--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_9_0 - generated_from_trainer datasets: - mozilla-foundation/common_voice_9_0 model-index: - name: wav2vec2-large-xlsr-53-german-cv9 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 9 type: mozilla-foundation/common_voice_9_0 args: de metrics: - name: Test WER type: wer value: 9.480663281840769 - name: Test CER type: cer value: 1.9167347943074394 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 9 type: mozilla-foundation/common_voice_9_0 args: de metrics: - name: Test WER (+LM) type: wer value: 7.49027762774117 - name: Test CER (+LM) type: cer value: 1.9167347943074394 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 6.1 type: common_voice args: de metrics: - name: Test WER type: wer value: 8.122005951166668 - name: Test CER type: cer value: 1. - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 6.1 type: common_voice args: de metrics: - name: Test WER (+LM) type: wer value: 6.1453182045203544 - name: Test CER (+LM) type: cer value: 1.5247743373447677 --- # wav2vec2-large-xlsr-53-german-cv9 This model is a fine-tuned version of [./facebook/wav2vec2-large-xlsr-53](https://huggingface.co/./facebook/wav2vec2-large-xlsr-53) on the MOZILLA-FOUNDATION/COMMON_VOICE_9_0 - DE dataset. It achieves the following results on the test set: - CER: 2.273015898213336 - Wer: 9.480663281840769 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Eval Wer| |:-------------:|:-----:|:------:|:---------------:|:------:| | 0.4129 | 1.0 | 3557 | 0.3015 | 0.2499 | | 0.2121 | 2.0 | 7114 | 0.1596 | 0.1567 | | 0.1455 | 3.0 | 10671 | 0.1377 | 0.1354 | | 0.1436 | 4.0 | 14228 | 0.1301 | 0.1282 | | 0.1144 | 5.0 | 17785 | 0.1225 | 0.1245 | | 0.1219 | 6.0 | 21342 | 0.1254 | 0.1208 | | 0.104 | 7.0 | 24899 | 0.1198 | 0.1232 | | 0.1016 | 8.0 | 28456 | 0.1149 | 0.1174 | | 0.1093 | 9.0 | 32013 | 0.1186 | 0.1186 | | 0.0858 | 10.0 | 35570 | 0.1182 | 0.1164 | | 0.102 | 11.0 | 39127 | 0.1191 | 0.1186 | | 0.0834 | 12.0 | 42684 | 0.1161 | 0.1096 | | 0.0916 | 13.0 | 46241 | 0.1147 | 0.1107 | | 0.0811 | 14.0 | 49798 | 0.1174 | 0.1136 | | 0.0814 | 15.0 | 53355 | 0.1132 | 0.1114 | | 0.0865 | 16.0 | 56912 | 0.1134 | 0.1097 | | 0.0701 | 17.0 | 60469 | 0.1096 | 0.1054 | | 0.0891 | 18.0 | 64026 | 0.1110 | 0.1076 | | 0.071 | 19.0 | 67583 | 0.1141 | 0.1074 | | 0.0726 | 20.0 | 71140 | 0.1094 | 0.1093 | | 0.0647 | 21.0 | 74697 | 0.1088 | 0.1095 | | 0.0643 | 22.0 | 78254 | 0.1105 | 0.1044 | | 0.0764 | 23.0 | 81811 | 0.1072 | 0.1042 | | 0.0605 | 24.0 | 85368 | 0.1095 | 0.1026 | | 0.0722 | 25.0 | 88925 | 0.1144 | 0.1066 | | 0.0597 | 26.0 | 92482 | 0.1087 | 0.1022 | | 0.062 | 27.0 | 96039 | 0.1073 | 0.1027 | | 0.0536 | 28.0 | 99596 | 0.1068 | 0.1027 | | 0.0616 | 29.0 | 103153 | 0.1097 | 0.1037 | | 0.0642 | 30.0 | 106710 | 0.1117 | 0.1020 | | 0.0555 | 31.0 | 110267 | 0.1109 | 0.0990 | | 0.0632 | 32.0 | 113824 | 0.1104 | 0.0977 | | 0.0482 | 33.0 | 117381 | 0.1108 | 0.0958 | | 0.0601 | 34.0 | 120938 | 0.1095 | 0.0957 | | 0.0508 | 35.0 | 124495 | 0.1079 | 0.0973 | | 0.0526 | 36.0 | 128052 | 0.1068 | 0.0967 | | 0.0487 | 37.0 | 131609 | 0.1081 | 0.0966 | | 0.0495 | 38.0 | 135166 | 0.1099 | 0.0956 | | 0.0528 | 39.0 | 138723 | 0.1091 | 0.0923 | | 0.0439 | 40.0 | 142280 | 0.1111 | 0.0928 | | 0.0467 | 41.0 | 145837 | 0.1131 | 0.0943 | | 0.0407 | 42.0 | 149394 | 0.1115 | 0.0944 | | 0.046 | 43.0 | 152951 | 0.1106 | 0.0935 | | 0.0447 | 44.0 | 156508 | 0.1083 | 0.0919 | | 0.0434 | 45.0 | 160065 | 0.1093 | 0.0909 | | 0.0472 | 46.0 | 163622 | 0.1092 | 0.0921 | | 0.0414 | 47.0 | 167179 | 0.1106 | 0.0922 | | 0.0501 | 48.0 | 170736 | 0.1094 | 0.0918 | | 0.0388 | 49.0 | 174293 | 0.1099 | 0.0918 | | 0.0428 | 50.0 | 177850 | 0.1103 | 0.0915 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6