|
import math |
|
from typing import List, Optional |
|
import json |
|
import torch |
|
import torchvision |
|
from threading import Thread |
|
from copy import deepcopy |
|
from PIL import Image |
|
from torchvision import transforms |
|
from transformers import LlamaTokenizer, LlamaPreTrainedModel, LlamaForCausalLM, AutoModel, PreTrainedTokenizerFast, TextIteratorStreamer |
|
from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionTransformer |
|
|
|
from .configuration_minicpm import MiniCPMVConfig |
|
from .resampler import Resampler |
|
|
|
IMAGENET_INCEPTION_MEAN = (0.5, 0.5, 0.5) |
|
IMAGENET_INCEPTION_STD = (0.5, 0.5, 0.5) |
|
|
|
class MiniCPMVPreTrainedModel(LlamaPreTrainedModel): |
|
config_class = MiniCPMVConfig |
|
|
|
|
|
class MiniCPMV(MiniCPMVPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.llm = LlamaForCausalLM(config) |
|
self.vpm = self.init_vision_module() |
|
self.vision_dim = self.vpm.embed_dim |
|
self.embed_dim = self.llm.config.hidden_size |
|
self.resampler = self.init_resampler(self.embed_dim, self.vision_dim) |
|
self.transform = self.init_transform() |
|
|
|
def init_vision_module(self): |
|
|
|
model = Idefics2VisionTransformer(self.config.vision_config) |
|
if self.config.drop_vision_last_layer: |
|
model.encoder.layers = model.encoder.layers[:-1] |
|
|
|
setattr(model, 'embed_dim', model.embeddings.embed_dim) |
|
setattr(model, 'patch_size', model.embeddings.patch_size) |
|
|
|
return model |
|
|
|
def init_resampler(self, embed_dim, vision_dim): |
|
return Resampler( |
|
num_queries=self.config.query_num, |
|
embed_dim=embed_dim, |
|
num_heads=embed_dim // 128, |
|
kv_dim=vision_dim, |
|
adaptive=True |
|
) |
|
|
|
def init_transform(self): |
|
return transforms.Compose( |
|
[ |
|
transforms.ToTensor(), |
|
transforms.Normalize( |
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD |
|
), |
|
] |
|
) |
|
|
|
def get_input_embeddings(self): |
|
return self.llm.get_input_embeddings() |
|
|
|
def set_input_embeddings(self, value): |
|
self.llm.embed_tokens = value |
|
|
|
def get_vllm_embedding(self, data): |
|
if 'vision_hidden_states' not in data: |
|
dtype = self.vpm.embeddings.position_embedding.weight.dtype |
|
device = self.vpm.embeddings.position_embedding.weight.device |
|
tgt_sizes = data['tgt_sizes'] |
|
pixel_values_list = data['pixel_values'] |
|
vision_hidden_states = [] |
|
all_pixel_values = [] |
|
img_cnt = [] |
|
for pixel_values in pixel_values_list: |
|
if len(pixel_values) == 0: |
|
continue |
|
img_cnt.append(len(pixel_values)) |
|
all_pixel_values.extend([i.flatten(end_dim=1).permute(1, 0) for i in pixel_values]) |
|
|
|
|
|
if all_pixel_values: |
|
tgt_sizes = torch.vstack(tgt_sizes).type(torch.int32) |
|
|
|
if self.config.batch_vision_input: |
|
max_patches = torch.max(tgt_sizes[:, 0] * tgt_sizes[:, 1]) |
|
|
|
all_pixel_values = torch.nn.utils.rnn.pad_sequence(all_pixel_values, batch_first=True, |
|
padding_value=0.0) |
|
B, L, _ = all_pixel_values.shape |
|
all_pixel_values = all_pixel_values.permute(0, 2, 1).reshape(B, 3, -1, L) |
|
|
|
patch_attn_mask = torch.zeros((B, 1, max_patches), dtype=torch.bool, device=device) |
|
for i in range(B): |
|
patch_attn_mask[i, :tgt_sizes[i][0] * tgt_sizes[i][1]] = True |
|
|
|
vision_embedding = self.vpm(all_pixel_values.type(dtype), patch_attention_mask=patch_attn_mask).last_hidden_state |
|
vision_embedding = self.resampler(vision_embedding, tgt_sizes) |
|
else: |
|
|
|
vision_embedding = [] |
|
for single_tgt_size, single_pixel_values in zip(tgt_sizes, all_pixel_values): |
|
single_pixel_values = single_pixel_values.unsqueeze(0) |
|
B, L, _ = single_pixel_values.shape |
|
single_pixel_values = single_pixel_values.permute(0, 2, 1).reshape(B, 3, -1, L) |
|
single_vision_embedding = self.vpm(single_pixel_values.type(dtype)).last_hidden_state |
|
single_vision_embedding = self.resampler(single_vision_embedding, single_tgt_size.unsqueeze(0)) |
|
vision_embedding.append(single_vision_embedding) |
|
vision_embedding = torch.vstack(vision_embedding) |
|
|
|
start = 0 |
|
for pixel_values in pixel_values_list: |
|
img_cnt = len(pixel_values) |
|
if img_cnt > 0: |
|
vision_hidden_states.append(vision_embedding[start: start + img_cnt]) |
|
start += img_cnt |
|
else: |
|
vision_hidden_states.append([]) |
|
else: |
|
if self.training: |
|
dummy_image = torch.zeros( |
|
(1, 3, 224, 224), |
|
device=device, dtype=dtype |
|
) |
|
tgt_sizes = torch.Tensor([[(224 // self.config.patch_size), math.ceil(224 / self.config.patch_size)]]).type(torch.int32) |
|
dummy_feature = self.resampler(self.vpm(dummy_image).last_hidden_state, tgt_sizes) |
|
else: |
|
dummy_feature = [] |
|
for _ in range(len(pixel_values_list)): |
|
vision_hidden_states.append(dummy_feature) |
|
|
|
else: |
|
vision_hidden_states = data['vision_hidden_states'] |
|
|
|
if hasattr(self.llm.config, 'scale_emb'): |
|
vllm_embedding = self.llm.model.embed_tokens(data['input_ids']) * self.llm.config.scale_emb |
|
else: |
|
vllm_embedding = self.llm.model.embed_tokens(data['input_ids']) |
|
|
|
vision_hidden_states = [i.type(vllm_embedding.dtype) if isinstance( |
|
i, torch.Tensor) else i for i in vision_hidden_states] |
|
|
|
bs = len(data['input_ids']) |
|
for i in range(bs): |
|
cur_vs_hs = vision_hidden_states[i] |
|
if len(cur_vs_hs) > 0: |
|
cur_vllm_emb = vllm_embedding[i] |
|
cur_image_bound = data['image_bound'][i] |
|
if len(cur_image_bound) > 0: |
|
image_indices = torch.stack( |
|
[torch.arange(r[0], r[1], dtype=torch.long) for r in cur_image_bound] |
|
).to(vllm_embedding.device) |
|
|
|
cur_vllm_emb.scatter_(0, image_indices.view(-1, 1).repeat(1, cur_vllm_emb.shape[-1]), |
|
cur_vs_hs.view(-1, cur_vs_hs.shape[-1])) |
|
elif self.training: |
|
cur_vllm_emb += cur_vs_hs[0].mean() * 0 |
|
|
|
return vllm_embedding, vision_hidden_states |
|
|
|
def forward(self, data, **kwargs): |
|
vllm_embedding, vision_hidden_states = self.get_vllm_embedding(data) |
|
position_ids = data["position_ids"] |
|
if position_ids.dtype != torch.int64: |
|
position_ids = position_ids.long() |
|
|
|
return self.llm( |
|
input_ids=None, |
|
position_ids=position_ids, |
|
inputs_embeds=vllm_embedding, |
|
**kwargs |
|
) |
|
|
|
def _convert_to_tensors( |
|
self, tokenizer, input_ids, max_inp_length: Optional[int] = None |
|
): |
|
if max_inp_length is not None: |
|
input_ids = input_ids[:max_inp_length] |
|
input_ids = torch.tensor(input_ids, dtype=torch.int32) |
|
|
|
image_start_tokens = torch.where(input_ids == tokenizer.im_start_id)[0] |
|
|
|
image_start_tokens += 1 |
|
image_end_tokens = torch.where(input_ids == tokenizer.im_end_id)[0] |
|
valid_image_nums = max(len(image_start_tokens), len(image_end_tokens)) |
|
image_bound = torch.hstack( |
|
[ |
|
image_start_tokens[:valid_image_nums].unsqueeze(-1), |
|
image_end_tokens[:valid_image_nums].unsqueeze(-1), |
|
] |
|
) |
|
|
|
model_input = {} |
|
model_input["input_ids"] = input_ids.unsqueeze(0).to(self.device) |
|
model_input["image_bound"] = image_bound |
|
|
|
return model_input |
|
|
|
def _process_list( |
|
self, tokenizer, input_id_list, max_inp_length: Optional[int] = None |
|
): |
|
pad_keys = ["input_ids"] |
|
input_tensors = [] |
|
for input_ids in input_id_list: |
|
input_tensors.append( |
|
self._convert_to_tensors(tokenizer, input_ids, max_inp_length) |
|
) |
|
padded = {} |
|
for key in pad_keys: |
|
padded[key] = pad(input_tensors, key, padding_side="left").to(self.device) |
|
padded["image_bound"] = [i["image_bound"] for i in input_tensors] |
|
return padded |
|
|
|
def _decode(self, inputs_embeds, tokenizer, **kwargs): |
|
terminators = [ |
|
tokenizer.eos_token_id, |
|
tokenizer.convert_tokens_to_ids("<|eot_id|>") |
|
] |
|
output = self.llm.generate( |
|
inputs_embeds=inputs_embeds, |
|
pad_token_id=0, |
|
eos_token_id=terminators, |
|
**kwargs |
|
) |
|
return self._decode_text(output, tokenizer) |
|
|
|
def _decode_stream(self, inputs_embeds, tokenizer, **kwargs): |
|
terminators = [ |
|
tokenizer.eos_token_id, |
|
tokenizer.convert_tokens_to_ids("<|eot_id|>") |
|
] |
|
streamer = TextIteratorStreamer(tokenizer=tokenizer) |
|
generation_kwargs = { |
|
'inputs_embeds': inputs_embeds, |
|
'pad_token_id': 0, |
|
'eos_token_id': terminators, |
|
'streamer': streamer |
|
} |
|
generation_kwargs.update(kwargs) |
|
|
|
thread = Thread(target=self.llm.generate, kwargs=generation_kwargs) |
|
thread.start() |
|
|
|
return streamer |
|
|
|
def _decode_text(self, result_ids, tokenizer): |
|
result_text = [] |
|
for result in result_ids: |
|
result = result[result != 0] |
|
if result[0] == tokenizer.bos_id: |
|
result = result[1:] |
|
if result[-1] == tokenizer.eos_id or result[-1] == tokenizer.eot_id: |
|
result = result[:-1] |
|
result_text.append(tokenizer.decode(result).strip()) |
|
return result_text |
|
|
|
def slice_image(self, image): |
|
return slice_image( |
|
image, |
|
self.config.slice_config.max_slice_nums, |
|
self.config.slice_config.scale_resolution, |
|
self.config.slice_config.patch_size, |
|
) |
|
|
|
def get_slice_image_placeholder(self, image, tokenizer): |
|
image_placeholder = ( |
|
tokenizer.im_start |
|
+ tokenizer.unk_token * self.config.query_num |
|
+ tokenizer.im_end |
|
) |
|
|
|
slice_images = [] |
|
|
|
source_image, patches, best_grid = slice_image( |
|
image, |
|
self.config.slice_config.max_slice_nums, |
|
self.config.slice_config.scale_resolution, |
|
self.config.slice_config.patch_size, |
|
) |
|
|
|
slice_images.append(source_image) |
|
final_placeholder = image_placeholder |
|
|
|
if len(patches) > 0: |
|
for i in range(len(patches)): |
|
for j in range(len(patches[0])): |
|
slice_images.append(patches[i][j]) |
|
|
|
final_placeholder += get_grid_placeholder( |
|
tokenizer, best_grid, self.config.query_num |
|
) |
|
|
|
return slice_images, final_placeholder |
|
|
|
def reshape_by_patch(self, image_tensor): |
|
""" |
|
:param image_tensor: shape [3, H, W] |
|
:param patch_size: |
|
:return: [3, patch_size, HW/patch_size] |
|
""" |
|
patch_size = self.config.patch_size |
|
patches = torch.nn.functional.unfold( |
|
image_tensor, |
|
(patch_size, patch_size), |
|
stride=(patch_size, patch_size) |
|
) |
|
|
|
patches = patches.reshape(image_tensor.size(0), patch_size, patch_size, -1) |
|
patches = patches.permute(0, 1, 3, 2).reshape(image_tensor.size(0), patch_size, -1) |
|
return patches |
|
|
|
def generate( |
|
self, |
|
input_id_list=None, |
|
img_list=None, |
|
tgt_sizes=None, |
|
tokenizer=None, |
|
max_inp_length: Optional[int] = None, |
|
vision_hidden_states=None, |
|
return_vision_hidden_states=False, |
|
stream=False, |
|
**kwargs |
|
): |
|
|
|
assert input_id_list is not None |
|
bs = len(input_id_list) |
|
if img_list == None: |
|
img_list = [[] for i in range(bs)] |
|
assert bs == len(img_list) |
|
|
|
model_inputs = self._process_list(tokenizer, input_id_list, max_inp_length) |
|
|
|
if vision_hidden_states is None: |
|
pixel_values = [] |
|
for i in range(bs): |
|
img_inps = [] |
|
for img in img_list[i]: |
|
img_inps.append(img.to(self.device)) |
|
if img_inps: |
|
pixel_values.append(img_inps) |
|
else: |
|
pixel_values.append([]) |
|
model_inputs["pixel_values"] = pixel_values |
|
model_inputs['tgt_sizes'] = tgt_sizes |
|
else: |
|
model_inputs["vision_hidden_states"] = vision_hidden_states |
|
|
|
with torch.inference_mode(): |
|
( |
|
model_inputs["inputs_embeds"], |
|
vision_hidden_states, |
|
) = self.get_vllm_embedding(model_inputs) |
|
|
|
if stream: |
|
result = self._decode_stream(model_inputs["inputs_embeds"], tokenizer, **kwargs) |
|
else: |
|
result = self._decode(model_inputs["inputs_embeds"], tokenizer, **kwargs) |
|
|
|
if return_vision_hidden_states: |
|
return result, vision_hidden_states |
|
|
|
return result |
|
|
|
def chat( |
|
self, |
|
image, |
|
msgs, |
|
tokenizer, |
|
vision_hidden_states=None, |
|
max_new_tokens=1024, |
|
sampling=True, |
|
max_inp_length=2048, |
|
system_prompt='', |
|
stream=False, |
|
**kwargs |
|
): |
|
if isinstance(msgs, str): |
|
msgs = json.loads(msgs) |
|
|
|
copy_msgs = deepcopy(msgs) |
|
assert len(copy_msgs) > 0, 'msgs is empty' |
|
assert sampling or not stream, 'if use stream mode, make sure sampling=True' |
|
|
|
if image is not None and isinstance(copy_msgs[0]['content'], str): |
|
copy_msgs[0]['content'] = [image, copy_msgs[0]['content']] |
|
|
|
images = [] |
|
tgt_sizes = [] |
|
for i, msg in enumerate(copy_msgs): |
|
role = msg["role"] |
|
content = msg["content"] |
|
assert role in ["user", "assistant"] |
|
if i == 0: |
|
assert role == "user", "The role of first msg should be user" |
|
if isinstance(content, str): |
|
content = [content] |
|
|
|
cur_msgs = [] |
|
for c in content: |
|
if isinstance(c, Image.Image): |
|
image = c |
|
if self.config.slice_mode: |
|
slice_images, image_placeholder = self.get_slice_image_placeholder( |
|
image, tokenizer |
|
) |
|
cur_msgs.append(image_placeholder) |
|
for slice_image in slice_images: |
|
slice_image = self.transform(slice_image) |
|
H, W = slice_image.shape[1:] |
|
images.append(self.reshape_by_patch(slice_image)) |
|
tgt_sizes.append(torch.Tensor([H // self.config.patch_size, W // self.config.patch_size]).type(torch.int32)) |
|
else: |
|
images.append(self.transform(image)) |
|
cur_msgs.append( |
|
tokenizer.im_start |
|
+ tokenizer.unk_token * self.config.query_num |
|
+ tokenizer.im_end |
|
) |
|
elif isinstance(c, str): |
|
cur_msgs.append(c) |
|
|
|
|
|
msg['content'] = '\n'.join(cur_msgs) |
|
if tgt_sizes: |
|
tgt_sizes = torch.vstack(tgt_sizes) |
|
|
|
if system_prompt: |
|
sys_msg = {'role': 'system', 'content': system_prompt} |
|
copy_msgs = [sys_msg] + copy_msgs |
|
|
|
input_ids = tokenizer.apply_chat_template(copy_msgs, tokenize=True, add_generation_prompt=False) |
|
|
|
if sampling: |
|
generation_config = { |
|
"top_p": 0.8, |
|
"top_k": 100, |
|
"temperature": 0.7, |
|
"do_sample": True, |
|
"repetition_penalty": 1.05 |
|
} |
|
else: |
|
generation_config = { |
|
"num_beams": 3, |
|
"repetition_penalty": 1.2, |
|
} |
|
|
|
generation_config.update( |
|
(k, kwargs[k]) for k in generation_config.keys() & kwargs.keys() |
|
) |
|
|
|
with torch.inference_mode(): |
|
res, vision_hidden_states = self.generate( |
|
input_id_list=[input_ids], |
|
max_inp_length=max_inp_length, |
|
img_list=[images], |
|
tgt_sizes=[tgt_sizes], |
|
tokenizer=tokenizer, |
|
max_new_tokens=max_new_tokens, |
|
vision_hidden_states=vision_hidden_states, |
|
return_vision_hidden_states=True, |
|
stream=stream, |
|
**generation_config |
|
) |
|
|
|
if stream: |
|
def stream_gen(): |
|
for text in res: |
|
text = text.replace(tokenizer.eot_token, '').replace(tokenizer.eos_token, '') |
|
yield text |
|
return stream_gen() |
|
|
|
else: |
|
answer = res[0] |
|
return answer |
|
|
|
|
|
class PreTrainedTokenizerFastWrapper(PreTrainedTokenizerFast): |
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
self.eot_token = "<|eot_id|>" |
|
self.im_start = "<image>" |
|
self.im_end = "</image>" |
|
self.ref_start = "<ref>" |
|
self.ref_end = "</ref>" |
|
self.box_start = "<box>" |
|
self.box_end = "</box>" |
|
self.quad_start = "<quad>" |
|
self.quad_end = "</quad>" |
|
self.slice_start = "<slice>" |
|
self.slice_end = "</slice>" |
|
|
|
@property |
|
def eos_id(self): |
|
return self.eos_token_id |
|
|
|
@property |
|
def bos_id(self): |
|
return self.bos_token_id |
|
|
|
@property |
|
def unk_id(self): |
|
return self.unk_token_id |
|
|
|
@property |
|
def eot_id(self): |
|
return self.convert_tokens_to_ids(self.eot_token) |
|
|
|
@property |
|
def im_start_id(self): |
|
return self.convert_tokens_to_ids(self.im_start) |
|
|
|
@property |
|
def im_end_id(self): |
|
return self.convert_tokens_to_ids(self.im_end) |
|
|
|
@staticmethod |
|
def escape(text: str) -> str: |
|
return text |
|
|
|
@staticmethod |
|
def unescape(text: str) -> str: |
|
return text |
|
|
|
|
|
def pad(orig_items, key, max_length=None, padding_value=0, padding_side="left"): |
|
items = [] |
|
if isinstance(orig_items[0][key], list): |
|
assert isinstance(orig_items[0][key][0], torch.Tensor) |
|
for it in orig_items: |
|
for tr in it[key]: |
|
items.append({key: tr}) |
|
else: |
|
assert isinstance(orig_items[0][key], torch.Tensor) |
|
items = orig_items |
|
|
|
batch_size = len(items) |
|
shape = items[0][key].shape |
|
dim = len(shape) |
|
assert dim <= 3 |
|
if max_length is None: |
|
max_length = 0 |
|
max_length = max(max_length, max(item[key].shape[-1] for item in items)) |
|
min_length = min(item[key].shape[-1] for item in items) |
|
dtype = items[0][key].dtype |
|
|
|
if dim == 1: |
|
return torch.cat([item[key] for item in items], dim=0) |
|
elif dim == 2: |
|
if max_length == min_length: |
|
return torch.cat([item[key] for item in items], dim=0) |
|
tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value |
|
else: |
|
tensor = ( |
|
torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype) |
|
+ padding_value |
|
) |
|
|
|
for i, item in enumerate(items): |
|
if dim == 2: |
|
if padding_side == "left": |
|
tensor[i, -len(item[key][0]) :] = item[key][0].clone() |
|
else: |
|
tensor[i, : len(item[key][0])] = item[key][0].clone() |
|
elif dim == 3: |
|
if padding_side == "left": |
|
tensor[i, -len(item[key][0]) :, :] = item[key][0].clone() |
|
else: |
|
tensor[i, : len(item[key][0]), :] = item[key][0].clone() |
|
|
|
return tensor |
|
|
|
|
|
def slice_image( |
|
image, max_slice_nums=9, scale_resolution=448, patch_size=14, never_split=False |
|
): |
|
original_size = image.size |
|
original_width, original_height = original_size |
|
log_ratio = math.log(original_width / original_height) |
|
ratio = original_width * original_height / (scale_resolution * scale_resolution) |
|
multiple = min(math.ceil(ratio), max_slice_nums) |
|
|
|
source_image = None |
|
best_grid = None |
|
patches = [] |
|
|
|
if multiple <= 1 or never_split: |
|
|
|
best_size = find_best_resize( |
|
original_size, scale_resolution, patch_size, allow_upscale=True |
|
) |
|
source_image = image.resize(best_size, Image.Resampling.BICUBIC) |
|
else: |
|
candidate_split_grids_nums = [] |
|
for i in [multiple - 1, multiple, multiple + 1]: |
|
if i == 1 or i > max_slice_nums: |
|
continue |
|
candidate_split_grids_nums.append(i) |
|
|
|
|
|
best_resize = find_best_resize(original_size, scale_resolution, patch_size) |
|
source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC) |
|
candidate_grids = [] |
|
|
|
|
|
for split_grids_nums in candidate_split_grids_nums: |
|
m = 1 |
|
while m <= split_grids_nums: |
|
if split_grids_nums % m == 0: |
|
candidate_grids.append([m, split_grids_nums // m]) |
|
m += 1 |
|
|
|
best_grid = [1, 1] |
|
min_error = float("inf") |
|
for grid in candidate_grids: |
|
error = abs(log_ratio - math.log(grid[0] / grid[1])) |
|
if error < min_error: |
|
best_grid = grid |
|
min_error = error |
|
|
|
refine_size = get_refine_size( |
|
original_size, best_grid, scale_resolution, patch_size, allow_upscale=True |
|
) |
|
|
|
refine_image = image.resize(refine_size, Image.Resampling.BICUBIC) |
|
patches = split_to_patches(refine_image, best_grid) |
|
|
|
return source_image, patches, best_grid |
|
|
|
|
|
def ensure_divide(length, patch_size): |
|
return max(round(length / patch_size) * patch_size, patch_size) |
|
|
|
|
|
def find_best_resize(original_size, scale_resolution, patch_size, allow_upscale=False): |
|
width, height = original_size |
|
if (width * height > scale_resolution * scale_resolution) or allow_upscale: |
|
r = width / height |
|
height = int(scale_resolution / math.sqrt(r)) |
|
width = int(height * r) |
|
best_width = ensure_divide(width, patch_size) |
|
best_height = ensure_divide(height, patch_size) |
|
return (best_width, best_height) |
|
|
|
|
|
def get_refine_size( |
|
original_size, grid, scale_resolution, patch_size, allow_upscale=False |
|
): |
|
width, height = original_size |
|
grid_x, grid_y = grid |
|
|
|
refine_width = ensure_divide(width, grid_x) |
|
refine_height = ensure_divide(height, grid_y) |
|
|
|
grid_width = refine_width / grid_x |
|
grid_height = refine_height / grid_y |
|
|
|
best_grid_size = find_best_resize( |
|
(grid_width, grid_height), |
|
scale_resolution, |
|
patch_size, |
|
allow_upscale=allow_upscale, |
|
) |
|
|
|
refine_size = (best_grid_size[0] * grid_x, best_grid_size[1] * grid_y) |
|
|
|
return refine_size |
|
|
|
|
|
def split_to_patches(image, grid): |
|
patches = [] |
|
width, height = image.size |
|
grid_x = int(width / grid[0]) |
|
grid_y = int(height / grid[1]) |
|
|
|
for i in range(0, height, grid_y): |
|
images = [] |
|
for j in range(0, width, grid_x): |
|
box = (j, i, j + grid_x, i + grid_y) |
|
patch = image.crop(box) |
|
images.append(patch) |
|
patches.append(images) |
|
|
|
return patches |
|
|
|
|
|
def get_grid_placeholder(tokenizer, grid, query_num): |
|
image_placeholder = ( |
|
tokenizer.im_start + tokenizer.unk_token * query_num + tokenizer.im_end |
|
) |
|
|
|
cols = grid[0] |
|
rows = grid[1] |
|
slices = [] |
|
for i in range(rows): |
|
lines = [] |
|
for j in range(cols): |
|
lines.append(image_placeholder) |
|
slices.append("".join(lines)) |
|
slice_placeholder = tokenizer.slice_start + "\n".join(slices) + tokenizer.slice_end |
|
return slice_placeholder |
|
|