ongaunjie commited on
Commit
ed0c631
·
1 Parent(s): ebfb356

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -3
README.md CHANGED
@@ -16,11 +16,20 @@ This Hugging Face repository contains a fine-tuned DistilBERT model for sentimen
16
  - **Input Format**: Text-based clothing reviews
17
  - **Output Format**: Sentiment category labels
18
 
 
 
 
19
 
20
  ## Training result
21
- It achieves the following results on the evaluation set:
22
  - **Validation Loss**: 1.1677
23
 
 
 
 
 
 
 
24
 
25
  ## Installation
26
 
@@ -32,7 +41,7 @@ To use this model, you'll need to install the Hugging Face Transformers library
32
  ## Usage
33
  You can easily load the pre-trained model for sentiment analysis using Hugging Face's DistilBertForSequenceClassification and DistilBertTokenizerFast.
34
 
35
- ```bash
36
  from transformers import DistilBertForSequenceClassification, DistilBertTokenizerFast
37
  import torch
38
 
@@ -44,4 +53,4 @@ review = "This dress is amazing, I love it!"
44
  inputs = tokenizer.encode(review, return_tensors="pt")
45
  with torch.no_grad():
46
  outputs = model(inputs)
47
- predicted_class = int(torch.argmax(outputs.logits))
 
16
  - **Input Format**: Text-based clothing reviews
17
  - **Output Format**: Sentiment category labels
18
 
19
+ ## Fine-tuning procedure
20
+ This model was fine-tuned using a relatively small dataset containing 23487 rows broken down into train/eval/test dataset. Nevertheless, the fine-tuned model was able to performs slightly better than the base-distilbert-model on the test dataset.
21
+
22
 
23
  ## Training result
24
+ It achieved the following results on the evaluation set:
25
  - **Validation Loss**: 1.1677
26
 
27
+ ### Comparison between the base distilbert model VS fine-tuned distilbert
28
+ | Model | Accuracy | Precision | Recall | F1 Score |
29
+ |--------------- | -------- | --------- | ------ | -------- |
30
+ | DistilBERT base model | 0.79 | 0.77 | 0.79 | 0.77 |
31
+ | DistilBERT fine-tuned | 0.85 | 0.86 | 0.85 | 0.85 |
32
+
33
 
34
  ## Installation
35
 
 
41
  ## Usage
42
  You can easily load the pre-trained model for sentiment analysis using Hugging Face's DistilBertForSequenceClassification and DistilBertTokenizerFast.
43
 
44
+ ```python
45
  from transformers import DistilBertForSequenceClassification, DistilBertTokenizerFast
46
  import torch
47
 
 
53
  inputs = tokenizer.encode(review, return_tensors="pt")
54
  with torch.no_grad():
55
  outputs = model(inputs)
56
+ predicted_class = int(torch.argmax(outputs.logits))