Delete mamba_vision.py
Browse files- mamba_vision.py +0 -865
mamba_vision.py
DELETED
@@ -1,865 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python3
|
2 |
-
|
3 |
-
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
|
4 |
-
#
|
5 |
-
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
6 |
-
# and proprietary rights in and to this software, related documentation
|
7 |
-
# and any modifications thereto. Any use, reproduction, disclosure or
|
8 |
-
# distribution of this software and related documentation without an express
|
9 |
-
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
10 |
-
|
11 |
-
|
12 |
-
import torch
|
13 |
-
import torch.nn as nn
|
14 |
-
from timm.models.registry import register_model
|
15 |
-
import math
|
16 |
-
from timm.models.layers import trunc_normal_, DropPath, LayerNorm2d
|
17 |
-
from timm.models._builder import resolve_pretrained_cfg
|
18 |
-
try:
|
19 |
-
from timm.models._builder import _update_default_kwargs as update_args
|
20 |
-
except:
|
21 |
-
from timm.models._builder import _update_default_model_kwargs as update_args
|
22 |
-
from timm.models.vision_transformer import Mlp, PatchEmbed
|
23 |
-
from timm.models.layers import DropPath, trunc_normal_
|
24 |
-
from timm.models.registry import register_model
|
25 |
-
import torch.nn.functional as F
|
26 |
-
from mamba_ssm.ops.selective_scan_interface import selective_scan_fn
|
27 |
-
from einops import rearrange, repeat
|
28 |
-
from pathlib import Path
|
29 |
-
from huggingface_hub import PyTorchModelHubMixin
|
30 |
-
|
31 |
-
|
32 |
-
def _cfg(url='', **kwargs):
|
33 |
-
return {'url': url,
|
34 |
-
'num_classes': 1000,
|
35 |
-
'input_size': (3, 224, 224),
|
36 |
-
'pool_size': None,
|
37 |
-
'crop_pct': 0.875,
|
38 |
-
'interpolation': 'bicubic',
|
39 |
-
'fixed_input_size': True,
|
40 |
-
'mean': (0.485, 0.456, 0.406),
|
41 |
-
'std': (0.229, 0.224, 0.225),
|
42 |
-
**kwargs
|
43 |
-
}
|
44 |
-
|
45 |
-
|
46 |
-
default_cfgs = {
|
47 |
-
'mamba_vision_T': _cfg(url='https://huggingface.co/nvidia/MambaVision-T-1K/resolve/main/mambavision_tiny_1k.pth.tar',
|
48 |
-
crop_pct=1.0,
|
49 |
-
input_size=(3, 224, 224),
|
50 |
-
crop_mode='center'),
|
51 |
-
'mamba_vision_T2': _cfg(url='https://huggingface.co/nvidia/MambaVision-T2-1K/resolve/main/mambavision_tiny2_1k.pth.tar',
|
52 |
-
crop_pct=0.98,
|
53 |
-
input_size=(3, 224, 224),
|
54 |
-
crop_mode='center'),
|
55 |
-
'mamba_vision_S': _cfg(url='https://huggingface.co/nvidia/MambaVision-S-1K/resolve/main/mambavision_small_1k.pth.tar',
|
56 |
-
crop_pct=0.93,
|
57 |
-
input_size=(3, 224, 224),
|
58 |
-
crop_mode='center'),
|
59 |
-
'mamba_vision_B': _cfg(url='https://huggingface.co/nvidia/MambaVision-B-1K/resolve/main/mambavision_base_1k.pth.tar',
|
60 |
-
crop_pct=1.0,
|
61 |
-
input_size=(3, 224, 224),
|
62 |
-
crop_mode='center'),
|
63 |
-
'mamba_vision_L': _cfg(url='https://huggingface.co/nvidia/MambaVision-L-1K/resolve/main/mambavision_large_1k.pth.tar',
|
64 |
-
crop_pct=1.0,
|
65 |
-
input_size=(3, 224, 224),
|
66 |
-
crop_mode='center'),
|
67 |
-
'mamba_vision_L2': _cfg(url='https://huggingface.co/nvidia/MambaVision-L2-1K/resolve/main/mambavision_large2_1k.pth.tar',
|
68 |
-
crop_pct=1.0,
|
69 |
-
input_size=(3, 224, 224),
|
70 |
-
crop_mode='center')
|
71 |
-
}
|
72 |
-
|
73 |
-
|
74 |
-
def window_partition(x, window_size):
|
75 |
-
"""
|
76 |
-
Args:
|
77 |
-
x: (B, C, H, W)
|
78 |
-
window_size: window size
|
79 |
-
h_w: Height of window
|
80 |
-
w_w: Width of window
|
81 |
-
Returns:
|
82 |
-
local window features (num_windows*B, window_size*window_size, C)
|
83 |
-
"""
|
84 |
-
B, C, H, W = x.shape
|
85 |
-
x = x.view(B, C, H // window_size, window_size, W // window_size, window_size)
|
86 |
-
windows = x.permute(0, 2, 4, 3, 5, 1).reshape(-1, window_size*window_size, C)
|
87 |
-
return windows
|
88 |
-
|
89 |
-
|
90 |
-
def window_reverse(windows, window_size, H, W):
|
91 |
-
"""
|
92 |
-
Args:
|
93 |
-
windows: local window features (num_windows*B, window_size, window_size, C)
|
94 |
-
window_size: Window size
|
95 |
-
H: Height of image
|
96 |
-
W: Width of image
|
97 |
-
Returns:
|
98 |
-
x: (B, C, H, W)
|
99 |
-
"""
|
100 |
-
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
101 |
-
x = windows.reshape(B, H // window_size, W // window_size, window_size, window_size, -1)
|
102 |
-
x = x.permute(0, 5, 1, 3, 2, 4).reshape(B,windows.shape[2], H, W)
|
103 |
-
return x
|
104 |
-
|
105 |
-
|
106 |
-
def _load_state_dict(module, state_dict, strict=False, logger=None):
|
107 |
-
"""Load state_dict to a module.
|
108 |
-
|
109 |
-
This method is modified from :meth:`torch.nn.Module.load_state_dict`.
|
110 |
-
Default value for ``strict`` is set to ``False`` and the message for
|
111 |
-
param mismatch will be shown even if strict is False.
|
112 |
-
|
113 |
-
Args:
|
114 |
-
module (Module): Module that receives the state_dict.
|
115 |
-
state_dict (OrderedDict): Weights.
|
116 |
-
strict (bool): whether to strictly enforce that the keys
|
117 |
-
in :attr:`state_dict` match the keys returned by this module's
|
118 |
-
:meth:`~torch.nn.Module.state_dict` function. Default: ``False``.
|
119 |
-
logger (:obj:`logging.Logger`, optional): Logger to log the error
|
120 |
-
message. If not specified, print function will be used.
|
121 |
-
"""
|
122 |
-
unexpected_keys = []
|
123 |
-
all_missing_keys = []
|
124 |
-
err_msg = []
|
125 |
-
|
126 |
-
metadata = getattr(state_dict, '_metadata', None)
|
127 |
-
state_dict = state_dict.copy()
|
128 |
-
if metadata is not None:
|
129 |
-
state_dict._metadata = metadata
|
130 |
-
|
131 |
-
def load(module, prefix=''):
|
132 |
-
local_metadata = {} if metadata is None else metadata.get(
|
133 |
-
prefix[:-1], {})
|
134 |
-
module._load_from_state_dict(state_dict, prefix, local_metadata, True,
|
135 |
-
all_missing_keys, unexpected_keys,
|
136 |
-
err_msg)
|
137 |
-
for name, child in module._modules.items():
|
138 |
-
if child is not None:
|
139 |
-
load(child, prefix + name + '.')
|
140 |
-
|
141 |
-
load(module)
|
142 |
-
load = None
|
143 |
-
missing_keys = [
|
144 |
-
key for key in all_missing_keys if 'num_batches_tracked' not in key
|
145 |
-
]
|
146 |
-
|
147 |
-
if unexpected_keys:
|
148 |
-
err_msg.append('unexpected key in source '
|
149 |
-
f'state_dict: {", ".join(unexpected_keys)}\n')
|
150 |
-
if missing_keys:
|
151 |
-
err_msg.append(
|
152 |
-
f'missing keys in source state_dict: {", ".join(missing_keys)}\n')
|
153 |
-
|
154 |
-
|
155 |
-
if len(err_msg) > 0:
|
156 |
-
err_msg.insert(
|
157 |
-
0, 'The model and loaded state dict do not match exactly\n')
|
158 |
-
err_msg = '\n'.join(err_msg)
|
159 |
-
if strict:
|
160 |
-
raise RuntimeError(err_msg)
|
161 |
-
elif logger is not None:
|
162 |
-
logger.warning(err_msg)
|
163 |
-
else:
|
164 |
-
print(err_msg)
|
165 |
-
|
166 |
-
|
167 |
-
def _load_checkpoint(model,
|
168 |
-
filename,
|
169 |
-
map_location='cpu',
|
170 |
-
strict=False,
|
171 |
-
logger=None):
|
172 |
-
"""Load checkpoint from a file or URI.
|
173 |
-
|
174 |
-
Args:
|
175 |
-
model (Module): Module to load checkpoint.
|
176 |
-
filename (str): Accept local filepath, URL, ``torchvision://xxx``,
|
177 |
-
``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for
|
178 |
-
details.
|
179 |
-
map_location (str): Same as :func:`torch.load`.
|
180 |
-
strict (bool): Whether to allow different params for the model and
|
181 |
-
checkpoint.
|
182 |
-
logger (:mod:`logging.Logger` or None): The logger for error message.
|
183 |
-
|
184 |
-
Returns:
|
185 |
-
dict or OrderedDict: The loaded checkpoint.
|
186 |
-
"""
|
187 |
-
checkpoint = torch.load(filename, map_location=map_location)
|
188 |
-
if not isinstance(checkpoint, dict):
|
189 |
-
raise RuntimeError(
|
190 |
-
f'No state_dict found in checkpoint file {filename}')
|
191 |
-
if 'state_dict' in checkpoint:
|
192 |
-
state_dict = checkpoint['state_dict']
|
193 |
-
elif 'model' in checkpoint:
|
194 |
-
state_dict = checkpoint['model']
|
195 |
-
else:
|
196 |
-
state_dict = checkpoint
|
197 |
-
if list(state_dict.keys())[0].startswith('module.'):
|
198 |
-
state_dict = {k[7:]: v for k, v in state_dict.items()}
|
199 |
-
|
200 |
-
if sorted(list(state_dict.keys()))[0].startswith('encoder'):
|
201 |
-
state_dict = {k.replace('encoder.', ''): v for k, v in state_dict.items() if k.startswith('encoder.')}
|
202 |
-
|
203 |
-
_load_state_dict(model, state_dict, strict, logger)
|
204 |
-
return checkpoint
|
205 |
-
|
206 |
-
|
207 |
-
class Downsample(nn.Module):
|
208 |
-
"""
|
209 |
-
Down-sampling block"
|
210 |
-
"""
|
211 |
-
|
212 |
-
def __init__(self,
|
213 |
-
dim,
|
214 |
-
keep_dim=False,
|
215 |
-
):
|
216 |
-
"""
|
217 |
-
Args:
|
218 |
-
dim: feature size dimension.
|
219 |
-
norm_layer: normalization layer.
|
220 |
-
keep_dim: bool argument for maintaining the resolution.
|
221 |
-
"""
|
222 |
-
|
223 |
-
super().__init__()
|
224 |
-
if keep_dim:
|
225 |
-
dim_out = dim
|
226 |
-
else:
|
227 |
-
dim_out = 2 * dim
|
228 |
-
self.reduction = nn.Sequential(
|
229 |
-
nn.Conv2d(dim, dim_out, 3, 2, 1, bias=False),
|
230 |
-
)
|
231 |
-
|
232 |
-
def forward(self, x):
|
233 |
-
x = self.reduction(x)
|
234 |
-
return x
|
235 |
-
|
236 |
-
|
237 |
-
class PatchEmbed(nn.Module):
|
238 |
-
"""
|
239 |
-
Patch embedding block"
|
240 |
-
"""
|
241 |
-
|
242 |
-
def __init__(self, in_chans=3, in_dim=64, dim=96):
|
243 |
-
"""
|
244 |
-
Args:
|
245 |
-
in_chans: number of input channels.
|
246 |
-
dim: feature size dimension.
|
247 |
-
"""
|
248 |
-
# in_dim = 1
|
249 |
-
super().__init__()
|
250 |
-
self.proj = nn.Identity()
|
251 |
-
self.conv_down = nn.Sequential(
|
252 |
-
nn.Conv2d(in_chans, in_dim, 3, 2, 1, bias=False),
|
253 |
-
nn.BatchNorm2d(in_dim, eps=1e-4),
|
254 |
-
nn.ReLU(),
|
255 |
-
nn.Conv2d(in_dim, dim, 3, 2, 1, bias=False),
|
256 |
-
nn.BatchNorm2d(dim, eps=1e-4),
|
257 |
-
nn.ReLU()
|
258 |
-
)
|
259 |
-
|
260 |
-
def forward(self, x):
|
261 |
-
x = self.proj(x)
|
262 |
-
x = self.conv_down(x)
|
263 |
-
return x
|
264 |
-
|
265 |
-
|
266 |
-
class ConvBlock(nn.Module):
|
267 |
-
|
268 |
-
def __init__(self, dim,
|
269 |
-
drop_path=0.,
|
270 |
-
layer_scale=None,
|
271 |
-
kernel_size=3):
|
272 |
-
super().__init__()
|
273 |
-
|
274 |
-
self.conv1 = nn.Conv2d(dim, dim, kernel_size=kernel_size, stride=1, padding=1)
|
275 |
-
self.norm1 = nn.BatchNorm2d(dim, eps=1e-5)
|
276 |
-
self.act1 = nn.GELU(approximate= 'tanh')
|
277 |
-
self.conv2 = nn.Conv2d(dim, dim, kernel_size=kernel_size, stride=1, padding=1)
|
278 |
-
self.norm2 = nn.BatchNorm2d(dim, eps=1e-5)
|
279 |
-
self.layer_scale = layer_scale
|
280 |
-
if layer_scale is not None and type(layer_scale) in [int, float]:
|
281 |
-
self.gamma = nn.Parameter(layer_scale * torch.ones(dim))
|
282 |
-
self.layer_scale = True
|
283 |
-
else:
|
284 |
-
self.layer_scale = False
|
285 |
-
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
286 |
-
|
287 |
-
def forward(self, x):
|
288 |
-
input = x
|
289 |
-
x = self.conv1(x)
|
290 |
-
x = self.norm1(x)
|
291 |
-
x = self.act1(x)
|
292 |
-
x = self.conv2(x)
|
293 |
-
x = self.norm2(x)
|
294 |
-
if self.layer_scale:
|
295 |
-
x = x * self.gamma.view(1, -1, 1, 1)
|
296 |
-
x = input + self.drop_path(x)
|
297 |
-
return x
|
298 |
-
|
299 |
-
|
300 |
-
class MambaVisionMixer(nn.Module):
|
301 |
-
def __init__(
|
302 |
-
self,
|
303 |
-
d_model,
|
304 |
-
d_state=16,
|
305 |
-
d_conv=4,
|
306 |
-
expand=2,
|
307 |
-
dt_rank="auto",
|
308 |
-
dt_min=0.001,
|
309 |
-
dt_max=0.1,
|
310 |
-
dt_init="random",
|
311 |
-
dt_scale=1.0,
|
312 |
-
dt_init_floor=1e-4,
|
313 |
-
conv_bias=True,
|
314 |
-
bias=False,
|
315 |
-
use_fast_path=True,
|
316 |
-
layer_idx=None,
|
317 |
-
device=None,
|
318 |
-
dtype=None,
|
319 |
-
):
|
320 |
-
factory_kwargs = {"device": device, "dtype": dtype}
|
321 |
-
super().__init__()
|
322 |
-
self.d_model = d_model
|
323 |
-
self.d_state = d_state
|
324 |
-
self.d_conv = d_conv
|
325 |
-
self.expand = expand
|
326 |
-
self.d_inner = int(self.expand * self.d_model)
|
327 |
-
self.dt_rank = math.ceil(self.d_model / 16) if dt_rank == "auto" else dt_rank
|
328 |
-
self.use_fast_path = use_fast_path
|
329 |
-
self.layer_idx = layer_idx
|
330 |
-
self.in_proj = nn.Linear(self.d_model, self.d_inner, bias=bias, **factory_kwargs)
|
331 |
-
self.x_proj = nn.Linear(
|
332 |
-
self.d_inner//2, self.dt_rank + self.d_state * 2, bias=False, **factory_kwargs
|
333 |
-
)
|
334 |
-
self.dt_proj = nn.Linear(self.dt_rank, self.d_inner//2, bias=True, **factory_kwargs)
|
335 |
-
dt_init_std = self.dt_rank**-0.5 * dt_scale
|
336 |
-
if dt_init == "constant":
|
337 |
-
nn.init.constant_(self.dt_proj.weight, dt_init_std)
|
338 |
-
elif dt_init == "random":
|
339 |
-
nn.init.uniform_(self.dt_proj.weight, -dt_init_std, dt_init_std)
|
340 |
-
else:
|
341 |
-
raise NotImplementedError
|
342 |
-
dt = torch.exp(
|
343 |
-
torch.rand(self.d_inner//2, **factory_kwargs) * (math.log(dt_max) - math.log(dt_min))
|
344 |
-
+ math.log(dt_min)
|
345 |
-
).clamp(min=dt_init_floor)
|
346 |
-
inv_dt = dt + torch.log(-torch.expm1(-dt))
|
347 |
-
with torch.no_grad():
|
348 |
-
self.dt_proj.bias.copy_(inv_dt)
|
349 |
-
self.dt_proj.bias._no_reinit = True
|
350 |
-
A = repeat(
|
351 |
-
torch.arange(1, self.d_state + 1, dtype=torch.float32, device=device),
|
352 |
-
"n -> d n",
|
353 |
-
d=self.d_inner//2,
|
354 |
-
).contiguous()
|
355 |
-
A_log = torch.log(A)
|
356 |
-
self.A_log = nn.Parameter(A_log)
|
357 |
-
self.A_log._no_weight_decay = True
|
358 |
-
self.D = nn.Parameter(torch.ones(self.d_inner//2, device=device))
|
359 |
-
self.D._no_weight_decay = True
|
360 |
-
self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=bias, **factory_kwargs)
|
361 |
-
self.conv1d_x = nn.Conv1d(
|
362 |
-
in_channels=self.d_inner//2,
|
363 |
-
out_channels=self.d_inner//2,
|
364 |
-
bias=conv_bias//2,
|
365 |
-
kernel_size=d_conv,
|
366 |
-
groups=self.d_inner//2,
|
367 |
-
**factory_kwargs,
|
368 |
-
)
|
369 |
-
self.conv1d_z = nn.Conv1d(
|
370 |
-
in_channels=self.d_inner//2,
|
371 |
-
out_channels=self.d_inner//2,
|
372 |
-
bias=conv_bias//2,
|
373 |
-
kernel_size=d_conv,
|
374 |
-
groups=self.d_inner//2,
|
375 |
-
**factory_kwargs,
|
376 |
-
)
|
377 |
-
|
378 |
-
def forward(self, hidden_states):
|
379 |
-
"""
|
380 |
-
hidden_states: (B, L, D)
|
381 |
-
Returns: same shape as hidden_states
|
382 |
-
"""
|
383 |
-
_, seqlen, _ = hidden_states.shape
|
384 |
-
xz = self.in_proj(hidden_states)
|
385 |
-
xz = rearrange(xz, "b l d -> b d l")
|
386 |
-
x, z = xz.chunk(2, dim=1)
|
387 |
-
A = -torch.exp(self.A_log.float())
|
388 |
-
x = F.silu(F.conv1d(input=x, weight=self.conv1d_x.weight, bias=self.conv1d_x.bias, padding='same', groups=self.d_inner//2))
|
389 |
-
z = F.silu(F.conv1d(input=z, weight=self.conv1d_z.weight, bias=self.conv1d_z.bias, padding='same', groups=self.d_inner//2))
|
390 |
-
x_dbl = self.x_proj(rearrange(x, "b d l -> (b l) d"))
|
391 |
-
dt, B, C = torch.split(x_dbl, [self.dt_rank, self.d_state, self.d_state], dim=-1)
|
392 |
-
dt = rearrange(self.dt_proj(dt), "(b l) d -> b d l", l=seqlen)
|
393 |
-
B = rearrange(B, "(b l) dstate -> b dstate l", l=seqlen).contiguous()
|
394 |
-
C = rearrange(C, "(b l) dstate -> b dstate l", l=seqlen).contiguous()
|
395 |
-
y = selective_scan_fn(x,
|
396 |
-
dt,
|
397 |
-
A,
|
398 |
-
B,
|
399 |
-
C,
|
400 |
-
self.D.float(),
|
401 |
-
z=None,
|
402 |
-
delta_bias=self.dt_proj.bias.float(),
|
403 |
-
delta_softplus=True,
|
404 |
-
return_last_state=None)
|
405 |
-
|
406 |
-
y = torch.cat([y, z], dim=1)
|
407 |
-
y = rearrange(y, "b d l -> b l d")
|
408 |
-
out = self.out_proj(y)
|
409 |
-
return out
|
410 |
-
|
411 |
-
|
412 |
-
class Attention(nn.Module):
|
413 |
-
|
414 |
-
def __init__(
|
415 |
-
self,
|
416 |
-
dim,
|
417 |
-
num_heads=8,
|
418 |
-
qkv_bias=False,
|
419 |
-
qk_norm=False,
|
420 |
-
attn_drop=0.,
|
421 |
-
proj_drop=0.,
|
422 |
-
norm_layer=nn.LayerNorm,
|
423 |
-
):
|
424 |
-
super().__init__()
|
425 |
-
assert dim % num_heads == 0
|
426 |
-
self.num_heads = num_heads
|
427 |
-
self.head_dim = dim // num_heads
|
428 |
-
self.scale = self.head_dim ** -0.5
|
429 |
-
self.fused_attn = True
|
430 |
-
|
431 |
-
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
432 |
-
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
|
433 |
-
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
|
434 |
-
self.attn_drop = nn.Dropout(attn_drop)
|
435 |
-
self.proj = nn.Linear(dim, dim)
|
436 |
-
self.proj_drop = nn.Dropout(proj_drop)
|
437 |
-
|
438 |
-
def forward(self, x):
|
439 |
-
B, N, C = x.shape
|
440 |
-
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
|
441 |
-
q, k, v = qkv.unbind(0)
|
442 |
-
q, k = self.q_norm(q), self.k_norm(k)
|
443 |
-
|
444 |
-
if self.fused_attn:
|
445 |
-
x = F.scaled_dot_product_attention(
|
446 |
-
q, k, v,
|
447 |
-
dropout_p=self.attn_drop.p,
|
448 |
-
)
|
449 |
-
else:
|
450 |
-
q = q * self.scale
|
451 |
-
attn = q @ k.transpose(-2, -1)
|
452 |
-
attn = attn.softmax(dim=-1)
|
453 |
-
attn = self.attn_drop(attn)
|
454 |
-
x = attn @ v
|
455 |
-
|
456 |
-
x = x.transpose(1, 2).reshape(B, N, C)
|
457 |
-
x = self.proj(x)
|
458 |
-
x = self.proj_drop(x)
|
459 |
-
return x
|
460 |
-
|
461 |
-
|
462 |
-
class Block(nn.Module):
|
463 |
-
def __init__(self,
|
464 |
-
dim,
|
465 |
-
num_heads,
|
466 |
-
counter,
|
467 |
-
transformer_blocks,
|
468 |
-
mlp_ratio=4.,
|
469 |
-
qkv_bias=False,
|
470 |
-
qk_scale=False,
|
471 |
-
drop=0.,
|
472 |
-
attn_drop=0.,
|
473 |
-
drop_path=0.,
|
474 |
-
act_layer=nn.GELU,
|
475 |
-
norm_layer=nn.LayerNorm,
|
476 |
-
Mlp_block=Mlp,
|
477 |
-
layer_scale=None,
|
478 |
-
):
|
479 |
-
super().__init__()
|
480 |
-
self.norm1 = norm_layer(dim)
|
481 |
-
if counter in transformer_blocks:
|
482 |
-
self.mixer = Attention(
|
483 |
-
dim,
|
484 |
-
num_heads=num_heads,
|
485 |
-
qkv_bias=qkv_bias,
|
486 |
-
qk_norm=qk_scale,
|
487 |
-
attn_drop=attn_drop,
|
488 |
-
proj_drop=drop,
|
489 |
-
norm_layer=norm_layer,
|
490 |
-
)
|
491 |
-
else:
|
492 |
-
self.mixer = MambaVisionMixer(d_model=dim,
|
493 |
-
d_state=8,
|
494 |
-
d_conv=3,
|
495 |
-
expand=1
|
496 |
-
)
|
497 |
-
|
498 |
-
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
499 |
-
self.norm2 = norm_layer(dim)
|
500 |
-
mlp_hidden_dim = int(dim * mlp_ratio)
|
501 |
-
self.mlp = Mlp_block(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
502 |
-
use_layer_scale = layer_scale is not None and type(layer_scale) in [int, float]
|
503 |
-
self.gamma_1 = nn.Parameter(layer_scale * torch.ones(dim)) if use_layer_scale else 1
|
504 |
-
self.gamma_2 = nn.Parameter(layer_scale * torch.ones(dim)) if use_layer_scale else 1
|
505 |
-
|
506 |
-
def forward(self, x):
|
507 |
-
x = x + self.drop_path(self.gamma_1 * self.mixer(self.norm1(x)))
|
508 |
-
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
|
509 |
-
return x
|
510 |
-
|
511 |
-
|
512 |
-
class MambaVisionLayer(nn.Module):
|
513 |
-
"""
|
514 |
-
MambaVision layer"
|
515 |
-
"""
|
516 |
-
|
517 |
-
def __init__(self,
|
518 |
-
dim,
|
519 |
-
depth,
|
520 |
-
num_heads,
|
521 |
-
window_size,
|
522 |
-
conv=False,
|
523 |
-
downsample=True,
|
524 |
-
mlp_ratio=4.,
|
525 |
-
qkv_bias=True,
|
526 |
-
qk_scale=None,
|
527 |
-
drop=0.,
|
528 |
-
attn_drop=0.,
|
529 |
-
drop_path=0.,
|
530 |
-
layer_scale=None,
|
531 |
-
layer_scale_conv=None,
|
532 |
-
transformer_blocks = [],
|
533 |
-
):
|
534 |
-
"""
|
535 |
-
Args:
|
536 |
-
dim: feature size dimension.
|
537 |
-
depth: number of layers in each stage.
|
538 |
-
window_size: window size in each stage.
|
539 |
-
conv: bool argument for conv stage flag.
|
540 |
-
downsample: bool argument for down-sampling.
|
541 |
-
mlp_ratio: MLP ratio.
|
542 |
-
num_heads: number of heads in each stage.
|
543 |
-
qkv_bias: bool argument for query, key, value learnable bias.
|
544 |
-
qk_scale: bool argument to scaling query, key.
|
545 |
-
drop: dropout rate.
|
546 |
-
attn_drop: attention dropout rate.
|
547 |
-
drop_path: drop path rate.
|
548 |
-
norm_layer: normalization layer.
|
549 |
-
layer_scale: layer scaling coefficient.
|
550 |
-
layer_scale_conv: conv layer scaling coefficient.
|
551 |
-
transformer_blocks: list of transformer blocks.
|
552 |
-
"""
|
553 |
-
|
554 |
-
super().__init__()
|
555 |
-
self.conv = conv
|
556 |
-
self.transformer_block = False
|
557 |
-
if conv:
|
558 |
-
self.blocks = nn.ModuleList([ConvBlock(dim=dim,
|
559 |
-
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
560 |
-
layer_scale=layer_scale_conv)
|
561 |
-
for i in range(depth)])
|
562 |
-
self.transformer_block = False
|
563 |
-
else:
|
564 |
-
self.transformer_block = True
|
565 |
-
self.blocks = nn.ModuleList([Block(dim=dim,
|
566 |
-
counter=i,
|
567 |
-
transformer_blocks=transformer_blocks,
|
568 |
-
num_heads=num_heads,
|
569 |
-
mlp_ratio=mlp_ratio,
|
570 |
-
qkv_bias=qkv_bias,
|
571 |
-
qk_scale=qk_scale,
|
572 |
-
drop=drop,
|
573 |
-
attn_drop=attn_drop,
|
574 |
-
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
575 |
-
layer_scale=layer_scale)
|
576 |
-
for i in range(depth)])
|
577 |
-
self.transformer_block = True
|
578 |
-
|
579 |
-
self.downsample = None if not downsample else Downsample(dim=dim)
|
580 |
-
self.do_gt = False
|
581 |
-
self.window_size = window_size
|
582 |
-
|
583 |
-
def forward(self, x):
|
584 |
-
_, _, H, W = x.shape
|
585 |
-
|
586 |
-
if self.transformer_block:
|
587 |
-
pad_r = (self.window_size - W % self.window_size) % self.window_size
|
588 |
-
pad_b = (self.window_size - H % self.window_size) % self.window_size
|
589 |
-
if pad_r > 0 or pad_b > 0:
|
590 |
-
x = torch.nn.functional.pad(x, (0,pad_r,0,pad_b))
|
591 |
-
_, _, Hp, Wp = x.shape
|
592 |
-
else:
|
593 |
-
Hp, Wp = H, W
|
594 |
-
x = window_partition(x, self.window_size)
|
595 |
-
|
596 |
-
for _, blk in enumerate(self.blocks):
|
597 |
-
x = blk(x)
|
598 |
-
if self.transformer_block:
|
599 |
-
x = window_reverse(x, self.window_size, Hp, Wp)
|
600 |
-
if pad_r > 0 or pad_b > 0:
|
601 |
-
x = x[:, :, :H, :W].contiguous()
|
602 |
-
if self.downsample is None:
|
603 |
-
return x
|
604 |
-
return self.downsample(x)
|
605 |
-
|
606 |
-
|
607 |
-
class MambaVision(nn.Module, PyTorchModelHubMixin):
|
608 |
-
"""
|
609 |
-
MambaVision,
|
610 |
-
"""
|
611 |
-
|
612 |
-
def __init__(self,
|
613 |
-
dim,
|
614 |
-
in_dim,
|
615 |
-
depths,
|
616 |
-
window_size,
|
617 |
-
mlp_ratio,
|
618 |
-
num_heads,
|
619 |
-
drop_path_rate=0.2,
|
620 |
-
in_chans=3,
|
621 |
-
num_classes=1000,
|
622 |
-
qkv_bias=True,
|
623 |
-
qk_scale=None,
|
624 |
-
drop_rate=0.,
|
625 |
-
attn_drop_rate=0.,
|
626 |
-
layer_scale=None,
|
627 |
-
layer_scale_conv=None,
|
628 |
-
**kwargs):
|
629 |
-
"""
|
630 |
-
Args:
|
631 |
-
dim: feature size dimension.
|
632 |
-
depths: number of layers in each stage.
|
633 |
-
window_size: window size in each stage.
|
634 |
-
mlp_ratio: MLP ratio.
|
635 |
-
num_heads: number of heads in each stage.
|
636 |
-
drop_path_rate: drop path rate.
|
637 |
-
in_chans: number of input channels.
|
638 |
-
num_classes: number of classes.
|
639 |
-
qkv_bias: bool argument for query, key, value learnable bias.
|
640 |
-
qk_scale: bool argument to scaling query, key.
|
641 |
-
drop_rate: dropout rate.
|
642 |
-
attn_drop_rate: attention dropout rate.
|
643 |
-
norm_layer: normalization layer.
|
644 |
-
layer_scale: layer scaling coefficient.
|
645 |
-
layer_scale_conv: conv layer scaling coefficient.
|
646 |
-
"""
|
647 |
-
super().__init__()
|
648 |
-
num_features = int(dim * 2 ** (len(depths) - 1))
|
649 |
-
self.num_classes = num_classes
|
650 |
-
self.patch_embed = PatchEmbed(in_chans=in_chans, in_dim=in_dim, dim=dim)
|
651 |
-
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
|
652 |
-
self.levels = nn.ModuleList()
|
653 |
-
for i in range(len(depths)):
|
654 |
-
conv = True if (i == 0 or i == 1) else False
|
655 |
-
level = MambaVisionLayer(dim=int(dim * 2 ** i),
|
656 |
-
depth=depths[i],
|
657 |
-
num_heads=num_heads[i],
|
658 |
-
window_size=window_size[i],
|
659 |
-
mlp_ratio=mlp_ratio,
|
660 |
-
qkv_bias=qkv_bias,
|
661 |
-
qk_scale=qk_scale,
|
662 |
-
conv=conv,
|
663 |
-
drop=drop_rate,
|
664 |
-
attn_drop=attn_drop_rate,
|
665 |
-
drop_path=dpr[sum(depths[:i]):sum(depths[:i + 1])],
|
666 |
-
downsample=(i < 3),
|
667 |
-
layer_scale=layer_scale,
|
668 |
-
layer_scale_conv=layer_scale_conv,
|
669 |
-
transformer_blocks=list(range(depths[i]//2+1, depths[i])) if depths[i]%2!=0 else list(range(depths[i]//2, depths[i])),
|
670 |
-
)
|
671 |
-
self.levels.append(level)
|
672 |
-
self.norm = nn.BatchNorm2d(num_features)
|
673 |
-
self.avgpool = nn.AdaptiveAvgPool2d(1)
|
674 |
-
self.head = nn.Linear(num_features, num_classes) if num_classes > 0 else nn.Identity()
|
675 |
-
self.apply(self._init_weights)
|
676 |
-
|
677 |
-
def _init_weights(self, m):
|
678 |
-
if isinstance(m, nn.Linear):
|
679 |
-
trunc_normal_(m.weight, std=.02)
|
680 |
-
if isinstance(m, nn.Linear) and m.bias is not None:
|
681 |
-
nn.init.constant_(m.bias, 0)
|
682 |
-
elif isinstance(m, nn.LayerNorm):
|
683 |
-
nn.init.constant_(m.bias, 0)
|
684 |
-
nn.init.constant_(m.weight, 1.0)
|
685 |
-
elif isinstance(m, LayerNorm2d):
|
686 |
-
nn.init.constant_(m.bias, 0)
|
687 |
-
nn.init.constant_(m.weight, 1.0)
|
688 |
-
elif isinstance(m, nn.BatchNorm2d):
|
689 |
-
nn.init.ones_(m.weight)
|
690 |
-
nn.init.zeros_(m.bias)
|
691 |
-
|
692 |
-
@torch.jit.ignore
|
693 |
-
def no_weight_decay_keywords(self):
|
694 |
-
return {'rpb'}
|
695 |
-
|
696 |
-
def forward_features(self, x):
|
697 |
-
x = self.patch_embed(x)
|
698 |
-
for level in self.levels:
|
699 |
-
x = level(x)
|
700 |
-
x = self.norm(x)
|
701 |
-
x = self.avgpool(x)
|
702 |
-
x = torch.flatten(x, 1)
|
703 |
-
return x
|
704 |
-
|
705 |
-
def forward(self, x):
|
706 |
-
x = self.forward_features(x)
|
707 |
-
x = self.head(x)
|
708 |
-
return x
|
709 |
-
|
710 |
-
def _load_state_dict(self,
|
711 |
-
pretrained,
|
712 |
-
strict: bool = False):
|
713 |
-
_load_checkpoint(self,
|
714 |
-
pretrained,
|
715 |
-
strict=strict)
|
716 |
-
|
717 |
-
|
718 |
-
@register_model
|
719 |
-
def mamba_vision_T(pretrained=False, **kwargs):
|
720 |
-
model_path = kwargs.pop("model_path", "/tmp/mamba_vision_T.pth.tar")
|
721 |
-
pretrained_cfg = resolve_pretrained_cfg('mamba_vision_T').to_dict()
|
722 |
-
update_args(pretrained_cfg, kwargs, kwargs_filter=None)
|
723 |
-
model = MambaVision(depths=[1, 3, 8, 4],
|
724 |
-
num_heads=[2, 4, 8, 16],
|
725 |
-
window_size=[8, 8, 14, 7],
|
726 |
-
dim=80,
|
727 |
-
in_dim=32,
|
728 |
-
mlp_ratio=4,
|
729 |
-
resolution=224,
|
730 |
-
drop_path_rate=0.2,
|
731 |
-
**kwargs)
|
732 |
-
model.pretrained_cfg = pretrained_cfg
|
733 |
-
model.default_cfg = model.pretrained_cfg
|
734 |
-
if pretrained:
|
735 |
-
if not Path(model_path).is_file():
|
736 |
-
url = model.default_cfg['url']
|
737 |
-
torch.hub.download_url_to_file(url=url, dst=model_path)
|
738 |
-
model._load_state_dict(model_path)
|
739 |
-
return model
|
740 |
-
|
741 |
-
|
742 |
-
@register_model
|
743 |
-
def mamba_vision_T2(pretrained=False, **kwargs):
|
744 |
-
model_path = kwargs.pop("model_path", "/tmp/mamba_vision_T2.pth.tar")
|
745 |
-
pretrained_cfg = resolve_pretrained_cfg('mamba_vision_T2').to_dict()
|
746 |
-
update_args(pretrained_cfg, kwargs, kwargs_filter=None)
|
747 |
-
model = MambaVision(depths=[1, 3, 11, 4],
|
748 |
-
num_heads=[2, 4, 8, 16],
|
749 |
-
window_size=[8, 8, 14, 7],
|
750 |
-
dim=80,
|
751 |
-
in_dim=32,
|
752 |
-
mlp_ratio=4,
|
753 |
-
resolution=224,
|
754 |
-
drop_path_rate=0.2,
|
755 |
-
**kwargs)
|
756 |
-
model.pretrained_cfg = pretrained_cfg
|
757 |
-
model.default_cfg = model.pretrained_cfg
|
758 |
-
if pretrained:
|
759 |
-
if not Path(model_path).is_file():
|
760 |
-
url = model.default_cfg['url']
|
761 |
-
torch.hub.download_url_to_file(url=url, dst=model_path)
|
762 |
-
model._load_state_dict(model_path)
|
763 |
-
return model
|
764 |
-
|
765 |
-
|
766 |
-
@register_model
|
767 |
-
def mamba_vision_S(pretrained=False, **kwargs):
|
768 |
-
model_path = kwargs.pop("model_path", "/tmp/mamba_vision_S.pth.tar")
|
769 |
-
pretrained_cfg = resolve_pretrained_cfg('mamba_vision_S').to_dict()
|
770 |
-
update_args(pretrained_cfg, kwargs, kwargs_filter=None)
|
771 |
-
model = MambaVision(depths=[3, 3, 7, 5],
|
772 |
-
num_heads=[2, 4, 8, 16],
|
773 |
-
window_size=[8, 8, 14, 7],
|
774 |
-
dim=96,
|
775 |
-
in_dim=64,
|
776 |
-
mlp_ratio=4,
|
777 |
-
resolution=224,
|
778 |
-
drop_path_rate=0.2,
|
779 |
-
**kwargs)
|
780 |
-
model.pretrained_cfg = pretrained_cfg
|
781 |
-
model.default_cfg = model.pretrained_cfg
|
782 |
-
if pretrained:
|
783 |
-
if not Path(model_path).is_file():
|
784 |
-
url = model.default_cfg['url']
|
785 |
-
torch.hub.download_url_to_file(url=url, dst=model_path)
|
786 |
-
model._load_state_dict(model_path)
|
787 |
-
return model
|
788 |
-
|
789 |
-
|
790 |
-
@register_model
|
791 |
-
def mamba_vision_B(pretrained=False, **kwargs):
|
792 |
-
model_path = kwargs.pop("model_path", "/tmp/mamba_vision_B.pth.tar")
|
793 |
-
pretrained_cfg = resolve_pretrained_cfg('mamba_vision_B').to_dict()
|
794 |
-
update_args(pretrained_cfg, kwargs, kwargs_filter=None)
|
795 |
-
model = MambaVision(depths=[3, 3, 10, 5],
|
796 |
-
num_heads=[2, 4, 8, 16],
|
797 |
-
window_size=[8, 8, 14, 7],
|
798 |
-
dim=128,
|
799 |
-
in_dim=64,
|
800 |
-
mlp_ratio=4,
|
801 |
-
resolution=224,
|
802 |
-
drop_path_rate=0.3,
|
803 |
-
layer_scale=1e-5,
|
804 |
-
layer_scale_conv=None,
|
805 |
-
**kwargs)
|
806 |
-
model.pretrained_cfg = pretrained_cfg
|
807 |
-
model.default_cfg = model.pretrained_cfg
|
808 |
-
if pretrained:
|
809 |
-
if not Path(model_path).is_file():
|
810 |
-
url = model.default_cfg['url']
|
811 |
-
torch.hub.download_url_to_file(url=url, dst=model_path)
|
812 |
-
model._load_state_dict(model_path)
|
813 |
-
return model
|
814 |
-
|
815 |
-
|
816 |
-
@register_model
|
817 |
-
def mamba_vision_L(pretrained=False, **kwargs):
|
818 |
-
model_path = kwargs.pop("model_path", "/tmp/mamba_vision_L.pth.tar")
|
819 |
-
pretrained_cfg = resolve_pretrained_cfg('mamba_vision_L').to_dict()
|
820 |
-
update_args(pretrained_cfg, kwargs, kwargs_filter=None)
|
821 |
-
model = MambaVision(depths=[3, 3, 10, 5],
|
822 |
-
num_heads=[4, 8, 16, 32],
|
823 |
-
window_size=[8, 8, 14, 7],
|
824 |
-
dim=196,
|
825 |
-
in_dim=64,
|
826 |
-
mlp_ratio=4,
|
827 |
-
resolution=224,
|
828 |
-
drop_path_rate=0.3,
|
829 |
-
layer_scale=1e-5,
|
830 |
-
layer_scale_conv=None,
|
831 |
-
**kwargs)
|
832 |
-
model.pretrained_cfg = pretrained_cfg
|
833 |
-
model.default_cfg = model.pretrained_cfg
|
834 |
-
if pretrained:
|
835 |
-
if not Path(model_path).is_file():
|
836 |
-
url = model.default_cfg['url']
|
837 |
-
torch.hub.download_url_to_file(url=url, dst=model_path)
|
838 |
-
model._load_state_dict(model_path)
|
839 |
-
return model
|
840 |
-
|
841 |
-
|
842 |
-
@register_model
|
843 |
-
def mamba_vision_L2(pretrained=False, **kwargs):
|
844 |
-
model_path = kwargs.pop("model_path", "/tmp/mamba_vision_L2.pth.tar")
|
845 |
-
pretrained_cfg = resolve_pretrained_cfg('mamba_vision_L2').to_dict()
|
846 |
-
update_args(pretrained_cfg, kwargs, kwargs_filter=None)
|
847 |
-
model = MambaVision(depths=[3, 3, 12, 5],
|
848 |
-
num_heads=[4, 8, 16, 32],
|
849 |
-
window_size=[8, 8, 14, 7],
|
850 |
-
dim=196,
|
851 |
-
in_dim=64,
|
852 |
-
mlp_ratio=4,
|
853 |
-
resolution=224,
|
854 |
-
drop_path_rate=0.3,
|
855 |
-
layer_scale=1e-5,
|
856 |
-
layer_scale_conv=None,
|
857 |
-
**kwargs)
|
858 |
-
model.pretrained_cfg = pretrained_cfg
|
859 |
-
model.default_cfg = model.pretrained_cfg
|
860 |
-
if pretrained:
|
861 |
-
if not Path(model_path).is_file():
|
862 |
-
url = model.default_cfg['url']
|
863 |
-
torch.hub.download_url_to_file(url=url, dst=model_path)
|
864 |
-
model._load_state_dict(model_path)
|
865 |
-
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|