Update README.md (#2)
Browse files- Update README.md (a07e496f146647196fe42a5bd59785afa69b1867)
Co-authored-by: He Huang <[email protected]>
README.md
CHANGED
@@ -23,9 +23,10 @@ datasets:
|
|
23 |
thumbnail: null
|
24 |
tags:
|
25 |
- automatic-speech-recognition
|
|
|
26 |
- speech
|
27 |
- audio
|
28 |
-
-
|
29 |
- FastConformer
|
30 |
- Conformer
|
31 |
- pytorch
|
@@ -37,62 +38,8 @@ widget:
|
|
37 |
- example_title: Librispeech sample 2
|
38 |
src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
|
39 |
model-index:
|
40 |
-
- name:
|
41 |
results:
|
42 |
-
- task:
|
43 |
-
name: Automatic Speech Recognition
|
44 |
-
type: automatic-speech-recognition
|
45 |
-
dataset:
|
46 |
-
name: AMI (Meetings test)
|
47 |
-
type: edinburghcstr/ami
|
48 |
-
config: ihm
|
49 |
-
split: test
|
50 |
-
args:
|
51 |
-
language: en
|
52 |
-
metrics:
|
53 |
-
- name: Test WER
|
54 |
-
type: wer
|
55 |
-
value: 17.10
|
56 |
-
- task:
|
57 |
-
name: Automatic Speech Recognition
|
58 |
-
type: automatic-speech-recognition
|
59 |
-
dataset:
|
60 |
-
name: Earnings-22
|
61 |
-
type: revdotcom/earnings22
|
62 |
-
split: test
|
63 |
-
args:
|
64 |
-
language: en
|
65 |
-
metrics:
|
66 |
-
- name: Test WER
|
67 |
-
type: wer
|
68 |
-
value: 14.11
|
69 |
-
- task:
|
70 |
-
name: Automatic Speech Recognition
|
71 |
-
type: automatic-speech-recognition
|
72 |
-
dataset:
|
73 |
-
name: GigaSpeech
|
74 |
-
type: speechcolab/gigaspeech
|
75 |
-
split: test
|
76 |
-
args:
|
77 |
-
language: en
|
78 |
-
metrics:
|
79 |
-
- name: Test WER
|
80 |
-
type: wer
|
81 |
-
value: 9.96
|
82 |
-
- task:
|
83 |
-
name: Automatic Speech Recognition
|
84 |
-
type: automatic-speech-recognition
|
85 |
-
dataset:
|
86 |
-
name: LibriSpeech (clean)
|
87 |
-
type: librispeech_asr
|
88 |
-
config: other
|
89 |
-
split: test
|
90 |
-
args:
|
91 |
-
language: en
|
92 |
-
metrics:
|
93 |
-
- name: Test WER
|
94 |
-
type: wer
|
95 |
-
value: 1.46
|
96 |
- task:
|
97 |
name: Automatic Speech Recognition
|
98 |
type: automatic-speech-recognition
|
@@ -106,7 +53,7 @@ model-index:
|
|
106 |
metrics:
|
107 |
- name: Test WER
|
108 |
type: wer
|
109 |
-
value: 2.
|
110 |
- task:
|
111 |
type: Automatic Speech Recognition
|
112 |
name: automatic-speech-recognition
|
@@ -120,27 +67,13 @@ model-index:
|
|
120 |
metrics:
|
121 |
- name: Test WER
|
122 |
type: wer
|
123 |
-
value:
|
124 |
- task:
|
125 |
type: Automatic Speech Recognition
|
126 |
name: automatic-speech-recognition
|
127 |
dataset:
|
128 |
-
name:
|
129 |
-
type:
|
130 |
-
config: release1
|
131 |
-
split: test
|
132 |
-
args:
|
133 |
-
language: en
|
134 |
-
metrics:
|
135 |
-
- name: Test WER
|
136 |
-
type: wer
|
137 |
-
value: 3.92
|
138 |
-
- task:
|
139 |
-
name: Automatic Speech Recognition
|
140 |
-
type: automatic-speech-recognition
|
141 |
-
dataset:
|
142 |
-
name: Vox Populi
|
143 |
-
type: facebook/voxpopuli
|
144 |
config: en
|
145 |
split: test
|
146 |
args:
|
@@ -148,24 +81,10 @@ model-index:
|
|
148 |
metrics:
|
149 |
- name: Test WER
|
150 |
type: wer
|
151 |
-
value:
|
152 |
-
- task:
|
153 |
-
type: Automatic Speech Recognition
|
154 |
-
name: automatic-speech-recognition
|
155 |
-
dataset:
|
156 |
-
name: Mozilla Common Voice 9.0
|
157 |
-
type: mozilla-foundation/common_voice_9_0
|
158 |
-
config: en
|
159 |
-
split: test
|
160 |
-
args:
|
161 |
-
language: en
|
162 |
-
metrics:
|
163 |
-
- name: Test WER
|
164 |
-
type: wer
|
165 |
-
value: 5.79
|
166 |
-
|
167 |
metrics:
|
168 |
- wer
|
|
|
169 |
pipeline_tag: automatic-speech-recognition
|
170 |
---
|
171 |
|
@@ -185,94 +104,172 @@ img {
|
|
185 |
| [![Language](https://img.shields.io/badge/Language-es-lightgrey#model-badge)](#datasets)
|
186 |
| [![Language](https://img.shields.io/badge/Language-fr-lightgrey#model-badge)](#datasets)
|
187 |
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
|
193 |
-
## NVIDIA NeMo
|
194 |
|
195 |
To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest PyTorch version.
|
196 |
```
|
197 |
pip install nemo_toolkit['all']
|
198 |
-
```
|
|
|
199 |
|
200 |
## How to Use this Model
|
201 |
|
202 |
-
The model is available for use in the NeMo toolkit [
|
203 |
|
204 |
-
###
|
205 |
|
206 |
```python
|
207 |
-
|
208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
```
|
210 |
|
211 |
-
###
|
212 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
```
|
214 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
```
|
216 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
```
|
218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
```
|
220 |
|
221 |
-
|
222 |
|
223 |
-
```
|
224 |
python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py
|
225 |
-
pretrained_name="nvidia/
|
226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
```
|
228 |
|
|
|
229 |
### Input
|
230 |
|
231 |
-
This model accepts
|
232 |
|
233 |
### Output
|
234 |
|
235 |
-
|
236 |
|
237 |
-
## Model Architecture
|
238 |
|
239 |
-
FastConformer [1] is an optimized version of the Conformer model with 8x depthwise-separable convolutional downsampling. The model is trained in a multitask setup with a Transducer decoder (RNNT) loss. You may find more information on the details of FastConformer here: [Fast-Conformer Model](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#fast-conformer).
|
240 |
|
241 |
## Training
|
242 |
|
243 |
-
|
244 |
|
245 |
The tokenizers for these models were built using the text transcripts of the train set with this [script](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py).
|
246 |
|
|
|
247 |
### Datasets
|
248 |
|
249 |
-
The model
|
250 |
|
251 |
-
The training
|
252 |
|
253 |
-
- Librispeech 960 hours of English speech
|
254 |
-
- Fisher Corpus
|
255 |
-
- Switchboard-1 Dataset
|
256 |
-
- WSJ-0 and WSJ-1
|
257 |
-
- National Speech Corpus (Part 1, Part 6)
|
258 |
-
- VCTK
|
259 |
-
- VoxPopuli (EN)
|
260 |
-
- Europarl-ASR (EN)
|
261 |
-
- Multilingual Librispeech (MLS EN) - 2,000 hour subset
|
262 |
-
- Mozilla Common Voice (v7.0)
|
263 |
-
- People's Speech - 12,000 hour subset
|
264 |
|
265 |
## Performance
|
266 |
|
267 |
-
The performance
|
|
|
|
|
|
|
|
|
|
|
268 |
|
269 |
-
|
|
|
|
|
270 |
|
271 |
-
|**Version**|**Tokenizer**|**Vocabulary Size**|**AMI**|**Earnings-22**|**Giga Speech**|**LS test-clean**|**SPGI Speech**|**TEDLIUM-v3**|**Vox Populi**|**Common Voice**|
|
272 |
-
|---------|-----------------------|-----------------|---------------|---------------|------------|-----------|-----|-------|------|------|
|
273 |
-
| 1.22.0 | SentencePiece Unigram | 1024 | 17.10 | 14.11 | 9.96 | 1.46 | 2.47 | 3.11 | 3.92 | 5.39 | 5.79 |
|
274 |
|
275 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
|
277 |
## NVIDIA Riva: Deployment
|
278 |
|
@@ -283,21 +280,20 @@ Additionally, Riva provides:
|
|
283 |
* Best in class accuracy with run-time word boosting (e.g., brand and product names) and customization of acoustic model, language model, and inverse text normalization
|
284 |
* Streaming speech recognition, Kubernetes compatible scaling, and enterprise-grade support
|
285 |
|
286 |
-
Although this model isn’t supported yet by Riva, the [list of supported models
|
287 |
Check out [Riva live demo](https://developer.nvidia.com/riva#demos).
|
288 |
|
|
|
289 |
## References
|
290 |
[1] [Fast Conformer with Linearly Scalable Attention for Efficient Speech Recognition](https://arxiv.org/abs/2305.05084)
|
291 |
|
292 |
-
[2] [
|
293 |
-
|
294 |
-
[3] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
|
295 |
|
296 |
-
[
|
297 |
|
298 |
-
[
|
299 |
|
300 |
|
301 |
## Licence
|
302 |
|
303 |
-
License to use this model is covered by the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/). By downloading the public and release version of the model, you accept the terms and conditions of the
|
|
|
23 |
thumbnail: null
|
24 |
tags:
|
25 |
- automatic-speech-recognition
|
26 |
+
- automatic-speech-translation
|
27 |
- speech
|
28 |
- audio
|
29 |
+
- Transformer
|
30 |
- FastConformer
|
31 |
- Conformer
|
32 |
- pytorch
|
|
|
38 |
- example_title: Librispeech sample 2
|
39 |
src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
|
40 |
model-index:
|
41 |
+
- name: canary-1b
|
42 |
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
- task:
|
44 |
name: Automatic Speech Recognition
|
45 |
type: automatic-speech-recognition
|
|
|
53 |
metrics:
|
54 |
- name: Test WER
|
55 |
type: wer
|
56 |
+
value: 2.89
|
57 |
- task:
|
58 |
type: Automatic Speech Recognition
|
59 |
name: automatic-speech-recognition
|
|
|
67 |
metrics:
|
68 |
- name: Test WER
|
69 |
type: wer
|
70 |
+
value: 4.79
|
71 |
- task:
|
72 |
type: Automatic Speech Recognition
|
73 |
name: automatic-speech-recognition
|
74 |
dataset:
|
75 |
+
name: Mozilla Common Voice 16.1
|
76 |
+
type: mozilla-foundation/common_voice_16_1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
config: en
|
78 |
split: test
|
79 |
args:
|
|
|
81 |
metrics:
|
82 |
- name: Test WER
|
83 |
type: wer
|
84 |
+
value: 3.99
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
metrics:
|
86 |
- wer
|
87 |
+
- bleu
|
88 |
pipeline_tag: automatic-speech-recognition
|
89 |
---
|
90 |
|
|
|
104 |
| [![Language](https://img.shields.io/badge/Language-es-lightgrey#model-badge)](#datasets)
|
105 |
| [![Language](https://img.shields.io/badge/Language-fr-lightgrey#model-badge)](#datasets)
|
106 |
|
107 |
+
NVIDIA NeMo Canary is a family of multi-lingual multi-tasking models that achieves state-of-the art performance on multiple benchmarks. With 1 billion parameters, Canary-1B supports automatic speech-to-text recognition (ASR) in 4 languages (English, German, French, Spanish) and translation from English to German/French/Spanish and from German/French/Spanish to English with or without punctuation and capitalization (PnC).
|
108 |
+
|
109 |
+
## Model Architecture
|
110 |
+
Canary is an encoder-decoder model with FastConformer [1] encoder and Transformer Decoder [2].
|
111 |
+
With audio features extracted from the encoder, task tokens such as `<source language>`, `<target language>`, `<task>` and `<toggle PnC>`
|
112 |
+
are fed into the Transformer Decoder to trigger the text generation process. Canary uses a concatenated tokenizer from individual
|
113 |
+
SentencePiece [3] tokenizers of each language, which makes it easy to scale up to more languages.
|
114 |
+
The Canay-1B model has 24 encoder layers and 24 layers of decoder layers in total.
|
115 |
+
|
116 |
+
|
117 |
|
118 |
+
## NVIDIA NeMo
|
119 |
|
120 |
To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest PyTorch version.
|
121 |
```
|
122 |
pip install nemo_toolkit['all']
|
123 |
+
```
|
124 |
+
|
125 |
|
126 |
## How to Use this Model
|
127 |
|
128 |
+
The model is available for use in the NeMo toolkit [4], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
|
129 |
|
130 |
+
### Loading the Model
|
131 |
|
132 |
```python
|
133 |
+
from nemo.collections.asr.models import EncDecMultiTaskModel
|
134 |
+
|
135 |
+
# load model
|
136 |
+
canary_model = EncDecMultiTaskModel.from_pretrained('nvidia/canary-1b')
|
137 |
+
|
138 |
+
# update dcode params
|
139 |
+
decode_cfg = canary_model.cfg.decoding
|
140 |
+
decode_cfg.beam.beam_size = 5 # default is greedy with beam_size=1
|
141 |
+
canary_model.change_decoding_strategy(decode_cfg)
|
142 |
```
|
143 |
|
144 |
+
### Input Format
|
145 |
+
The input to the model can be a directory containing audio files, in which case the model will perform ASR on English and produces text with punctuation and capitalization:
|
146 |
+
|
147 |
+
```python
|
148 |
+
predicted_text = canary_model.trancribe(
|
149 |
+
audio_dir="<path to directory containing audios>",
|
150 |
+
batch_size=16, # batch size to run the inference with
|
151 |
+
)
|
152 |
```
|
153 |
+
|
154 |
+
or use:
|
155 |
+
|
156 |
+
```bash
|
157 |
+
python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py
|
158 |
+
pretrained_name="nvidia/canary-1b"
|
159 |
+
audio_dir="<path to audio directory>"
|
160 |
```
|
161 |
+
|
162 |
+
Another recommended option is to use a json manifest as input, where each line in the file is a dictionary containing the following fields:
|
163 |
+
```yaml
|
164 |
+
# Example of a line in input_manifest.json
|
165 |
+
{
|
166 |
+
"audio_filepath": "/path/to/audio.wav", # path to the audio file
|
167 |
+
"duration": 10000.0, # duration of the audio
|
168 |
+
"taskname": "asr", # use "s2t_translation" for AST
|
169 |
+
"source_lang": "en", # Set `source_lang`=`target_lang` for ASR, choices=['en','de','es','fr']
|
170 |
+
"target_lang": "de", # choices=['en','de','es','fr']
|
171 |
+
"pnc": yes, # whether to have PnC output, choices=['yes', 'no']
|
172 |
+
}
|
173 |
```
|
174 |
+
|
175 |
+
and then use:
|
176 |
+
```python
|
177 |
+
predicted_text = canary_model.trancribe(
|
178 |
+
paths2audio_files="<path to input manifest file>",
|
179 |
+
batch_size=16, # batch size to run the inference with
|
180 |
+
)
|
181 |
```
|
182 |
|
183 |
+
or use:
|
184 |
|
185 |
+
```bash
|
186 |
python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py
|
187 |
+
pretrained_name="nvidia/canary-1b"
|
188 |
+
dataset_manifest="<path to manifest file>"
|
189 |
+
```
|
190 |
+
|
191 |
+
### Automatic Speech-to-text Recognition (ASR)
|
192 |
+
|
193 |
+
An example manifest for transcribing English audios can be:
|
194 |
+
|
195 |
+
```yaml
|
196 |
+
# Example of a line in input_manifest.json
|
197 |
+
{
|
198 |
+
"audio_filepath": "/path/to/audio.wav", # path to the audio file
|
199 |
+
"duration": 10000.0, # duration of the audio
|
200 |
+
"taskname": "asr",
|
201 |
+
"source_lang": "en",
|
202 |
+
"target_lang": "en",
|
203 |
+
"pnc": yes, # whether to have PnC output, choices=['yes', 'no']
|
204 |
+
}
|
205 |
+
```
|
206 |
+
|
207 |
+
|
208 |
+
### Automatic Speech-to-text Translation (AST)
|
209 |
+
|
210 |
+
An example manifest for transcribing English audios into German text can be:
|
211 |
+
|
212 |
+
```yaml
|
213 |
+
# Example of a line in input_manifest.json
|
214 |
+
{
|
215 |
+
"audio_filepath": "/path/to/audio.wav", # path to the audio file
|
216 |
+
"duration": 10000.0, # duration of the audio
|
217 |
+
"taskname": "s2t_translation",
|
218 |
+
"source_lang": "en",
|
219 |
+
"target_lang": "de",
|
220 |
+
"pnc": yes, # whether to have PnC output, choices=['yes', 'no']
|
221 |
+
}
|
222 |
```
|
223 |
|
224 |
+
|
225 |
### Input
|
226 |
|
227 |
+
This model accepts single channel (mono) audio sampled at 16000 Hz, along with the task/languages/PnC tags as input.
|
228 |
|
229 |
### Output
|
230 |
|
231 |
+
The model outputs the transcribed/translated text corresponding to the input audio, in the specified target language and with or without punctuation and capitalization.
|
232 |
|
|
|
233 |
|
|
|
234 |
|
235 |
## Training
|
236 |
|
237 |
+
Canary-1B is trained using the NVIDIA NeMo toolkit [4] for 150k steps with dynamic bucketing and a batch duration of 360s per GPU on 128 NVIDIA A100 80GB GPUs in 24 hrs. The model can be trained using this example script and base config.
|
238 |
|
239 |
The tokenizers for these models were built using the text transcripts of the train set with this [script](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py).
|
240 |
|
241 |
+
|
242 |
### Datasets
|
243 |
|
244 |
+
The Canary-1B model is trained on 70K hours of speech audio with transcriptions in their original languages for ASR, and machine-generated translations for each supported language for speech translation.
|
245 |
|
246 |
+
The training data contains 43K hours of English speech collected and prepared by NVIDIA NeMo and [Suno](https://suno.ai/) teams, and an inhouse subset with 27K hours of English/German/Spanish/French speech.
|
247 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
248 |
|
249 |
## Performance
|
250 |
|
251 |
+
The ASR performance is measured with word error rate (WER) on different datasets, whereas the AST performance is measured with BLEU score. Predictions were generated using beam search with width 5 and length penalty 1.0.
|
252 |
+
|
253 |
+
### ASR Performance (w/o PnC)
|
254 |
+
|
255 |
+
We use [MCV-16.1](https://commonvoice.mozilla.org/en/datasets) test sets on four languages, and process the groundtruth and predicted text with [whisper-normalizer](https://pypi.org/project/whisper-normalizer/).
|
256 |
+
|
257 |
|
258 |
+
| **Version** | **Model** | **En** | **De** | **Es** | **Fr** |
|
259 |
+
|:---------:|:-----------:|:------:|:------:|:------:|:------:|
|
260 |
+
| 1.23.0 | canary-1b | 7.97 | 4.61 | 3.99 | 6.53 |
|
261 |
|
|
|
|
|
|
|
262 |
|
263 |
+
More details on evaluation can be found at [HuggingFace ASR Leaderboard](https://huggingface.co/spaces/hf-audio/open_asr_leaderboard)
|
264 |
+
|
265 |
+
### AST Performance
|
266 |
+
|
267 |
+
We evaluate on the FLEURS test sets and use the native annotations with punctuation and capitalization.
|
268 |
+
|
269 |
+
| **Version** | **Model** | **En->De** | **En->Es** | **En->Fr** | **De->En** | **Es->En** | **Fr->En** |
|
270 |
+
|:-----------:|:---------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|
|
271 |
+
| 1.23.0 | canary-1b | 22.66 | 41.11 | 40.76 | 32.64 | 32.15 | 23.57 |
|
272 |
+
|
273 |
|
274 |
## NVIDIA Riva: Deployment
|
275 |
|
|
|
280 |
* Best in class accuracy with run-time word boosting (e.g., brand and product names) and customization of acoustic model, language model, and inverse text normalization
|
281 |
* Streaming speech recognition, Kubernetes compatible scaling, and enterprise-grade support
|
282 |
|
283 |
+
Although this model isn’t supported yet by Riva, the [list of supported models](https://huggingface.co/models?other=Riva) is here.
|
284 |
Check out [Riva live demo](https://developer.nvidia.com/riva#demos).
|
285 |
|
286 |
+
|
287 |
## References
|
288 |
[1] [Fast Conformer with Linearly Scalable Attention for Efficient Speech Recognition](https://arxiv.org/abs/2305.05084)
|
289 |
|
290 |
+
[2] [Attention is all you need](https://arxiv.org/abs/1706.03762)
|
|
|
|
|
291 |
|
292 |
+
[3] [Google Sentencepiece Tokenizer](https://github.com/google/sentencepiece)
|
293 |
|
294 |
+
[4] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
|
295 |
|
296 |
|
297 |
## Licence
|
298 |
|
299 |
+
License to use this model is covered by the [CC-BY-NC-4.0](https://creativecommons.org/licenses/by-nc/4.0/deed.en#:~:text=NonCommercial%20%E2%80%94%20You%20may%20not%20use,doing%20anything%20the%20license%20permits.). By downloading the public and release version of the model, you accept the terms and conditions of the CC-BY-NC-4.0 license.
|