# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from argparse import Namespace import torch from torch import nn import torch.nn.functional as F from .adaptor_base import AdaptorBase, AdaptorInput, RadioOutput from .adaptor_mlp import create_mlp_from_state, create_mlp_from_config class GenericAdaptor(AdaptorBase): def __init__(self, main_config: Namespace, adaptor_config, state, mlp_config=None): super().__init__() if state is not None: self.head_mlp = create_mlp_from_state(main_config.mlp_version, state, 'summary.') self.feat_mlp = create_mlp_from_state(main_config.mlp_version, state, 'feature.') else: assert mlp_config is not None, "Config must not be None if state is None" self.head_mlp = create_mlp_from_config( main_config.mlp_version, mlp_config["summary"]["input_dim"], mlp_config["summary"]["hidden_dim"], mlp_config["summary"]["output_dim"], mlp_config["summary"]["num_inner"], ) self.feat_mlp = create_mlp_from_config( main_config.mlp_version, mlp_config["feature"]["input_dim"], mlp_config["feature"]["hidden_dim"], mlp_config["feature"]["output_dim"], mlp_config["feature"]["num_inner"], ) def forward(self, input: AdaptorInput) -> RadioOutput: summary = self.head_mlp(input.summary) feat = self.feat_mlp(input.features) if input.feature_fmt == 'NCHW': feat = (feat.reshape(feat.shape[0], input.images.shape[-2] // input.patch_size, input.images.shape[-1] // input.patch_size, feat.shape[2]) .permute(0, 3, 1, 2) ) return RadioOutput(summary, feat)