):
    if np.abs(data).max() < 3e-3:
        return True
    else:
        return False


def sentence_end(txt):
    for c in [".", "。", "!", "?", "!", "?"]:
        if c in txt:
            if c == ".":  # check not number before it like 1.
                idx = txt.find(c)
                if idx > 0:
                    if txt[idx - 1].isdigit():
                        continue
            return c
    return ""


class NumberToTextConverter:
    r"""
    A helper class to ensure text-to-speech (TTS) systems read numeric digits
    in the desired language (Chinese or English) digit-by-digit. It forcibly
    replaces all numeric substrings in text with their language-specific
    textual representations, thereby reducing the likelihood of TTS mistakes
    on numbers.
    Note: MiniCPM-o 2.6 only use this in streaming mode.

    Attributes:
        num_to_chinese (dict):
            Mapping from digit (str) to its Chinese textual form (str).
        num_to_english (dict):
            Mapping from digit (str) to its English textual form (str).

    Example:
        >>> converter = NumberToTextConverter()
        >>> converter.replace_numbers_with_text("我有2个苹果", language="chinese")
        '我有两个苹果'
        >>> converter.replace_numbers_with_text("I have 23 books", language="english")
        'I have two three books'
    """

    def __init__(self):
        self.num_to_chinese = {
            "0": "零",
            "1": "一",
            "2": "二",
            "3": "三",
            "4": "四",
            "5": "五",
            "6": "六",
            "7": "七",
            "8": "八",
            "9": "九",
        }
        self.num_to_english = {
            "0": "zero",
            "1": "one",
            "2": "two",
            "3": "three",
            "4": "four",
            "5": "five",
            "6": "six",
            "7": "seven",
            "8": "eight",
            "9": "nine",
        }

    def number_to_chinese_digit_by_digit(self, num_str):
        result = ""
        for char in num_str:
            if char in self.num_to_chinese:
                result += self.num_to_chinese[char]
        return result

    def number_to_english_digit_by_digit(self, num_str):
        result = []
        for char in num_str:
            if char in self.num_to_english:
                result.append(self.num_to_english[char])
        return " ".join(result)

    def detect_language(self, text):
        chinese_count = len(re.findall(r"[\u4e00-\u9fff]", text))
        english_count = len(re.findall(r"[a-zA-Z]", text))
        return "chinese" if chinese_count >= english_count else "english"

    def replace_numbers_with_text(self, text, language=None):
        if language is None:
            language = self.detect_language(text)
        numbers = re.findall(r"\d+", text)

        for num in numbers:
            if language == "chinese":
                replacement = self.number_to_chinese_digit_by_digit(num)
            else:
                replacement = self.number_to_english_digit_by_digit(num)
            text = text.replace(num, replacement, 1)

        return text


class VoiceChecker:
    r"""
    A simple utility class to detect silence or low variation in consecutive audio chunks by comparing
    the mel-spectrogram distances. It keeps track of consecutive zero-distance and low-distance chunks
    to decide if the audio is considered "bad" (e.g., overly silent or not changing enough).

    Attributes:
        previous_mel (`np.ndarray` or `None`):
            Holds the previously observed mel-spectrogram in decibel scale. Used to compute
            the next distance; reset via :meth:`reset`.
        consecutive_zeros (`int`):
            The number of consecutive chunks that were detected as silent (distance = 0).
        consecutive_low_distance (`int`):
            The number of consecutive chunks whose distance was below the threshold.

    Example:
        >>> checker = VoiceChecker()
        >>> # Suppose we have audio_wav (list or np.ndarray) and mel_spec (np.ndarray)
        >>> # We split them into chunks and call checker.is_bad(...)
        >>> is_audio_bad = checker.is_bad(audio_wav, mel_spec, chunk_size=2560, thresh=100.0)
        >>> if is_audio_bad:
        ...     print("Audio deemed bad!")
        >>> # Reset states if needed
        >>> checker.reset()
    """

    def __init__(self):
        self.previous_mel = None
        self.consecutive_zeros = 0
        self.consecutive_low_distance = 0

    def compute_distance(self, audio_chunk, mel_spec):
        if is_silent(audio_chunk):
            return 0.0  # 检查是否为空白片段

        mel_db = librosa.power_to_db(mel_spec)
        if self.previous_mel is None:
            self.previous_mel = mel_db
            return -1.0

        distance = np.linalg.norm(np.mean(mel_db, axis=1) - np.mean(self.previous_mel, axis=1))
        self.previous_mel = mel_db
        return distance

    def is_bad(self, audio_wav, mel_spec, chunk_size=2560, thresh=100.0):
        num_chunks = len(audio_wav) // chunk_size
        mel_chunk_size = mel_spec.shape[-1] // num_chunks
        for i in range(num_chunks):
            audio_chunk = audio_wav[i * chunk_size : (i + 1) * chunk_size]
            mel_spec_chunk = mel_spec[:, i * mel_chunk_size : (i + 1) * mel_chunk_size]

            distance = self.compute_distance(audio_chunk, mel_spec_chunk)
            logger.warning(
                f"mel dist: {distance:.1f}, zero: {self.consecutive_zeros}, low: {self.consecutive_low_distance}"
            )
            if distance == 0:
                self.consecutive_low_distance = 0  # reset
                self.consecutive_zeros += 1
                if self.consecutive_zeros >= 12:
                    logger.warning("VoiceChecker detected 1.2 s silent. Marking as failed.")
                    return True
            elif distance < thresh:
                self.consecutive_zeros = 0
                self.consecutive_low_distance += 1
                if self.consecutive_low_distance >= 5:
                    logger.warning("VoiceChecker detected 5 consecutive low distance chunks. Marking as failed.")
                    return True
            else:
                self.consecutive_low_distance = 0
                self.consecutive_zeros = 0

        return False

    def reset(self):
        self.previous_mel = None
        self.consecutive_zeros = 0
        self.consecutive_low_distance = 0