kyusonglee
commited on
Upload 5 files
Browse files- model-00002-of-00006.safetensors +3 -0
- modeling_omchat.py +1354 -0
- preprocessor_config.json +67 -0
- special_tokens_map.json +20 -0
- tokenizer_config.json +44 -0
model-00002-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:018699a8dac60053fc0d0916584af81a7f50f672914020e295e45e2f15ad5856
|
3 |
+
size 4937253320
|
modeling_omchat.py
ADDED
@@ -0,0 +1,1354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from typing import List, Optional, Tuple, Union
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import torch.utils.checkpoint
|
8 |
+
from torch import nn
|
9 |
+
|
10 |
+
from transformers.configuration_utils import PretrainedConfig
|
11 |
+
from .configuration_omchat import OmChatConfig
|
12 |
+
|
13 |
+
from transformers import Qwen2Config, Qwen2Model, Qwen2ForCausalLM, AutoConfig, AutoModelForCausalLM
|
14 |
+
from transformers.utils import logging
|
15 |
+
from transformers.modeling_outputs import ModelOutput
|
16 |
+
from transformers.utils import (
|
17 |
+
add_start_docstrings,
|
18 |
+
add_start_docstrings_to_model_forward,
|
19 |
+
logging,
|
20 |
+
replace_return_docstrings,
|
21 |
+
)
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
_CONFIG_FOR_DOC = "OmChatConfig"
|
28 |
+
|
29 |
+
from typing import Optional, Tuple, Union
|
30 |
+
|
31 |
+
import torch
|
32 |
+
import torch.nn.functional as F
|
33 |
+
import torch.utils.checkpoint
|
34 |
+
from einops import rearrange
|
35 |
+
from timm.models.layers import DropPath
|
36 |
+
from torch import nn
|
37 |
+
from transformers.activations import ACT2FN
|
38 |
+
from transformers.modeling_outputs import (BaseModelOutput,
|
39 |
+
BaseModelOutputWithPooling)
|
40 |
+
from transformers.modeling_utils import PreTrainedModel
|
41 |
+
from transformers.utils import logging
|
42 |
+
|
43 |
+
from .configuration_omchat import InternVisionConfig
|
44 |
+
|
45 |
+
try:
|
46 |
+
from .flash_attention import FlashAttention
|
47 |
+
has_flash_attn = True
|
48 |
+
except:
|
49 |
+
print('FlashAttention is not installed.')
|
50 |
+
has_flash_attn = False
|
51 |
+
|
52 |
+
|
53 |
+
logger = logging.get_logger(__name__)
|
54 |
+
|
55 |
+
|
56 |
+
class InternRMSNorm(nn.Module):
|
57 |
+
def __init__(self, hidden_size, eps=1e-6):
|
58 |
+
super().__init__()
|
59 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
60 |
+
self.variance_epsilon = eps
|
61 |
+
|
62 |
+
def forward(self, hidden_states):
|
63 |
+
input_dtype = hidden_states.dtype
|
64 |
+
hidden_states = hidden_states.to(torch.float32)
|
65 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
66 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
67 |
+
return self.weight * hidden_states.to(input_dtype)
|
68 |
+
|
69 |
+
|
70 |
+
try:
|
71 |
+
from apex.normalization import FusedRMSNorm
|
72 |
+
|
73 |
+
InternRMSNorm = FusedRMSNorm # noqa
|
74 |
+
|
75 |
+
logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
|
76 |
+
except ImportError:
|
77 |
+
# using the normal InternRMSNorm
|
78 |
+
pass
|
79 |
+
except Exception:
|
80 |
+
logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
|
81 |
+
pass
|
82 |
+
|
83 |
+
|
84 |
+
class InternVisionEmbeddings(nn.Module):
|
85 |
+
def __init__(self, config: InternVisionConfig):
|
86 |
+
super().__init__()
|
87 |
+
self.config = config
|
88 |
+
self.embed_dim = config.hidden_size
|
89 |
+
self.image_size = config.image_size
|
90 |
+
self.patch_size = config.patch_size
|
91 |
+
|
92 |
+
self.class_embedding = nn.Parameter(
|
93 |
+
torch.randn(1, 1, self.embed_dim),
|
94 |
+
)
|
95 |
+
|
96 |
+
self.patch_embedding = nn.Conv2d(
|
97 |
+
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
|
98 |
+
)
|
99 |
+
|
100 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
101 |
+
self.num_positions = self.num_patches + 1
|
102 |
+
|
103 |
+
self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
|
104 |
+
|
105 |
+
def _get_pos_embed(self, pos_embed, H, W):
|
106 |
+
target_dtype = pos_embed.dtype
|
107 |
+
pos_embed = pos_embed.float().reshape(
|
108 |
+
1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
|
109 |
+
pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False).\
|
110 |
+
reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
|
111 |
+
return pos_embed
|
112 |
+
|
113 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
114 |
+
target_dtype = self.patch_embedding.weight.dtype
|
115 |
+
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
|
116 |
+
batch_size, _, height, width = patch_embeds.shape
|
117 |
+
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
118 |
+
class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
|
119 |
+
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
120 |
+
position_embedding = torch.cat([
|
121 |
+
self.position_embedding[:, :1, :],
|
122 |
+
self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
|
123 |
+
], dim=1)
|
124 |
+
embeddings = embeddings + position_embedding.to(target_dtype)
|
125 |
+
return embeddings
|
126 |
+
|
127 |
+
|
128 |
+
class InternAttention(nn.Module):
|
129 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
130 |
+
|
131 |
+
def __init__(self, config: InternVisionConfig):
|
132 |
+
super().__init__()
|
133 |
+
self.config = config
|
134 |
+
self.embed_dim = config.hidden_size
|
135 |
+
self.num_heads = config.num_attention_heads
|
136 |
+
self.use_flash_attn = config.use_flash_attn and has_flash_attn
|
137 |
+
if config.use_flash_attn and not has_flash_attn:
|
138 |
+
print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
|
139 |
+
self.head_dim = self.embed_dim // self.num_heads
|
140 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
141 |
+
raise ValueError(
|
142 |
+
f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
|
143 |
+
f' {self.num_heads}).'
|
144 |
+
)
|
145 |
+
|
146 |
+
self.scale = self.head_dim ** -0.5
|
147 |
+
self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
|
148 |
+
self.attn_drop = nn.Dropout(config.attention_dropout)
|
149 |
+
self.proj_drop = nn.Dropout(config.dropout)
|
150 |
+
|
151 |
+
self.qk_normalization = config.qk_normalization
|
152 |
+
|
153 |
+
if self.qk_normalization:
|
154 |
+
self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
155 |
+
self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
156 |
+
|
157 |
+
if self.use_flash_attn:
|
158 |
+
self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
|
159 |
+
self.proj = nn.Linear(self.embed_dim, self.embed_dim)
|
160 |
+
|
161 |
+
def _naive_attn(self, x):
|
162 |
+
B, N, C = x.shape
|
163 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
164 |
+
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
|
165 |
+
|
166 |
+
if self.qk_normalization:
|
167 |
+
B_, H_, N_, D_ = q.shape
|
168 |
+
q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
169 |
+
k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
170 |
+
|
171 |
+
attn = ((q * self.scale) @ k.transpose(-2, -1))
|
172 |
+
attn = attn.softmax(dim=-1)
|
173 |
+
attn = self.attn_drop(attn)
|
174 |
+
|
175 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
176 |
+
x = self.proj(x)
|
177 |
+
x = self.proj_drop(x)
|
178 |
+
return x
|
179 |
+
|
180 |
+
def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
|
181 |
+
qkv = self.qkv(x)
|
182 |
+
qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
|
183 |
+
|
184 |
+
if self.qk_normalization:
|
185 |
+
q, k, v = qkv.unbind(2)
|
186 |
+
q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
|
187 |
+
k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
|
188 |
+
qkv = torch.stack([q, k, v], dim=2)
|
189 |
+
|
190 |
+
context, _ = self.inner_attn(
|
191 |
+
qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
|
192 |
+
)
|
193 |
+
outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
|
194 |
+
outs = self.proj_drop(outs)
|
195 |
+
return outs
|
196 |
+
|
197 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
198 |
+
x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
|
199 |
+
return x
|
200 |
+
|
201 |
+
|
202 |
+
class InternMLP(nn.Module):
|
203 |
+
def __init__(self, config: InternVisionConfig):
|
204 |
+
super().__init__()
|
205 |
+
self.config = config
|
206 |
+
self.act = ACT2FN[config.hidden_act]
|
207 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
208 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
209 |
+
|
210 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
211 |
+
hidden_states = self.fc1(hidden_states)
|
212 |
+
hidden_states = self.act(hidden_states)
|
213 |
+
hidden_states = self.fc2(hidden_states)
|
214 |
+
return hidden_states
|
215 |
+
|
216 |
+
|
217 |
+
class InternVisionEncoderLayer(nn.Module):
|
218 |
+
def __init__(self, config: InternVisionConfig, drop_path_rate: float):
|
219 |
+
super().__init__()
|
220 |
+
self.embed_dim = config.hidden_size
|
221 |
+
self.intermediate_size = config.intermediate_size
|
222 |
+
|
223 |
+
self.attn = InternAttention(config)
|
224 |
+
self.mlp = InternMLP(config)
|
225 |
+
self.norm1 = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
226 |
+
self.norm2 = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
227 |
+
|
228 |
+
self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
229 |
+
self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
230 |
+
self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
231 |
+
self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
232 |
+
|
233 |
+
def forward(
|
234 |
+
self,
|
235 |
+
hidden_states: torch.Tensor,
|
236 |
+
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
|
237 |
+
"""
|
238 |
+
Args:
|
239 |
+
hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
240 |
+
"""
|
241 |
+
hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states)) * self.ls1)
|
242 |
+
|
243 |
+
hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states)) * self.ls2)
|
244 |
+
|
245 |
+
return hidden_states
|
246 |
+
|
247 |
+
|
248 |
+
class InternVisionEncoder(nn.Module):
|
249 |
+
"""
|
250 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
251 |
+
[`InternEncoderLayer`].
|
252 |
+
|
253 |
+
Args:
|
254 |
+
config (`InternConfig`):
|
255 |
+
The corresponding vision configuration for the `InternEncoder`.
|
256 |
+
"""
|
257 |
+
|
258 |
+
def __init__(self, config: InternVisionConfig):
|
259 |
+
super().__init__()
|
260 |
+
self.config = config
|
261 |
+
# stochastic depth decay rule
|
262 |
+
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
|
263 |
+
self.layers = nn.ModuleList([
|
264 |
+
InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
|
265 |
+
self.gradient_checkpointing = True
|
266 |
+
|
267 |
+
def forward(
|
268 |
+
self,
|
269 |
+
inputs_embeds,
|
270 |
+
output_hidden_states: Optional[bool] = None,
|
271 |
+
return_dict: Optional[bool] = None,
|
272 |
+
) -> Union[Tuple, BaseModelOutput]:
|
273 |
+
r"""
|
274 |
+
Args:
|
275 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
276 |
+
Embedded representation of the inputs. Should be float, not int tokens.
|
277 |
+
output_hidden_states (`bool`, *optional*):
|
278 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
279 |
+
for more detail.
|
280 |
+
return_dict (`bool`, *optional*):
|
281 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
282 |
+
"""
|
283 |
+
output_hidden_states = (
|
284 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
285 |
+
)
|
286 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
287 |
+
|
288 |
+
encoder_states = () if output_hidden_states else None
|
289 |
+
hidden_states = inputs_embeds
|
290 |
+
|
291 |
+
for idx, encoder_layer in enumerate(self.layers):
|
292 |
+
if output_hidden_states:
|
293 |
+
encoder_states = encoder_states + (hidden_states,)
|
294 |
+
if self.gradient_checkpointing and self.training:
|
295 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
296 |
+
encoder_layer,
|
297 |
+
hidden_states)
|
298 |
+
else:
|
299 |
+
layer_outputs = encoder_layer(
|
300 |
+
hidden_states,
|
301 |
+
)
|
302 |
+
hidden_states = layer_outputs
|
303 |
+
|
304 |
+
if output_hidden_states:
|
305 |
+
encoder_states = encoder_states + (hidden_states,)
|
306 |
+
|
307 |
+
if not return_dict:
|
308 |
+
return tuple(v for v in [hidden_states, encoder_states] if v is not None)
|
309 |
+
return BaseModelOutput(
|
310 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states
|
311 |
+
)
|
312 |
+
|
313 |
+
|
314 |
+
class InternVisionModel(PreTrainedModel):
|
315 |
+
main_input_name = 'pixel_values'
|
316 |
+
config_class = InternVisionConfig
|
317 |
+
_no_split_modules=["InternVisionEncoderLayer"]
|
318 |
+
|
319 |
+
def __init__(self, config: InternVisionConfig):
|
320 |
+
super().__init__(config)
|
321 |
+
self.config = config
|
322 |
+
|
323 |
+
self.embeddings = InternVisionEmbeddings(config)
|
324 |
+
self.encoder = InternVisionEncoder(config)
|
325 |
+
|
326 |
+
def resize_pos_embeddings(self, old_size, new_size, patch_size):
|
327 |
+
pos_emb = self.embeddings.position_embedding
|
328 |
+
_, num_positions, embed_dim = pos_emb.shape
|
329 |
+
cls_emb = pos_emb[:, :1, :]
|
330 |
+
pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
|
331 |
+
pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
|
332 |
+
pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
|
333 |
+
pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
|
334 |
+
self.embeddings.position_embedding = nn.Parameter(pos_emb)
|
335 |
+
logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
|
336 |
+
|
337 |
+
def get_input_embeddings(self):
|
338 |
+
return self.embeddings
|
339 |
+
|
340 |
+
def forward(
|
341 |
+
self,
|
342 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
343 |
+
output_hidden_states: Optional[bool] = None,
|
344 |
+
return_dict: Optional[bool] = None,
|
345 |
+
pixel_embeds: Optional[torch.FloatTensor] = None,
|
346 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
347 |
+
output_hidden_states = (
|
348 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
349 |
+
)
|
350 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
351 |
+
|
352 |
+
if pixel_values is None and pixel_embeds is None:
|
353 |
+
raise ValueError('You have to specify pixel_values or pixel_embeds')
|
354 |
+
|
355 |
+
if pixel_embeds is not None:
|
356 |
+
hidden_states = pixel_embeds
|
357 |
+
else:
|
358 |
+
if len(pixel_values.shape) == 4:
|
359 |
+
hidden_states = self.embeddings(pixel_values)
|
360 |
+
else:
|
361 |
+
raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
|
362 |
+
encoder_outputs = self.encoder(
|
363 |
+
inputs_embeds=hidden_states,
|
364 |
+
output_hidden_states=output_hidden_states,
|
365 |
+
return_dict=return_dict,
|
366 |
+
)
|
367 |
+
last_hidden_state = encoder_outputs.last_hidden_state
|
368 |
+
pooled_output = last_hidden_state[:, 0, :]
|
369 |
+
|
370 |
+
if not return_dict:
|
371 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
372 |
+
|
373 |
+
return BaseModelOutputWithPooling(
|
374 |
+
last_hidden_state=last_hidden_state,
|
375 |
+
pooler_output=pooled_output,
|
376 |
+
hidden_states=encoder_outputs.hidden_states,
|
377 |
+
attentions=encoder_outputs.attentions,
|
378 |
+
)
|
379 |
+
def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
|
380 |
+
"""
|
381 |
+
Calculate the shape of the image patch grid after the preprocessing for images of any resolution.
|
382 |
+
|
383 |
+
Args:
|
384 |
+
image_size (`tuple`):
|
385 |
+
The size of the input image in the format (width, height).
|
386 |
+
grid_pinpoints (`List`):
|
387 |
+
A list containing possible resolutions. Each item in the list should be a tuple or list
|
388 |
+
of the form `(height, width)`.
|
389 |
+
patch_size (`int`):
|
390 |
+
The size of each image patch.
|
391 |
+
|
392 |
+
Returns:
|
393 |
+
tuple: The shape of the image patch grid in the format (width, height).
|
394 |
+
"""
|
395 |
+
if not isinstance(grid_pinpoints, list):
|
396 |
+
raise TypeError("grid_pinpoints should be a list of tuples or lists")
|
397 |
+
|
398 |
+
# ! VERY IMPORTANT if image_size is tensor, must convert to into tuple, otherwise it will cause wrong calculate
|
399 |
+
if not isinstance(image_size, (list, tuple)):
|
400 |
+
if not isinstance(image_size, (torch.Tensor, np.ndarray)):
|
401 |
+
raise TypeError(
|
402 |
+
f"image_size invalid type: {type(image_size)} not valid, should be either list, tuple, np.ndarray or tensor"
|
403 |
+
)
|
404 |
+
image_size = image_size.tolist()
|
405 |
+
|
406 |
+
height, width = select_best_resolution(image_size, grid_pinpoints)
|
407 |
+
return height // patch_size, width // patch_size
|
408 |
+
|
409 |
+
|
410 |
+
def image_size_to_num_patches(image_size, grid_pinpoints, patch_size: int):
|
411 |
+
"""
|
412 |
+
Calculate the number of patches after the preprocessing for images of any resolution.
|
413 |
+
|
414 |
+
Args:
|
415 |
+
image_size (`torch.LongTensor` or `np.ndarray` or `Tuple[int, int]`):
|
416 |
+
The size of the input image in the format (height, width). ?
|
417 |
+
grid_pinpoints (`List`):
|
418 |
+
A list containing possible resolutions. Each item in the list should be a tuple or list
|
419 |
+
of the form `(height, width)`.
|
420 |
+
patch_size (`int`):
|
421 |
+
The size of each image patch.
|
422 |
+
|
423 |
+
Returns:
|
424 |
+
int: the number of patches
|
425 |
+
"""
|
426 |
+
if not isinstance(grid_pinpoints, list):
|
427 |
+
raise TypeError("grid_pinpoints should be a list of tuples or lists")
|
428 |
+
|
429 |
+
# ! VERY IMPORTANT if image_size is tensor, must convert to into tuple, otherwise it will cause wrong calculate
|
430 |
+
if not isinstance(image_size, (list, tuple)):
|
431 |
+
if not isinstance(image_size, (torch.Tensor, np.ndarray)):
|
432 |
+
raise TypeError(f"image_size invalid type {type(image_size)} with value {image_size}")
|
433 |
+
image_size = image_size.tolist()
|
434 |
+
|
435 |
+
best_resolution = select_best_resolution(image_size, grid_pinpoints)
|
436 |
+
height, width = best_resolution
|
437 |
+
num_patches = 0
|
438 |
+
# consider change to ceil(height/patch_size)*ceil(width/patch_size) + 1
|
439 |
+
for i in range(0, height, patch_size):
|
440 |
+
for j in range(0, width, patch_size):
|
441 |
+
num_patches += 1
|
442 |
+
# add the base patch
|
443 |
+
num_patches += 1
|
444 |
+
return num_patches
|
445 |
+
|
446 |
+
|
447 |
+
def unpad_image(tensor, original_size):
|
448 |
+
"""
|
449 |
+
Unpads a PyTorch tensor of a padded and resized image.
|
450 |
+
|
451 |
+
Args:
|
452 |
+
tensor (`torch.Tensor`):
|
453 |
+
The image tensor, assumed to be of shape (num_channels, height, width).
|
454 |
+
original_size (`tuple`):
|
455 |
+
The original size of the image (height, width).
|
456 |
+
|
457 |
+
Returns:
|
458 |
+
`torch.Tensor`: The unpadded image tensor.
|
459 |
+
"""
|
460 |
+
original_height, original_width = original_size
|
461 |
+
current_height, current_width = tensor.shape[1:]
|
462 |
+
|
463 |
+
original_aspect_ratio = original_width / original_height
|
464 |
+
current_aspect_ratio = current_width / current_height
|
465 |
+
|
466 |
+
if original_aspect_ratio > current_aspect_ratio:
|
467 |
+
scale_factor = current_width / original_width
|
468 |
+
new_height = int(original_height * scale_factor)
|
469 |
+
padding = (current_height - new_height) // 2
|
470 |
+
unpadded_tensor = tensor[:, padding : current_height - padding, :]
|
471 |
+
else:
|
472 |
+
scale_factor = current_height / original_height
|
473 |
+
new_width = int(original_width * scale_factor)
|
474 |
+
padding = (current_width - new_width) // 2
|
475 |
+
unpadded_tensor = tensor[:, :, padding : current_width - padding]
|
476 |
+
|
477 |
+
return unpadded_tensor
|
478 |
+
|
479 |
+
|
480 |
+
@dataclass
|
481 |
+
# Copied from transformers.models.idefics.modeling_idefics.IdeficsCausalLMOutputWithPast with Idefics->OmChat
|
482 |
+
class OmChatCausalLMOutputWithPast(ModelOutput):
|
483 |
+
"""
|
484 |
+
Base class for OmChat causal language model (or autoregressive) outputs.
|
485 |
+
|
486 |
+
Args:
|
487 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
488 |
+
Language modeling loss (for next-token prediction).
|
489 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
490 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
491 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
492 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
493 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
494 |
+
|
495 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
496 |
+
`past_key_values` input) to speed up sequential decoding.
|
497 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
498 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
499 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
500 |
+
|
501 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
502 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
503 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
504 |
+
sequence_length)`.
|
505 |
+
|
506 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
507 |
+
heads.
|
508 |
+
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
|
509 |
+
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
|
510 |
+
sequence_length, hidden_size)`.
|
511 |
+
|
512 |
+
image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver
|
513 |
+
"""
|
514 |
+
|
515 |
+
loss: Optional[torch.FloatTensor] = None
|
516 |
+
logits: torch.FloatTensor = None
|
517 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None
|
518 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
519 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
520 |
+
image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
521 |
+
|
522 |
+
|
523 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaMultiModalProjector with Llava->OmChat
|
524 |
+
class OmChatMultiModalProjector(nn.Module):
|
525 |
+
def __init__(self, config: OmChatConfig):
|
526 |
+
super().__init__()
|
527 |
+
|
528 |
+
self.linear_1 = nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size, bias=True)
|
529 |
+
self.act = nn.GELU()
|
530 |
+
self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)
|
531 |
+
|
532 |
+
def forward(self, image_features):
|
533 |
+
hidden_states = self.linear_1(image_features)
|
534 |
+
hidden_states = self.act(hidden_states)
|
535 |
+
hidden_states = self.linear_2(hidden_states)
|
536 |
+
return hidden_states
|
537 |
+
|
538 |
+
OMCHAT_START_DOCSTRING = r"""
|
539 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
540 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
541 |
+
etc.)
|
542 |
+
|
543 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
544 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
545 |
+
and behavior.
|
546 |
+
|
547 |
+
Parameters:
|
548 |
+
config ([`OmChatConfig`] or [`OmChatVisionConfig`]):
|
549 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
550 |
+
load the weights associated with the model, only the configuration. Check out the
|
551 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
552 |
+
"""
|
553 |
+
|
554 |
+
|
555 |
+
@add_start_docstrings(
|
556 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
557 |
+
OMCHAT_START_DOCSTRING,
|
558 |
+
)
|
559 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaPreTrainedModel with Llava->OmChat,llava->omchat
|
560 |
+
class OmChatPreTrainedModel(PreTrainedModel):
|
561 |
+
config_class = OmChatConfig
|
562 |
+
base_model_prefix = "model"
|
563 |
+
supports_gradient_checkpointing = True
|
564 |
+
_no_split_modules = ["OmChatVisionAttention"]
|
565 |
+
_skip_keys_device_placement = "past_key_values"
|
566 |
+
_supports_flash_attn_2 = True
|
567 |
+
_supports_cache_class = True
|
568 |
+
|
569 |
+
def _init_weights(self, module):
|
570 |
+
# important: this ported version of OmChat isn't meant for training from scratch - only
|
571 |
+
# inference and fine-tuning - so the proper init weights code has been removed - the original codebase
|
572 |
+
# https://github.com/haotian-liu/LLaVA/tree/main/omchat should serve for that purpose
|
573 |
+
std = (
|
574 |
+
self.config.initializer_range
|
575 |
+
if hasattr(self.config, "initializer_range")
|
576 |
+
else self.config.text_config.initializer_range
|
577 |
+
)
|
578 |
+
|
579 |
+
if hasattr(module, "class_embedding"):
|
580 |
+
module.class_embedding.data.normal_(mean=0.0, std=std)
|
581 |
+
|
582 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
583 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
584 |
+
if module.bias is not None:
|
585 |
+
module.bias.data.zero_()
|
586 |
+
elif isinstance(module, nn.Embedding):
|
587 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
588 |
+
if module.padding_idx is not None:
|
589 |
+
module.weight.data[module.padding_idx].zero_()
|
590 |
+
|
591 |
+
@property
|
592 |
+
def _supports_sdpa(self):
|
593 |
+
"""
|
594 |
+
Retrieve language_model's attribute to check whether the model supports
|
595 |
+
SDPA or not.
|
596 |
+
"""
|
597 |
+
return self.language_model._supports_sdpa
|
598 |
+
|
599 |
+
|
600 |
+
OMCHAT_INPUTS_DOCSTRING = r"""
|
601 |
+
Args:
|
602 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
603 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
604 |
+
it.
|
605 |
+
|
606 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
607 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
608 |
+
|
609 |
+
[What are input IDs?](../glossary#input-ids)
|
610 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)):
|
611 |
+
The tensors corresponding to the input images. Pixel values can be obtained using
|
612 |
+
[`AutoImageProcessor`]. See [`OmChatImageProcessor.__call__`] for details. [`LlavaProcessor`] uses
|
613 |
+
[`OmChatImageProcessor`] for processing images.
|
614 |
+
image_sizes (`torch.LongTensor` of shape `(batch_size, 2)`, *optional*):
|
615 |
+
The sizes of the images in the batch, being (height, width) for each image.
|
616 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
617 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
618 |
+
|
619 |
+
- 1 for tokens that are **not masked**,
|
620 |
+
- 0 for tokens that are **masked**.
|
621 |
+
|
622 |
+
[What are attention masks?](../glossary#attention-mask)
|
623 |
+
|
624 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
625 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
626 |
+
|
627 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
628 |
+
`past_key_values`).
|
629 |
+
|
630 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
631 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
632 |
+
information on the default strategy.
|
633 |
+
|
634 |
+
- 1 indicates the head is **not masked**,
|
635 |
+
- 0 indicates the head is **masked**.
|
636 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
637 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
638 |
+
config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
|
639 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
640 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
641 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
642 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
643 |
+
|
644 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
645 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
646 |
+
|
647 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
648 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
649 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
650 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
651 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
652 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
653 |
+
model's internal embedding lookup matrix.
|
654 |
+
vision_feature_layer (`int`, *optional*, defaults to -2):
|
655 |
+
The index of the layer to select the vision feature.
|
656 |
+
vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`):
|
657 |
+
The feature selection strategy used to select the vision feature from the vision backbone.
|
658 |
+
Can be one of `"default"` or `"full"`. If `"default"`, the CLS token is removed from the vision features.
|
659 |
+
If `"full"`, the full vision features are used.
|
660 |
+
use_cache (`bool`, *optional*):
|
661 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
662 |
+
`past_key_values`).
|
663 |
+
output_attentions (`bool`, *optional*):
|
664 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
665 |
+
tensors for more detail.
|
666 |
+
output_hidden_states (`bool`, *optional*):
|
667 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
668 |
+
more detail.
|
669 |
+
return_dict (`bool`, *optional*):
|
670 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
671 |
+
"""
|
672 |
+
|
673 |
+
|
674 |
+
@add_start_docstrings(
|
675 |
+
"""The OmChat model which consists of a vision backbone and a language model.""",
|
676 |
+
OMCHAT_START_DOCSTRING,
|
677 |
+
)
|
678 |
+
class OmChatForConditionalGeneration(OmChatPreTrainedModel):
|
679 |
+
def __init__(self, config: OmChatConfig):
|
680 |
+
super().__init__(config)
|
681 |
+
self.vision_tower = InternVisionModel(InternVisionConfig())
|
682 |
+
|
683 |
+
self.multi_modal_projector = OmChatMultiModalProjector(config)
|
684 |
+
self.vocab_size = config.text_config.vocab_size
|
685 |
+
self.language_model = Qwen2ForCausalLM._from_config(
|
686 |
+
config.text_config, attn_implementation=config._attn_implementation
|
687 |
+
)
|
688 |
+
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
|
689 |
+
self._padding_side = "left" # set it to left by default, user can use setter to change padding_sides
|
690 |
+
self.post_init()
|
691 |
+
|
692 |
+
@property
|
693 |
+
def padding_side(self):
|
694 |
+
return self._padding_side
|
695 |
+
|
696 |
+
@padding_side.setter
|
697 |
+
def padding_side(self, padding_side: str):
|
698 |
+
if padding_side not in ["left", "right"]:
|
699 |
+
raise ValueError(f"{padding_side} is not `left` or `right`.")
|
700 |
+
self._padding_side = padding_side
|
701 |
+
|
702 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_input_embeddings
|
703 |
+
def get_input_embeddings(self):
|
704 |
+
return self.language_model.get_input_embeddings()
|
705 |
+
|
706 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_input_embeddings
|
707 |
+
def set_input_embeddings(self, value):
|
708 |
+
self.language_model.set_input_embeddings(value)
|
709 |
+
|
710 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_output_embeddings
|
711 |
+
def get_output_embeddings(self):
|
712 |
+
return self.language_model.get_output_embeddings()
|
713 |
+
|
714 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_output_embeddings
|
715 |
+
def set_output_embeddings(self, new_embeddings):
|
716 |
+
self.language_model.set_output_embeddings(new_embeddings)
|
717 |
+
|
718 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_decoder
|
719 |
+
def set_decoder(self, decoder):
|
720 |
+
self.language_model.set_decoder(decoder)
|
721 |
+
|
722 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_decoder
|
723 |
+
def get_decoder(self):
|
724 |
+
return self.language_model.get_decoder()
|
725 |
+
|
726 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.tie_weights
|
727 |
+
def tie_weights(self):
|
728 |
+
return self.language_model.tie_weights()
|
729 |
+
|
730 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.resize_token_embeddings
|
731 |
+
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
|
732 |
+
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
|
733 |
+
# update vocab size
|
734 |
+
self.config.text_config.vocab_size = model_embeds.num_embeddings
|
735 |
+
self.vocab_size = model_embeds.num_embeddings
|
736 |
+
return model_embeds
|
737 |
+
|
738 |
+
def get_vision_tower(self):
|
739 |
+
if isinstance(self.vision_tower, list):
|
740 |
+
return self.vision_tower[0]
|
741 |
+
return self.vision_tower
|
742 |
+
|
743 |
+
def get_model(self):
|
744 |
+
return self.language_model.model
|
745 |
+
|
746 |
+
def encode_images(self, images):
|
747 |
+
vision_tower = self.get_vision_tower()
|
748 |
+
image_features = self.vision_tower_forward(images)
|
749 |
+
return self.multi_modal_projector(image_features.to(torch.float16))
|
750 |
+
|
751 |
+
def feature_select(self, image_forward_outs):
|
752 |
+
image_features = image_forward_outs.hidden_states[-1]
|
753 |
+
image_features = image_features[:, 1:]
|
754 |
+
return image_features
|
755 |
+
|
756 |
+
def vision_tower_forward(self, images):
|
757 |
+
if type(images) is list:
|
758 |
+
image_features = []
|
759 |
+
for image in images:
|
760 |
+
image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True)
|
761 |
+
image_feature = self.feature_select(image_forward_out).to(image.dtype)
|
762 |
+
image_features.append(image_feature)
|
763 |
+
else:
|
764 |
+
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=torch.float16), output_hidden_states=True)
|
765 |
+
#image_forward_outs = self.vision_tower(images, output_hidden_states=True)
|
766 |
+
image_features = self.feature_select(image_forward_outs)
|
767 |
+
|
768 |
+
return image_features
|
769 |
+
|
770 |
+
def prepare_inputs_labels_for_multimodal(
|
771 |
+
self, input_ids, position_ids, attention_mask, past_key_values, labels, images
|
772 |
+
):
|
773 |
+
|
774 |
+
vision_tower = self.get_vision_tower()
|
775 |
+
video_tower = self.get_vision_tower()
|
776 |
+
if (vision_tower is None and video_tower is None) or images is None or input_ids.shape[1] == 1:
|
777 |
+
if past_key_values is not None and (vision_tower is not None or video_tower is not None) and images is not None and input_ids.shape[1] == 1:
|
778 |
+
target_shape = past_key_values[-1][-1].shape[-2] + 1
|
779 |
+
attention_mask = torch.cat((attention_mask, torch.ones(
|
780 |
+
(attention_mask.shape[0], target_shape - attention_mask.shape[1]),
|
781 |
+
dtype=attention_mask.dtype,
|
782 |
+
device=attention_mask.device
|
783 |
+
)), dim=1)
|
784 |
+
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
|
785 |
+
return input_ids, position_ids, attention_mask, past_key_values, None, labels
|
786 |
+
|
787 |
+
image_idx = [idx for idx, img in enumerate(images) if img.ndim == 3]
|
788 |
+
is_all_image = len(image_idx) == len(images)
|
789 |
+
video_idx = [idx for idx, vid in enumerate(images) if vid.ndim == 4]
|
790 |
+
images_minibatch = torch.stack([images[idx] for idx in image_idx]) if len(image_idx) > 0 else [] # mini_b c h w
|
791 |
+
videos_minibatch = torch.stack([images[idx] for idx in video_idx]) if len(video_idx) > 0 else [] # mini_b c t h w
|
792 |
+
|
793 |
+
tmp_image_features = [None] * (len(image_idx) + len(video_idx))
|
794 |
+
if getattr(images_minibatch, 'ndim', 0) == 4: # batch consists of images, [mini_b, c, h, w]
|
795 |
+
if vision_tower is not None:
|
796 |
+
image_features_minibatch = self.encode_images(images_minibatch) # [mini_b, l, c]
|
797 |
+
else:
|
798 |
+
image_features_minibatch = torch.randn(1).to(self.device) # dummy feature for video-only training under tuning
|
799 |
+
for i, pos in enumerate(image_idx):
|
800 |
+
tmp_image_features[pos] = image_features_minibatch[i]
|
801 |
+
if getattr(videos_minibatch, 'ndim', 0) == 5: # batch consists of videos, [mini_b, c, t, h, w]
|
802 |
+
video_features_minibatch = self.encode_images(videos_minibatch) # fake list [mini_b, t, l, c]
|
803 |
+
for i, pos in enumerate(video_idx):
|
804 |
+
tmp_image_features[pos] = video_features_minibatch[i]
|
805 |
+
new_tmp = []
|
806 |
+
for image in tmp_image_features:
|
807 |
+
if isinstance(image, list):
|
808 |
+
t = len(image)
|
809 |
+
for i in range(t):
|
810 |
+
new_tmp.append(image[i])
|
811 |
+
else:
|
812 |
+
new_tmp.append(image)
|
813 |
+
image_features = new_tmp
|
814 |
+
|
815 |
+
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
|
816 |
+
raise NotImplementedError
|
817 |
+
|
818 |
+
_labels = labels
|
819 |
+
_position_ids = position_ids
|
820 |
+
_attention_mask = attention_mask
|
821 |
+
if attention_mask is None:
|
822 |
+
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
|
823 |
+
else:
|
824 |
+
attention_mask = attention_mask.bool()
|
825 |
+
if position_ids is None:
|
826 |
+
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
|
827 |
+
if labels is None:
|
828 |
+
labels = torch.full_like(input_ids, -100)
|
829 |
+
|
830 |
+
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
|
831 |
+
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
|
832 |
+
new_input_embeds = []
|
833 |
+
new_labels = []
|
834 |
+
cur_image_idx = 0
|
835 |
+
for batch_idx, cur_input_ids in enumerate(input_ids):
|
836 |
+
num_images = (cur_input_ids == -200).sum()
|
837 |
+
if num_images == 0:
|
838 |
+
cur_image_features = image_features[cur_image_idx]
|
839 |
+
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
|
840 |
+
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
|
841 |
+
new_input_embeds.append(cur_input_embeds)
|
842 |
+
new_labels.append(labels[batch_idx])
|
843 |
+
cur_image_idx += 1
|
844 |
+
continue
|
845 |
+
|
846 |
+
image_token_indices = [-1] + torch.where(cur_input_ids == -200)[0].tolist() + [cur_input_ids.shape[0]]
|
847 |
+
cur_input_ids_noim = []
|
848 |
+
cur_labels = labels[batch_idx]
|
849 |
+
cur_labels_noim = []
|
850 |
+
for i in range(len(image_token_indices) - 1):
|
851 |
+
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
|
852 |
+
cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
|
853 |
+
split_sizes = [x.shape[0] for x in cur_labels_noim]
|
854 |
+
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
|
855 |
+
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
|
856 |
+
|
857 |
+
cur_new_input_embeds = []
|
858 |
+
cur_new_labels = []
|
859 |
+
|
860 |
+
for i in range(num_images + 1):
|
861 |
+
cur_new_input_embeds.append(cur_input_embeds_no_im[i])
|
862 |
+
cur_new_labels.append(cur_labels_noim[i])
|
863 |
+
if i < num_images:
|
864 |
+
cur_image_features = image_features[cur_image_idx].to(self.device)
|
865 |
+
cur_image_idx += 1
|
866 |
+
cur_new_input_embeds.append(cur_image_features)
|
867 |
+
cur_new_labels.append(torch.full((cur_image_features.shape[0],), -100, device=cur_labels.device, dtype=cur_labels.dtype))
|
868 |
+
|
869 |
+
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
|
870 |
+
cur_new_labels = torch.cat(cur_new_labels)
|
871 |
+
|
872 |
+
new_input_embeds.append(cur_new_input_embeds)
|
873 |
+
new_labels.append(cur_new_labels)
|
874 |
+
|
875 |
+
# Truncate sequences to max length as image embeddings can make the sequence longer
|
876 |
+
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
|
877 |
+
if tokenizer_model_max_length is not None:
|
878 |
+
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
|
879 |
+
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
|
880 |
+
|
881 |
+
max_len = max(x.shape[0] for x in new_input_embeds)
|
882 |
+
batch_size = len(new_input_embeds)
|
883 |
+
|
884 |
+
new_input_embeds_padded = []
|
885 |
+
new_labels_padded = torch.full((batch_size, max_len), -100, dtype=new_labels[0].dtype, device=new_labels[0].device)
|
886 |
+
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
|
887 |
+
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
|
888 |
+
|
889 |
+
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
|
890 |
+
cur_len = cur_new_embed.shape[0]
|
891 |
+
if getattr(self.config, 'tokenizer_padding_side', 'right') == "left":
|
892 |
+
new_input_embeds_padded.append(torch.cat((
|
893 |
+
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
|
894 |
+
cur_new_embed
|
895 |
+
), dim=0))
|
896 |
+
if cur_len > 0:
|
897 |
+
new_labels_padded[i, -cur_len:] = cur_new_labels
|
898 |
+
attention_mask[i, -cur_len:] = True
|
899 |
+
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
|
900 |
+
else:
|
901 |
+
new_input_embeds_padded.append(torch.cat((
|
902 |
+
cur_new_embed,
|
903 |
+
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
|
904 |
+
), dim=0))
|
905 |
+
if cur_len > 0:
|
906 |
+
new_labels_padded[i, :cur_len] = cur_new_labels
|
907 |
+
attention_mask[i, :cur_len] = True
|
908 |
+
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
|
909 |
+
|
910 |
+
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
|
911 |
+
if _labels is None:
|
912 |
+
new_labels = None
|
913 |
+
else:
|
914 |
+
new_labels = new_labels_padded
|
915 |
+
|
916 |
+
if _attention_mask is None:
|
917 |
+
attention_mask = None
|
918 |
+
else:
|
919 |
+
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
|
920 |
+
|
921 |
+
if _position_ids is None:
|
922 |
+
position_ids = None
|
923 |
+
|
924 |
+
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
|
925 |
+
|
926 |
+
|
927 |
+
def _merge_input_ids_with_image_features(
|
928 |
+
self,
|
929 |
+
image_features,
|
930 |
+
feature_lens,
|
931 |
+
inputs_embeds,
|
932 |
+
input_ids,
|
933 |
+
attention_mask,
|
934 |
+
position_ids=None,
|
935 |
+
labels=None,
|
936 |
+
image_token_index=None,
|
937 |
+
ignore_index=-100,
|
938 |
+
):
|
939 |
+
"""
|
940 |
+
Merge input_ids with with image features into final embeddings
|
941 |
+
|
942 |
+
Args:
|
943 |
+
image_features (`torch.Tensor` of shape `(all_feature_lens, embed_dim)`):
|
944 |
+
All vision vectors of all images in the batch
|
945 |
+
feature_lens (`torch.LongTensor` of shape `(num_images)`):
|
946 |
+
The length of visual embeddings of each image as stacked in `image_features`
|
947 |
+
inputs_embeds (`torch.Tensor` of shape `(batch_size, sequence_length, embed_dim)`):
|
948 |
+
Token embeddings before merging with visual embeddings
|
949 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
950 |
+
Input_ids of tokens, possibly filled with image token
|
951 |
+
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
952 |
+
Mask to avoid performing attention on padding token indices.
|
953 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
954 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
955 |
+
config.n_positions - 1]`.
|
956 |
+
labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*)
|
957 |
+
:abels need to be recalculated to support training (if provided)
|
958 |
+
image_token_index (`int`, *optional*)
|
959 |
+
Token id used to indicate the special "image" token. Defaults to `config.image_token_index`
|
960 |
+
ignore_index (`int`, *optional*)
|
961 |
+
Value that is used to pad `labels` and will be ignored when calculated loss. Default: -100.
|
962 |
+
Returns:
|
963 |
+
final_embedding, final_attention_mask, position_ids, final_labels
|
964 |
+
|
965 |
+
Explanation:
|
966 |
+
each image has variable length embeddings, with length specified by feature_lens
|
967 |
+
image_features is concatenation of all visual embed vectors
|
968 |
+
task: fill each <image> with the correct number of visual embeddings
|
969 |
+
Example:
|
970 |
+
X (5 patches), Y (3 patches), Z (8)
|
971 |
+
X, Y are in the same sequence (in-context learning)
|
972 |
+
if right padding
|
973 |
+
input_ids: [
|
974 |
+
a b c d e f X g h i j k Y l m
|
975 |
+
o p q r Z s t u v _ _ _ _ _ _
|
976 |
+
]
|
977 |
+
input_ids should be: [
|
978 |
+
a b c d e f X X X X X g h i j k Y Y Y l m
|
979 |
+
o p q r Z Z Z Z Z Z Z Z s t u v _ _ _ _ _
|
980 |
+
]
|
981 |
+
labels should be: [
|
982 |
+
a b c d e f _ _ _ _ _ g h i j k _ _ _ l m
|
983 |
+
o p q r _ _ _ _ _ _ _ _ s t u v _ _ _ _ _
|
984 |
+
]
|
985 |
+
elif left padding
|
986 |
+
input_ids: [
|
987 |
+
a b c d e f X g h i j k Y l m
|
988 |
+
_ _ _ _ _ _ o p q r Z s t u v
|
989 |
+
]
|
990 |
+
input_ids should be: [
|
991 |
+
a b c d e f X X X X X g h i j k Y Y Y l m
|
992 |
+
_ _ _ _ _ o p q r Z Z Z Z Z Z Z Z s t u v
|
993 |
+
]
|
994 |
+
labels should be: [
|
995 |
+
a b c d e f _ _ _ _ _ g h i j k _ _ _ l m
|
996 |
+
_ _ _ _ _ o p q r _ _ _ _ _ _ _ _ s t u v
|
997 |
+
]
|
998 |
+
Edge cases:
|
999 |
+
* If tokens are same but image token sizes are different, then cannot infer left or right padding
|
1000 |
+
```python
|
1001 |
+
cat_img = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)
|
1002 |
+
chart_img = Image.open(requests.get("https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true", stream=True).raw)
|
1003 |
+
prompts = [
|
1004 |
+
"[INST] <image>\nWhat is shown in this image? [/INST]",
|
1005 |
+
"[INST] <image>\nWhat is shown in this image? [/INST]",
|
1006 |
+
]
|
1007 |
+
inputs = processor(prompts, [chart_img, cat_img], return_tensors='pt', padding=True).to("cuda")
|
1008 |
+
chart_img has 2634 tokens, while cat_img has 2340 tokens
|
1009 |
+
```
|
1010 |
+
|
1011 |
+
input_ids: [
|
1012 |
+
a b c d X g h
|
1013 |
+
i j Y k l m n
|
1014 |
+
]
|
1015 |
+
where X is 3 tokens while Y is 5, this mean after merge
|
1016 |
+
if left-padding (batched generation)
|
1017 |
+
input_ids should be: [
|
1018 |
+
_ _ a b c d X X X g h
|
1019 |
+
i j Y Y Y Y Y k l m n
|
1020 |
+
]
|
1021 |
+
elif (right padding) (training)
|
1022 |
+
input_ids should be: [
|
1023 |
+
a b c d X X X g h _ _
|
1024 |
+
i j Y Y Y Y Y k l m n
|
1025 |
+
]
|
1026 |
+
"""
|
1027 |
+
image_token_index = image_token_index if image_token_index is not None else self.config.image_token_index
|
1028 |
+
ignore_index = ignore_index if ignore_index is not None else self.config.ignore_index
|
1029 |
+
|
1030 |
+
with torch.no_grad():
|
1031 |
+
# ! in llava 1.6, number of patches is variable
|
1032 |
+
num_images = feature_lens.size(0)
|
1033 |
+
num_image_features, embed_dim = image_features.shape
|
1034 |
+
if feature_lens.sum() != num_image_features:
|
1035 |
+
raise ValueError(f"{feature_lens=} / {feature_lens.sum()} != {image_features.shape=}")
|
1036 |
+
batch_size = input_ids.shape[0]
|
1037 |
+
_left_padding = torch.any(attention_mask[:, 0] == 0)
|
1038 |
+
_right_padding = torch.any(attention_mask[:, -1] == 0)
|
1039 |
+
|
1040 |
+
left_padding = True if not self.training else False
|
1041 |
+
if batch_size > 1 and not self.training:
|
1042 |
+
if _left_padding and not _right_padding:
|
1043 |
+
left_padding = True
|
1044 |
+
elif not _left_padding and _right_padding:
|
1045 |
+
left_padding = False
|
1046 |
+
elif not _left_padding and not _right_padding:
|
1047 |
+
# both side is 1, so cannot tell
|
1048 |
+
left_padding = self.padding_side == "left"
|
1049 |
+
else:
|
1050 |
+
# invalid attention_mask
|
1051 |
+
raise ValueError(f"both side of attention_mask has zero, invalid. {attention_mask}")
|
1052 |
+
|
1053 |
+
# Whether to turn off right padding
|
1054 |
+
# 1. Create a mask to know where special image tokens are
|
1055 |
+
special_image_token_mask = input_ids == image_token_index
|
1056 |
+
# special_image_token_mask: [bsz, seqlen]
|
1057 |
+
num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1)
|
1058 |
+
# num_special_image_tokens: [bsz]
|
1059 |
+
# Reserve for padding of num_images
|
1060 |
+
total_num_special_image_tokens = torch.sum(special_image_token_mask)
|
1061 |
+
if total_num_special_image_tokens != num_images:
|
1062 |
+
raise ValueError(
|
1063 |
+
f"Number of image tokens in input_ids ({total_num_special_image_tokens}) different from num_images ({num_images})."
|
1064 |
+
)
|
1065 |
+
# Compute the maximum embed dimension
|
1066 |
+
# max_image_feature_lens is max_feature_lens per batch
|
1067 |
+
feature_lens = feature_lens.to(input_ids.device)
|
1068 |
+
feature_lens_batch = feature_lens.split(num_special_image_tokens.tolist(), dim=0)
|
1069 |
+
feature_lens_batch_sum = torch.tensor([x.sum() for x in feature_lens_batch], device=input_ids.device)
|
1070 |
+
embed_sequence_lengths = (
|
1071 |
+
(attention_mask == 1).long().sum(-1) - num_special_image_tokens + feature_lens_batch_sum
|
1072 |
+
)
|
1073 |
+
max_embed_dim = embed_sequence_lengths.max()
|
1074 |
+
|
1075 |
+
batch_indices, non_image_indices = torch.where((input_ids != image_token_index) & (attention_mask == 1))
|
1076 |
+
# 2. Compute the positions where text should be written
|
1077 |
+
# Calculate new positions for text tokens in merged image-text sequence.
|
1078 |
+
# `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images` text tokens.
|
1079 |
+
# `torch.cumsum` computes how each image token shifts subsequent text token positions.
|
1080 |
+
# - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one.
|
1081 |
+
# ! instead of special_image_token_mask * (num_image_patches - 1)
|
1082 |
+
# special_image_token_mask * (num_feature_len - 1)
|
1083 |
+
special_image_token_mask = special_image_token_mask.long()
|
1084 |
+
special_image_token_mask[special_image_token_mask == 1] = feature_lens - 1
|
1085 |
+
new_token_positions = torch.cumsum((special_image_token_mask + 1), -1) - 1
|
1086 |
+
if left_padding:
|
1087 |
+
# shift right token positions so that they are ending at the same number
|
1088 |
+
# the below here was incorrect? new_token_positions += new_token_positions[:, -1].max() - new_token_positions[:, -1:]
|
1089 |
+
new_token_positions += max_embed_dim - 1 - new_token_positions[:, -1:]
|
1090 |
+
|
1091 |
+
text_to_overwrite = new_token_positions[batch_indices, non_image_indices]
|
1092 |
+
|
1093 |
+
# 3. Create the full embedding, already padded to the maximum position
|
1094 |
+
final_embedding = torch.zeros(
|
1095 |
+
batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device
|
1096 |
+
)
|
1097 |
+
final_attention_mask = torch.zeros(
|
1098 |
+
batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device
|
1099 |
+
)
|
1100 |
+
final_input_ids = torch.full(
|
1101 |
+
(batch_size, max_embed_dim), self.pad_token_id, dtype=input_ids.dtype, device=inputs_embeds.device
|
1102 |
+
)
|
1103 |
+
# In case the Vision model or the Language model has been offloaded to CPU, we need to manually
|
1104 |
+
# set the corresponding tensors into their correct target device.
|
1105 |
+
target_device = inputs_embeds.device
|
1106 |
+
batch_indices, non_image_indices, text_to_overwrite = (
|
1107 |
+
batch_indices.to(target_device),
|
1108 |
+
non_image_indices.to(target_device),
|
1109 |
+
text_to_overwrite.to(target_device),
|
1110 |
+
)
|
1111 |
+
attention_mask = attention_mask.to(target_device)
|
1112 |
+
input_ids = input_ids.to(target_device)
|
1113 |
+
|
1114 |
+
# 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"]
|
1115 |
+
# we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features
|
1116 |
+
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices]
|
1117 |
+
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices]
|
1118 |
+
final_input_ids[batch_indices, text_to_overwrite] = input_ids[batch_indices, non_image_indices]
|
1119 |
+
final_labels = None
|
1120 |
+
if labels is not None:
|
1121 |
+
labels = labels.to(target_device)
|
1122 |
+
final_labels = torch.full_like(final_attention_mask, ignore_index).to(torch.long)
|
1123 |
+
final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_image_indices]
|
1124 |
+
|
1125 |
+
# 5. Fill the embeddings corresponding to the images. Anything that is not `text_positions` needs filling (#29835)
|
1126 |
+
with torch.no_grad():
|
1127 |
+
image_to_overwrite = torch.full(
|
1128 |
+
(batch_size, max_embed_dim), True, dtype=torch.bool, device=inputs_embeds.device
|
1129 |
+
)
|
1130 |
+
image_to_overwrite[batch_indices, text_to_overwrite] = False
|
1131 |
+
embed_indices = torch.arange(max_embed_dim).unsqueeze(0).to(target_device)
|
1132 |
+
embed_indices = embed_indices.expand(batch_size, max_embed_dim)
|
1133 |
+
embed_seq_lens = embed_sequence_lengths[:, None].to(target_device)
|
1134 |
+
|
1135 |
+
if left_padding:
|
1136 |
+
# exclude padding on the left
|
1137 |
+
max_embed_dim = max_embed_dim.to(target_device)
|
1138 |
+
val = (max_embed_dim - embed_indices) <= embed_seq_lens
|
1139 |
+
else:
|
1140 |
+
# exclude padding on the right
|
1141 |
+
val = embed_indices < embed_seq_lens
|
1142 |
+
image_to_overwrite &= val
|
1143 |
+
|
1144 |
+
if image_to_overwrite.sum() != num_image_features:
|
1145 |
+
raise ValueError(
|
1146 |
+
f"{image_to_overwrite.sum()=} != {num_image_features=} The input provided to the model are wrong. "
|
1147 |
+
f"The number of image tokens is {torch.sum(special_image_token_mask)} while"
|
1148 |
+
f" the number of image given to the model is {num_images}. "
|
1149 |
+
f"This prevents correct indexing and breaks batch generation."
|
1150 |
+
)
|
1151 |
+
final_embedding[image_to_overwrite] = image_features.contiguous().reshape(-1, embed_dim).to(target_device)
|
1152 |
+
final_attention_mask |= image_to_overwrite
|
1153 |
+
position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1)
|
1154 |
+
|
1155 |
+
return final_embedding, final_attention_mask, position_ids, final_labels, final_input_ids
|
1156 |
+
|
1157 |
+
def pack_image_features(self, image_features, image_sizes, image_newline=None):
|
1158 |
+
"""
|
1159 |
+
Reshape, unpad and then pack each image_feature into a single image_features tensor containing all visual vectors.
|
1160 |
+
|
1161 |
+
Args:
|
1162 |
+
image_features (`List[torch.Tensor]` of length num_images, each of shape `(num_patches, image_length, embed_dim)`)
|
1163 |
+
List of image feature tensor, each contains all the visual feature of all patches.
|
1164 |
+
image_sizes (`torch.Tensor` of shape `(num_images, 2)`)
|
1165 |
+
Actual image size of each images (H, W).
|
1166 |
+
image_newline (`torch.Tensor` of shape `(embed_dim)`)
|
1167 |
+
New line embedding vector.
|
1168 |
+
Returns:
|
1169 |
+
image_features (`torch.Tensor` of shape `(all_feat_len, embed_dim)`)
|
1170 |
+
feature_lens (`List[int]`)
|
1171 |
+
token length of each image in image_features
|
1172 |
+
"""
|
1173 |
+
new_image_features = []
|
1174 |
+
feature_lens = []
|
1175 |
+
for image_idx, image_feature in enumerate(image_features):
|
1176 |
+
if image_feature.shape[0] > 1:
|
1177 |
+
base_image_feature = image_feature[0]
|
1178 |
+
image_feature = image_feature[1:]
|
1179 |
+
height = width = self.config.vision_config.image_size // self.config.vision_config.patch_size
|
1180 |
+
if height * width != base_image_feature.shape[0]:
|
1181 |
+
raise ValueError("The number of patches is not consistent with the image size.")
|
1182 |
+
num_patch_height, num_patch_width = get_anyres_image_grid_shape(
|
1183 |
+
image_sizes[image_idx],
|
1184 |
+
self.config.image_grid_pinpoints,
|
1185 |
+
self.config.vision_config.image_size,
|
1186 |
+
)
|
1187 |
+
image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1)
|
1188 |
+
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
|
1189 |
+
image_feature = image_feature.flatten(1, 2).flatten(2, 3)
|
1190 |
+
image_feature = unpad_image(image_feature, image_sizes[image_idx])
|
1191 |
+
if image_newline is not None:
|
1192 |
+
image_feature = torch.cat(
|
1193 |
+
(
|
1194 |
+
image_feature,
|
1195 |
+
image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.dtype),
|
1196 |
+
),
|
1197 |
+
dim=-1,
|
1198 |
+
)
|
1199 |
+
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
|
1200 |
+
image_feature = torch.cat((base_image_feature, image_feature), dim=0)
|
1201 |
+
else:
|
1202 |
+
image_feature = image_feature[0]
|
1203 |
+
if image_newline is not None:
|
1204 |
+
image_feature = torch.cat((image_feature, image_newline[None].to(image_feature)), dim=0)
|
1205 |
+
new_image_features.append(image_feature)
|
1206 |
+
feature_lens.append(image_feature.size(0))
|
1207 |
+
image_features = torch.cat(new_image_features, dim=0)
|
1208 |
+
feature_lens = torch.tensor(feature_lens, dtype=torch.long, device=image_features.device)
|
1209 |
+
return image_features, feature_lens
|
1210 |
+
|
1211 |
+
@add_start_docstrings_to_model_forward(OMCHAT_INPUTS_DOCSTRING)
|
1212 |
+
@replace_return_docstrings(output_type=OmChatCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1213 |
+
def forward(
|
1214 |
+
self,
|
1215 |
+
input_ids: torch.LongTensor = None,
|
1216 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1217 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1218 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1219 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1220 |
+
vision_feature_layer: Optional[int] = None,
|
1221 |
+
vision_feature_select_strategy: Optional[str] = None,
|
1222 |
+
labels: Optional[torch.LongTensor] = None,
|
1223 |
+
use_cache: Optional[bool] = None,
|
1224 |
+
output_attentions: Optional[bool] = None,
|
1225 |
+
output_hidden_states: Optional[bool] = None,
|
1226 |
+
images: Optional[torch.FloatTensor] = None,
|
1227 |
+
return_dict: Optional[bool] = None,
|
1228 |
+
) -> Union[Tuple, OmChatCausalLMOutputWithPast]:
|
1229 |
+
r"""
|
1230 |
+
Args:
|
1231 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1232 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1233 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1234 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1235 |
+
|
1236 |
+
Returns:
|
1237 |
+
|
1238 |
+
Example:
|
1239 |
+
|
1240 |
+
```python
|
1241 |
+
>>> from PIL import Image
|
1242 |
+
>>> import requests
|
1243 |
+
>>> from transformers import AutoProcessor, OmChatForConditionalGeneration
|
1244 |
+
|
1245 |
+
>>> model = OmChatForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
|
1246 |
+
>>> processor = AutoProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
|
1247 |
+
|
1248 |
+
>>> prompt = "[INST] <image>\nWhat is shown in this image? [/INST]"
|
1249 |
+
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
1250 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1251 |
+
|
1252 |
+
>>> inputs = processor(text=prompt, images=image, return_tensors="pt")
|
1253 |
+
|
1254 |
+
>>> # Generate
|
1255 |
+
>>> generate_ids = model.generate(**inputs, max_length=30)
|
1256 |
+
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1257 |
+
"[INST] \nWhat is shown in this image? [/INST] The image appears to be a radar chart, which is a type of multi-dimensional plot (...)"
|
1258 |
+
```"""
|
1259 |
+
|
1260 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1261 |
+
output_hidden_states = (
|
1262 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1263 |
+
)
|
1264 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1265 |
+
vision_feature_layer = (
|
1266 |
+
vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
|
1267 |
+
)
|
1268 |
+
vision_feature_select_strategy = (
|
1269 |
+
vision_feature_select_strategy
|
1270 |
+
if vision_feature_select_strategy is not None
|
1271 |
+
else self.config.vision_feature_select_strategy
|
1272 |
+
)
|
1273 |
+
if inputs_embeds is None:
|
1274 |
+
(
|
1275 |
+
input_ids,
|
1276 |
+
position_ids,
|
1277 |
+
attention_mask,
|
1278 |
+
past_key_values,
|
1279 |
+
inputs_embeds,
|
1280 |
+
labels
|
1281 |
+
) = self.prepare_inputs_labels_for_multimodal(
|
1282 |
+
input_ids,
|
1283 |
+
position_ids,
|
1284 |
+
attention_mask,
|
1285 |
+
past_key_values,
|
1286 |
+
labels,
|
1287 |
+
images
|
1288 |
+
)
|
1289 |
+
outputs = self.language_model(
|
1290 |
+
input_ids=input_ids,
|
1291 |
+
attention_mask=attention_mask,
|
1292 |
+
position_ids=position_ids,
|
1293 |
+
past_key_values=past_key_values,
|
1294 |
+
inputs_embeds=inputs_embeds,
|
1295 |
+
use_cache=use_cache,
|
1296 |
+
output_attentions=output_attentions,
|
1297 |
+
output_hidden_states=output_hidden_states,
|
1298 |
+
return_dict=return_dict
|
1299 |
+
)
|
1300 |
+
return outputs
|
1301 |
+
logits = outputs[0]
|
1302 |
+
|
1303 |
+
loss = None
|
1304 |
+
if labels is not None:
|
1305 |
+
# Shift so that tokens < n predict n
|
1306 |
+
if attention_mask is not None:
|
1307 |
+
shift_attention_mask = attention_mask[..., 1:]
|
1308 |
+
shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous()
|
1309 |
+
shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous()
|
1310 |
+
else:
|
1311 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1312 |
+
shift_labels = labels[..., 1:].contiguous()
|
1313 |
+
# Flatten the tokens
|
1314 |
+
loss_fct = nn.CrossEntropyLoss()
|
1315 |
+
loss = loss_fct(
|
1316 |
+
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device)
|
1317 |
+
)
|
1318 |
+
|
1319 |
+
if not return_dict:
|
1320 |
+
output = (logits,) + outputs[1:]
|
1321 |
+
return (loss,) + output if loss is not None else output
|
1322 |
+
return OmChatCausalLMOutputWithPast(
|
1323 |
+
loss=loss,
|
1324 |
+
logits=logits,
|
1325 |
+
past_key_values=outputs.past_key_values,
|
1326 |
+
hidden_states=outputs.hidden_states,
|
1327 |
+
attentions=outputs.attentions,
|
1328 |
+
)
|
1329 |
+
|
1330 |
+
def prepare_inputs_for_generation(
|
1331 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
1332 |
+
):
|
1333 |
+
if past_key_values:
|
1334 |
+
input_ids = input_ids[:, -1:]
|
1335 |
+
|
1336 |
+
if inputs_embeds is not None and past_key_values is None:
|
1337 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1338 |
+
else:
|
1339 |
+
model_inputs = {"input_ids": input_ids}
|
1340 |
+
|
1341 |
+
model_inputs.update(
|
1342 |
+
{
|
1343 |
+
"past_key_values": past_key_values,
|
1344 |
+
"use_cache": kwargs.get("use_cache"),
|
1345 |
+
"attention_mask": attention_mask,
|
1346 |
+
"images": kwargs.get("images", None),
|
1347 |
+
}
|
1348 |
+
)
|
1349 |
+
return model_inputs
|
1350 |
+
|
1351 |
+
|
1352 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration._reorder_cache
|
1353 |
+
def _reorder_cache(self, *args, **kwargs):
|
1354 |
+
return self.language_model._reorder_cache(*args, **kwargs)
|
preprocessor_config.json
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoProcessor": "processing_omchat.OmChatProcessor",
|
4 |
+
"AutoImageProcessor": "image_processing_omchat.OmChatImageProcessor"
|
5 |
+
},
|
6 |
+
|
7 |
+
"crop_size": {
|
8 |
+
"height": 448,
|
9 |
+
"width": 448
|
10 |
+
},
|
11 |
+
"do_center_crop": true,
|
12 |
+
"do_convert_rgb": true,
|
13 |
+
"do_normalize": true,
|
14 |
+
"do_rescale": true,
|
15 |
+
"do_resize": true,
|
16 |
+
"image_grid_pinpoints": [
|
17 |
+
[
|
18 |
+
448,
|
19 |
+
896
|
20 |
+
],
|
21 |
+
[
|
22 |
+
896,
|
23 |
+
448
|
24 |
+
],
|
25 |
+
[
|
26 |
+
896,
|
27 |
+
896
|
28 |
+
],
|
29 |
+
[
|
30 |
+
1344,
|
31 |
+
448
|
32 |
+
],
|
33 |
+
[
|
34 |
+
448,
|
35 |
+
1344
|
36 |
+
],
|
37 |
+
[
|
38 |
+
1344,
|
39 |
+
896
|
40 |
+
],
|
41 |
+
[
|
42 |
+
896,
|
43 |
+
1344
|
44 |
+
],
|
45 |
+
[
|
46 |
+
1344,
|
47 |
+
1344
|
48 |
+
]
|
49 |
+
],
|
50 |
+
"image_mean": [
|
51 |
+
0.485,
|
52 |
+
0.456,
|
53 |
+
0.406
|
54 |
+
],
|
55 |
+
"image_processor_type": "OmChatImageProcessor",
|
56 |
+
"image_std": [
|
57 |
+
0.229,
|
58 |
+
0.224,
|
59 |
+
0.225
|
60 |
+
],
|
61 |
+
"processor_class": "OmChatProcessor",
|
62 |
+
"resample": 3,
|
63 |
+
"rescale_factor": 0.00392156862745098,
|
64 |
+
"size": {
|
65 |
+
"shortest_edge": 448
|
66 |
+
}
|
67 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>"
|
5 |
+
],
|
6 |
+
"eos_token": {
|
7 |
+
"content": "<|endoftext|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"pad_token": {
|
14 |
+
"content": "<|endoftext|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false
|
19 |
+
}
|
20 |
+
}
|
tokenizer_config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"151643": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"151644": {
|
13 |
+
"content": "<|im_start|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"151645": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
}
|
28 |
+
},
|
29 |
+
"additional_special_tokens": [
|
30 |
+
"<|im_start|>",
|
31 |
+
"<|im_end|>"
|
32 |
+
],
|
33 |
+
"bos_token": null,
|
34 |
+
"chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
35 |
+
"clean_up_tokenization_spaces": false,
|
36 |
+
"eos_token": "<|endoftext|>",
|
37 |
+
"errors": "replace",
|
38 |
+
"model_max_length": 32768,
|
39 |
+
"pad_token": "<|endoftext|>",
|
40 |
+
"processor_class": "OmChatProcessor",
|
41 |
+
"split_special_tokens": false,
|
42 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
43 |
+
"unk_token": null
|
44 |
+
}
|