--- license: apache-2.0 base_model: facebook/deit-base-distilled-patch16-224 tags: - image-classification - vision - generated_from_trainer metrics: - accuracy model-index: - name: "DeiT-base-DatasetDict({\n train: Dataset({\n features: ['img',\ \ 'fine_label', 'coarse_label'],\n num_rows: 50000\n })\n test: Dataset({\n\ \ features: ['img', 'fine_label', 'coarse_label'],\n num_rows: 10000\n\ \ })\n validation: Dataset({\n features: ['img', 'fine_label', 'coarse_label'],\n\ \ num_rows: 10000\n })\n})" results: [] --- # DeiT-base-DatasetDict({ train: Dataset({ features: ['img', 'fine_label', 'coarse_label'], num_rows: 50000 }) test: Dataset({ features: ['img', 'fine_label', 'coarse_label'], num_rows: 10000 }) validation: Dataset({ features: ['img', 'fine_label', 'coarse_label'], num_rows: 10000 }) }) This model is a fine-tuned version of [facebook/deit-base-distilled-patch16-224](https://huggingface.co/facebook/deit-base-distilled-patch16-224) on the cifar100 dataset. It achieves the following results on the evaluation set: - Loss: 0.3054 - Accuracy: 0.906 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 1 - seed: 777 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:---------------:| | 1.1232 | 1.0 | 782 | 0.8416 | 0.5390 | | 0.9017 | 2.0 | 1564 | 0.8699 | 0.4365 | | 0.7565 | 3.0 | 2346 | 0.8858 | 0.3678 | | 0.706 | 4.0 | 3128 | 0.8952 | 0.3446 | | 0.6353 | 5.0 | 3910 | 0.8986 | 0.3331 | | 0.5384 | 6.0 | 4692 | 0.9001 | 0.3223 | | 0.5004 | 7.0 | 5474 | 0.9018 | 0.3249 | | 0.4672 | 8.0 | 6256 | 0.904 | 0.3113 | | 0.4526 | 9.0 | 7038 | 0.9054 | 0.3081 | | 0.4289 | 10.0 | 7820 | 0.906 | 0.3054 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2