Update README.md
Browse files
README.md
CHANGED
@@ -7,6 +7,60 @@ base_model: pyannote/segmentation-3.0
|
|
7 |
https://huggingface.co/pyannote/segmentation-3.0 with ONNX weights to be compatible with Transformers.js.
|
8 |
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
## Torch → ONNX conversion code:
|
11 |
```py
|
12 |
# pip install torch onnx https://github.com/pyannote/pyannote-audio/archive/refs/heads/develop.zip
|
|
|
7 |
https://huggingface.co/pyannote/segmentation-3.0 with ONNX weights to be compatible with Transformers.js.
|
8 |
|
9 |
|
10 |
+
## Transformers.js (v3) usage
|
11 |
+
|
12 |
+
```js
|
13 |
+
import { AutoProcessor, AutoModelForAudioFrameClassification, read_audio } from '@xenova/transformers';
|
14 |
+
|
15 |
+
// Load model and processor
|
16 |
+
const model_id = 'onnx-community/pyannote-segmentation-3.0';
|
17 |
+
const model = await AutoModelForAudioFrameClassification.from_pretrained(model_id);
|
18 |
+
const processor = await AutoProcessor.from_pretrained(model_id);
|
19 |
+
|
20 |
+
// Read and preprocess audio
|
21 |
+
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/mlk.wav';
|
22 |
+
const audio = await read_audio(url, processor.feature_extractor.config.sampling_rate);
|
23 |
+
const inputs = await processor(audio);
|
24 |
+
|
25 |
+
// Run model with inputs
|
26 |
+
const { logits } = await model(inputs);
|
27 |
+
// {
|
28 |
+
// logits: Tensor {
|
29 |
+
// dims: [ 1, 767, 7 ], // [batch_size, num_frames, num_classes]
|
30 |
+
// type: 'float32',
|
31 |
+
// data: Float32Array(5369) [ ... ],
|
32 |
+
// size: 5369
|
33 |
+
// }
|
34 |
+
// }
|
35 |
+
|
36 |
+
const result = processor.post_process_speaker_diarization(logits, audio.length);
|
37 |
+
// [
|
38 |
+
// [
|
39 |
+
// { id: 0, start: 0, end: 1.0512535626298245, confidence: 0.8220156481664611 },
|
40 |
+
// { id: 2, start: 1.0512535626298245, end: 2.3398869619825127, confidence: 0.9008811707860472 },
|
41 |
+
// ...
|
42 |
+
// ]
|
43 |
+
// ]
|
44 |
+
|
45 |
+
// Display result
|
46 |
+
console.table(result[0], ['start', 'end', 'id', 'confidence']);
|
47 |
+
// βββββββββββ¬βββββββββββββββββββββ¬βββββββββββββββββββββ¬βββββ¬ββββββββββββββββββββββ
|
48 |
+
// β (index) β start β end β id β confidence β
|
49 |
+
// βββββββββββΌβββββββββββββββββββββΌβββββββββββββββββββββΌβββββΌββββββββββββββββββββββ€
|
50 |
+
// β 0 β 0 β 1.0512535626298245 β 0 β 0.8220156481664611 β
|
51 |
+
// β 1 β 1.0512535626298245 β 2.3398869619825127 β 2 β 0.9008811707860472 β
|
52 |
+
// β 2 β 2.3398869619825127 β 3.5946089560890773 β 0 β 0.7521651315796233 β
|
53 |
+
// β 3 β 3.5946089560890773 β 4.578039708226655 β 2 β 0.8491978128022479 β
|
54 |
+
// β 4 β 4.578039708226655 β 4.594995410849717 β 0 β 0.2935352600416393 β
|
55 |
+
// β 5 β 4.594995410849717 β 6.121008646925269 β 3 β 0.6788051309866024 β
|
56 |
+
// β 6 β 6.121008646925269 β 6.256654267909762 β 0 β 0.37125512393851134 β
|
57 |
+
// β 7 β 6.256654267909762 β 8.630452635138397 β 2 β 0.7467035186353542 β
|
58 |
+
// β 8 β 8.630452635138397 β 10.088643060721703 β 0 β 0.7689364814666032 β
|
59 |
+
// β 9 β 10.088643060721703 β 12.58113134631177 β 2 β 0.9123324509131324 β
|
60 |
+
// β 10 β 12.58113134631177 β 13.005023911888312 β 0 β 0.4828358177572041 β
|
61 |
+
// βββββββββββ΄βββββββββββββββββββββ΄βββββββββββββββββββββ΄βββββ΄ββββββββββββββββββββββ
|
62 |
+
```
|
63 |
+
|
64 |
## Torch → ONNX conversion code:
|
65 |
```py
|
66 |
# pip install torch onnx https://github.com/pyannote/pyannote-audio/archive/refs/heads/develop.zip
|