Automatic Speech Recognition
NeMo
PyTorch
Italian
speech
audio
CTC
Conformer
Transformer
NeMo
hf-asr-leaderboard
Riva
Eval Results
igitman commited on
Commit
46ba2a2
·
1 Parent(s): 51e9b95

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +215 -0
README.md CHANGED
@@ -1,3 +1,218 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: cc-by-4.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - it
4
+ library_name: nemo
5
+ datasets:
6
+ - facebook/voxpopuli
7
+ - facebook/multilingual_librispeech
8
+ - mozilla-foundation/common_voice_11_0
9
+ thumbnail: null
10
+ tags:
11
+ - automatic-speech-recognition
12
+ - speech
13
+ - audio
14
+ - CTC
15
+ - Conformer
16
+ - Transformer
17
+ - pytorch
18
+ - NeMo
19
+ - hf-asr-leaderboard
20
+ - Riva
21
  license: cc-by-4.0
22
+ model-index:
23
+ - name: stt_it_conformer_ctc_large
24
+ results:
25
+ - task:
26
+ type: Automatic Speech Recognition
27
+ name: speech-recognition
28
+ dataset:
29
+ name: common-voice-11-0
30
+ type: mozilla-foundation/common_voice_11_0
31
+ config: it
32
+ split: dev
33
+ args:
34
+ language: it
35
+ metrics:
36
+ - name: Dev WER
37
+ type: wer
38
+ value: 5.38
39
+ - task:
40
+ type: Automatic Speech Recognition
41
+ name: speech-recognition
42
+ dataset:
43
+ name: common-voice-11-0
44
+ type: mozilla-foundation/common_voice_11_0
45
+ config: it
46
+ split: test
47
+ args:
48
+ language: it
49
+ metrics:
50
+ - name: Test WER
51
+ type: wer
52
+ value: 5.92
53
+ - task:
54
+ type: Automatic Speech Recognition
55
+ name: automatic-speech-recognition
56
+ dataset:
57
+ name: Multilingual LibriSpeech
58
+ type: facebook/multilingual_librispeech
59
+ config: italian
60
+ split: dev
61
+ args:
62
+ language: it
63
+ metrics:
64
+ - name: Dev WER
65
+ type: wer
66
+ value: 13.16
67
+ - task:
68
+ type: Automatic Speech Recognition
69
+ name: automatic-speech-recognition
70
+ dataset:
71
+ name: Multilingual LibriSpeech
72
+ type: facebook/multilingual_librispeech
73
+ config: italian
74
+ split: test
75
+ args:
76
+ language: it
77
+ metrics:
78
+ - name: Test WER
79
+ type: wer
80
+ value: 10.62
81
+ - task:
82
+ type: Automatic Speech Recognition
83
+ name: speech-recognition
84
+ dataset:
85
+ name: VoxPopuli
86
+ type: facebook/voxpopuli
87
+ config: it
88
+ split: dev
89
+ args:
90
+ language: it
91
+ metrics:
92
+ - name: Dev WER
93
+ type: wer
94
+ value: 13.43
95
+ - task:
96
+ type: Automatic Speech Recognition
97
+ name: speech-recognition
98
+ dataset:
99
+ name: VoxPopuli
100
+ type: facebook/voxpopuli
101
+ config: it
102
+ split: test
103
+ args:
104
+ language: it
105
+ metrics:
106
+ - name: Test WER
107
+ type: wer
108
+ value: 16.75
109
  ---
110
+ # NVIDIA Conformer-CTC Large (it)
111
+
112
+ <style>
113
+ img {
114
+ display: inline;
115
+ }
116
+ </style>
117
+
118
+ | [![Model architecture](https://img.shields.io/badge/Model_Arch-Conformer--CTC-lightgrey#model-badge)](#model-architecture)
119
+ | [![Model size](https://img.shields.io/badge/Params-120M-lightgrey#model-badge)](#model-architecture)
120
+ | [![Language](https://img.shields.io/badge/Language-it-lightgrey#model-badge)](#datasets)
121
+ | [![Riva Compatible](https://img.shields.io/badge/NVIDIA%20Riva-compatible-brightgreen#model-badge)](#deployment-with-nvidia-riva) |
122
+
123
+
124
+ This model transcribes speech in lowercase Italian alphabet including spaces, and was trained on a composite dataset comprising of 487 hours of Italian speech. It is a non-autoregressive "large" variant of Conformer, with around 120 million parameters.
125
+ See the [model architecture](#model-architecture) section and [NeMo documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#conformer-ctc) for complete architecture details.
126
+ It is also compatible with NVIDIA Riva for [production-grade server deployments](#deployment-with-nvidia-riva).
127
+
128
+
129
+ ## Usage
130
+
131
+ The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
132
+
133
+ To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest PyTorch version.
134
+
135
+ ```
136
+ pip install nemo_toolkit['all']
137
+ ```
138
+
139
+ ### Automatically instantiate the model
140
+
141
+ ```python
142
+ import nemo.collections.asr as nemo_asr
143
+ asr_model = nemo_asr.models.EncDecCTCModelBPE.from_pretrained("nvidia/stt_it_conformer_ctc_large")
144
+ ```
145
+
146
+ ### Transcribing using Python
147
+
148
+ Simply do:
149
+
150
+ ```
151
+ asr_model.transcribe(['sample.wav'])
152
+ ```
153
+
154
+ ### Transcribing many audio files
155
+
156
+ ```shell
157
+ python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py
158
+ pretrained_name="nvidia/stt_it_conformer_ctc_large"
159
+ audio_dir="<DIRECTORY CONTAINING AUDIO FILES>"
160
+ ```
161
+
162
+ ### Input
163
+
164
+ This model accepts 16000 kHz Mono-channel Audio (wav files) as input.
165
+
166
+ ### Output
167
+
168
+ This model provides transcribed speech as a string for a given audio sample.
169
+
170
+ ## Model Architecture
171
+
172
+ Conformer-CTC model is a non-autoregressive variant of Conformer model [1] for Automatic Speech Recognition which uses CTC loss/decoding instead of Transducer. You may find more info on the detail of this model here: [Conformer-CTC Model](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#conformer-ctc).
173
+
174
+ ## Training
175
+
176
+ The NeMo toolkit [3] was used for training these models for over several hundred epochs. These models are trained with this [example script](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/asr_ctc/speech_to_text_ctc_bpe.py) and this [base config](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/conformer/conformer_ctc_bpe.yaml).
177
+
178
+ The tokenizers for these models were built using the text transcripts of the train set with this [script](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py).
179
+
180
+ The checkpoint of the language model used as the neural rescorer can be found [here](https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_it_conformer_ctc_large/files). To train n-gram language model only the transcriptions from the training dataset was used. You may find more info on how to train and use language models for ASR models here: [ASR Language Modeling](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/asr_language_modeling.html)
181
+
182
+ ### Datasets
183
+
184
+ All the models in this collection are trained on a composite dataset (NeMo ASRSET) comprising of 487 hours of Italian speech:
185
+ - Mozilla Common Voice 11.0 (Italian) - 220 hours after data cleaning
186
+ - Multilingual LibriSpeech (Italian) - 214 hours after data cleaning
187
+ - VoxPopuli transcribed subset (Italian) - 53 hours after data cleaning
188
+
189
+ ## Performance
190
+
191
+ The list of the available models in this collection is shown in the following table. Performances of the ASR models are reported in terms of Word Error Rate (WER%) with greedy decoding.
192
+
193
+ | Version | Tokenizer | Vocabulary Size | MCV 11.0 Dev | MCV 11.0 Test | MLS Dev | MLS Test | VoxPopuli Dev | VoxPopuli Test | Train Dataset |
194
+ |---------|-----------------------|-----------------|--------------|---------------|---------|----------|---------------|----------------|-----------------|
195
+ | 1.0.0 | SentencePiece Unigram | 128 | 6.65 | 7.20 | 14.77 | 11.76 | 14.77 | 18.06 | NeMo ASRSET 2.0 |
196
+
197
+ While deploying with [NVIDIA Riva](https://developer.nvidia.com/riva), you can combine this model with external language models to further improve WER. The WER(%) of the latest model with different language modeling techniques are reported in the following table.
198
+
199
+ | Language Modeling | MCV 11.0 Dev | MCV 11.0 Test | MLS Dev | MLS Test | VoxPopuli Dev | VoxPopuli Test | Comment |
200
+ |-------------------|--------------|---------------|---------|----------|---------------|----------------|--------------------------------------------------------|
201
+ | N-gram LM | 5.38 | 5.92 | 13.16 | 10.62 | 13.43 | 16.75 | N=5, beam_width=128, n_gram_alpha=2.0, n_gram_beta=2.0 |
202
+ ## Limitations
203
+ Since this model was trained on publicly available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech.
204
+ ## Deployment with NVIDIA Riva
205
+ For the best real-time accuracy, latency, and throughput, deploy the model with [NVIDIA Riva](https://developer.nvidia.com/riva), an accelerated speech AI SDK deployable on-prem, in all clouds, multi-cloud, hybrid, at the edge, and embedded.
206
+ Additionally, Riva provides:
207
+ * World-class out-of-the-box accuracy for the most common languages with model checkpoints trained on proprietary data with hundreds of thousands of GPU-compute hours
208
+ * Best in class accuracy with run-time word boosting (e.g., brand and product names) and customization of acoustic model, language model, and inverse text normalization
209
+ * Streaming speech recognition, Kubernetes compatible scaling, and Enterprise-grade support
210
+ Check out [Riva live demo](https://developer.nvidia.com/riva#demos).
211
+ ## References
212
+ - [1] [Conformer: Convolution-augmented Transformer for Speech Recognition](https://arxiv.org/abs/2005.08100)
213
+ - [2] [Google Sentencepiece Tokenizer](https://github.com/google/sentencepiece)
214
+ - [3] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
215
+
216
+ ## Licence
217
+
218
+ License to use this model is covered by the [CC-BY-4 License](https://creativecommons.org/licenses/by/4.0/legalcode) unless another License/Terms Of Use/EULA is clearly specified. By downloading the public and release version of the model, you accept the terms and conditions of the [CC-BY-4 License](https://creativecommons.org/licenses/by/4.0/legalcode).