ogmatrixllm commited on
Commit
80fa9fb
·
verified ·
1 Parent(s): 7a14701

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +18 -17
README.md CHANGED
@@ -25,27 +25,28 @@ base_model:
25
  pipeline_tag: text-generation
26
  ---
27
 
28
- # Qwen2.5-Coder-7B LoRA 4-bit BF16 w/ FlashAttn2, short seq=512 for faster iteration
29
 
30
- This is a LoRA-fused model based on **Qwen/Qwen2.5-7B-Instruct**.
31
 
32
- ## Model Description
33
 
34
- - **Model Name**: Qwen2.5-Coder-7B LoRA 4-bit BF16 w/ FlashAttn2, short seq=512 for faster iteration
35
- - **Language**: en
36
- - **License**: apache-2.0
37
- - **Dataset**: ogmatrixllm/pokemon-lore-instructions
38
- - **Tags**: LoRA, 4-bit, BF16, FlashAttn2, Pokémon, EMA, fast-training, text-generation, chat, transformers
39
 
40
- ## Usage
41
 
42
- ```python
43
- from transformers import AutoTokenizer, AutoModelForCausalLM
44
 
45
- tokenizer = AutoTokenizer.from_pretrained("ogmatrixllm/arcadex-llm")
46
- model = AutoModelForCausalLM.from_pretrained("ogmatrixllm/arcadex-llm")
47
 
48
- prompt = "Hello, world!"
49
- inputs = tokenizer(prompt, return_tensors="pt")
50
- outputs = model.generate(**inputs)
51
- print(tokenizer.decode(outputs[0], skip_special_tokens=True))
 
 
25
  pipeline_tag: text-generation
26
  ---
27
 
28
+ # Qwen2.5-Coder-7B LoRA 4-bit BF16 w/ FlashAttn2, short seq=512 for faster iteration
29
 
30
+ This is a LoRA-fused model based on **Qwen/Qwen2.5-7B-Instruct**.
31
 
32
+ ## Model Description
33
 
34
+ - **Model Name**: Qwen2.5-Coder-7B LoRA 4-bit BF16 w/ FlashAttn2, short seq=512 for faster iteration
35
+ - **Language**: en
36
+ - **License**: apache-2.0
37
+ - **Dataset**: ogmatrixllm/pokemon-lore-instructions
38
+ - **Tags**: LoRA, 4-bit, BF16, FlashAttn2, Pokémon, EMA, fast-training, text-generation, chat, transformers
39
 
40
+ ## Usage
41
 
42
+ ```python
43
+ from transformers import AutoTokenizer, AutoModelForCausalLM
44
 
45
+ tokenizer = AutoTokenizer.from_pretrained("ogmatrixllm/arcadex-llm")
46
+ model = AutoModelForCausalLM.from_pretrained("ogmatrixllm/arcadex-llm")
47
 
48
+ prompt = "Hello, world!"
49
+ inputs = tokenizer(prompt, return_tensors="pt")
50
+ outputs = model.generate(**inputs)
51
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
52
+ ```