ahatamiz commited on
Commit
e90da38
·
verified ·
1 Parent(s): c5660a9

Delete mamba_vision.py

Browse files
Files changed (1) hide show
  1. mamba_vision.py +0 -865
mamba_vision.py DELETED
@@ -1,865 +0,0 @@
1
- #!/usr/bin/env python3
2
-
3
- # Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
4
- #
5
- # NVIDIA CORPORATION and its licensors retain all intellectual property
6
- # and proprietary rights in and to this software, related documentation
7
- # and any modifications thereto. Any use, reproduction, disclosure or
8
- # distribution of this software and related documentation without an express
9
- # license agreement from NVIDIA CORPORATION is strictly prohibited.
10
-
11
-
12
- import torch
13
- import torch.nn as nn
14
- from timm.models.registry import register_model
15
- import math
16
- from timm.models.layers import trunc_normal_, DropPath, LayerNorm2d
17
- from timm.models._builder import resolve_pretrained_cfg
18
- try:
19
- from timm.models._builder import _update_default_kwargs as update_args
20
- except:
21
- from timm.models._builder import _update_default_model_kwargs as update_args
22
- from timm.models.vision_transformer import Mlp, PatchEmbed
23
- from timm.models.layers import DropPath, trunc_normal_
24
- from timm.models.registry import register_model
25
- import torch.nn.functional as F
26
- from mamba_ssm.ops.selective_scan_interface import selective_scan_fn
27
- from einops import rearrange, repeat
28
- from pathlib import Path
29
- from huggingface_hub import PyTorchModelHubMixin
30
-
31
-
32
- def _cfg(url='', **kwargs):
33
- return {'url': url,
34
- 'num_classes': 1000,
35
- 'input_size': (3, 224, 224),
36
- 'pool_size': None,
37
- 'crop_pct': 0.875,
38
- 'interpolation': 'bicubic',
39
- 'fixed_input_size': True,
40
- 'mean': (0.485, 0.456, 0.406),
41
- 'std': (0.229, 0.224, 0.225),
42
- **kwargs
43
- }
44
-
45
-
46
- default_cfgs = {
47
- 'mamba_vision_T': _cfg(url='https://huggingface.co/nvidia/MambaVision-T-1K/resolve/main/mambavision_tiny_1k.pth.tar',
48
- crop_pct=1.0,
49
- input_size=(3, 224, 224),
50
- crop_mode='center'),
51
- 'mamba_vision_T2': _cfg(url='https://huggingface.co/nvidia/MambaVision-T2-1K/resolve/main/mambavision_tiny2_1k.pth.tar',
52
- crop_pct=0.98,
53
- input_size=(3, 224, 224),
54
- crop_mode='center'),
55
- 'mamba_vision_S': _cfg(url='https://huggingface.co/nvidia/MambaVision-S-1K/resolve/main/mambavision_small_1k.pth.tar',
56
- crop_pct=0.93,
57
- input_size=(3, 224, 224),
58
- crop_mode='center'),
59
- 'mamba_vision_B': _cfg(url='https://huggingface.co/nvidia/MambaVision-B-1K/resolve/main/mambavision_base_1k.pth.tar',
60
- crop_pct=1.0,
61
- input_size=(3, 224, 224),
62
- crop_mode='center'),
63
- 'mamba_vision_L': _cfg(url='https://huggingface.co/nvidia/MambaVision-L-1K/resolve/main/mambavision_large_1k.pth.tar',
64
- crop_pct=1.0,
65
- input_size=(3, 224, 224),
66
- crop_mode='center'),
67
- 'mamba_vision_L2': _cfg(url='https://huggingface.co/nvidia/MambaVision-L2-1K/resolve/main/mambavision_large2_1k.pth.tar',
68
- crop_pct=1.0,
69
- input_size=(3, 224, 224),
70
- crop_mode='center')
71
- }
72
-
73
-
74
- def window_partition(x, window_size):
75
- """
76
- Args:
77
- x: (B, C, H, W)
78
- window_size: window size
79
- h_w: Height of window
80
- w_w: Width of window
81
- Returns:
82
- local window features (num_windows*B, window_size*window_size, C)
83
- """
84
- B, C, H, W = x.shape
85
- x = x.view(B, C, H // window_size, window_size, W // window_size, window_size)
86
- windows = x.permute(0, 2, 4, 3, 5, 1).reshape(-1, window_size*window_size, C)
87
- return windows
88
-
89
-
90
- def window_reverse(windows, window_size, H, W):
91
- """
92
- Args:
93
- windows: local window features (num_windows*B, window_size, window_size, C)
94
- window_size: Window size
95
- H: Height of image
96
- W: Width of image
97
- Returns:
98
- x: (B, C, H, W)
99
- """
100
- B = int(windows.shape[0] / (H * W / window_size / window_size))
101
- x = windows.reshape(B, H // window_size, W // window_size, window_size, window_size, -1)
102
- x = x.permute(0, 5, 1, 3, 2, 4).reshape(B,windows.shape[2], H, W)
103
- return x
104
-
105
-
106
- def _load_state_dict(module, state_dict, strict=False, logger=None):
107
- """Load state_dict to a module.
108
-
109
- This method is modified from :meth:`torch.nn.Module.load_state_dict`.
110
- Default value for ``strict`` is set to ``False`` and the message for
111
- param mismatch will be shown even if strict is False.
112
-
113
- Args:
114
- module (Module): Module that receives the state_dict.
115
- state_dict (OrderedDict): Weights.
116
- strict (bool): whether to strictly enforce that the keys
117
- in :attr:`state_dict` match the keys returned by this module's
118
- :meth:`~torch.nn.Module.state_dict` function. Default: ``False``.
119
- logger (:obj:`logging.Logger`, optional): Logger to log the error
120
- message. If not specified, print function will be used.
121
- """
122
- unexpected_keys = []
123
- all_missing_keys = []
124
- err_msg = []
125
-
126
- metadata = getattr(state_dict, '_metadata', None)
127
- state_dict = state_dict.copy()
128
- if metadata is not None:
129
- state_dict._metadata = metadata
130
-
131
- def load(module, prefix=''):
132
- local_metadata = {} if metadata is None else metadata.get(
133
- prefix[:-1], {})
134
- module._load_from_state_dict(state_dict, prefix, local_metadata, True,
135
- all_missing_keys, unexpected_keys,
136
- err_msg)
137
- for name, child in module._modules.items():
138
- if child is not None:
139
- load(child, prefix + name + '.')
140
-
141
- load(module)
142
- load = None
143
- missing_keys = [
144
- key for key in all_missing_keys if 'num_batches_tracked' not in key
145
- ]
146
-
147
- if unexpected_keys:
148
- err_msg.append('unexpected key in source '
149
- f'state_dict: {", ".join(unexpected_keys)}\n')
150
- if missing_keys:
151
- err_msg.append(
152
- f'missing keys in source state_dict: {", ".join(missing_keys)}\n')
153
-
154
-
155
- if len(err_msg) > 0:
156
- err_msg.insert(
157
- 0, 'The model and loaded state dict do not match exactly\n')
158
- err_msg = '\n'.join(err_msg)
159
- if strict:
160
- raise RuntimeError(err_msg)
161
- elif logger is not None:
162
- logger.warning(err_msg)
163
- else:
164
- print(err_msg)
165
-
166
-
167
- def _load_checkpoint(model,
168
- filename,
169
- map_location='cpu',
170
- strict=False,
171
- logger=None):
172
- """Load checkpoint from a file or URI.
173
-
174
- Args:
175
- model (Module): Module to load checkpoint.
176
- filename (str): Accept local filepath, URL, ``torchvision://xxx``,
177
- ``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for
178
- details.
179
- map_location (str): Same as :func:`torch.load`.
180
- strict (bool): Whether to allow different params for the model and
181
- checkpoint.
182
- logger (:mod:`logging.Logger` or None): The logger for error message.
183
-
184
- Returns:
185
- dict or OrderedDict: The loaded checkpoint.
186
- """
187
- checkpoint = torch.load(filename, map_location=map_location)
188
- if not isinstance(checkpoint, dict):
189
- raise RuntimeError(
190
- f'No state_dict found in checkpoint file {filename}')
191
- if 'state_dict' in checkpoint:
192
- state_dict = checkpoint['state_dict']
193
- elif 'model' in checkpoint:
194
- state_dict = checkpoint['model']
195
- else:
196
- state_dict = checkpoint
197
- if list(state_dict.keys())[0].startswith('module.'):
198
- state_dict = {k[7:]: v for k, v in state_dict.items()}
199
-
200
- if sorted(list(state_dict.keys()))[0].startswith('encoder'):
201
- state_dict = {k.replace('encoder.', ''): v for k, v in state_dict.items() if k.startswith('encoder.')}
202
-
203
- _load_state_dict(model, state_dict, strict, logger)
204
- return checkpoint
205
-
206
-
207
- class Downsample(nn.Module):
208
- """
209
- Down-sampling block"
210
- """
211
-
212
- def __init__(self,
213
- dim,
214
- keep_dim=False,
215
- ):
216
- """
217
- Args:
218
- dim: feature size dimension.
219
- norm_layer: normalization layer.
220
- keep_dim: bool argument for maintaining the resolution.
221
- """
222
-
223
- super().__init__()
224
- if keep_dim:
225
- dim_out = dim
226
- else:
227
- dim_out = 2 * dim
228
- self.reduction = nn.Sequential(
229
- nn.Conv2d(dim, dim_out, 3, 2, 1, bias=False),
230
- )
231
-
232
- def forward(self, x):
233
- x = self.reduction(x)
234
- return x
235
-
236
-
237
- class PatchEmbed(nn.Module):
238
- """
239
- Patch embedding block"
240
- """
241
-
242
- def __init__(self, in_chans=3, in_dim=64, dim=96):
243
- """
244
- Args:
245
- in_chans: number of input channels.
246
- dim: feature size dimension.
247
- """
248
- # in_dim = 1
249
- super().__init__()
250
- self.proj = nn.Identity()
251
- self.conv_down = nn.Sequential(
252
- nn.Conv2d(in_chans, in_dim, 3, 2, 1, bias=False),
253
- nn.BatchNorm2d(in_dim, eps=1e-4),
254
- nn.ReLU(),
255
- nn.Conv2d(in_dim, dim, 3, 2, 1, bias=False),
256
- nn.BatchNorm2d(dim, eps=1e-4),
257
- nn.ReLU()
258
- )
259
-
260
- def forward(self, x):
261
- x = self.proj(x)
262
- x = self.conv_down(x)
263
- return x
264
-
265
-
266
- class ConvBlock(nn.Module):
267
-
268
- def __init__(self, dim,
269
- drop_path=0.,
270
- layer_scale=None,
271
- kernel_size=3):
272
- super().__init__()
273
-
274
- self.conv1 = nn.Conv2d(dim, dim, kernel_size=kernel_size, stride=1, padding=1)
275
- self.norm1 = nn.BatchNorm2d(dim, eps=1e-5)
276
- self.act1 = nn.GELU(approximate= 'tanh')
277
- self.conv2 = nn.Conv2d(dim, dim, kernel_size=kernel_size, stride=1, padding=1)
278
- self.norm2 = nn.BatchNorm2d(dim, eps=1e-5)
279
- self.layer_scale = layer_scale
280
- if layer_scale is not None and type(layer_scale) in [int, float]:
281
- self.gamma = nn.Parameter(layer_scale * torch.ones(dim))
282
- self.layer_scale = True
283
- else:
284
- self.layer_scale = False
285
- self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
286
-
287
- def forward(self, x):
288
- input = x
289
- x = self.conv1(x)
290
- x = self.norm1(x)
291
- x = self.act1(x)
292
- x = self.conv2(x)
293
- x = self.norm2(x)
294
- if self.layer_scale:
295
- x = x * self.gamma.view(1, -1, 1, 1)
296
- x = input + self.drop_path(x)
297
- return x
298
-
299
-
300
- class MambaVisionMixer(nn.Module):
301
- def __init__(
302
- self,
303
- d_model,
304
- d_state=16,
305
- d_conv=4,
306
- expand=2,
307
- dt_rank="auto",
308
- dt_min=0.001,
309
- dt_max=0.1,
310
- dt_init="random",
311
- dt_scale=1.0,
312
- dt_init_floor=1e-4,
313
- conv_bias=True,
314
- bias=False,
315
- use_fast_path=True,
316
- layer_idx=None,
317
- device=None,
318
- dtype=None,
319
- ):
320
- factory_kwargs = {"device": device, "dtype": dtype}
321
- super().__init__()
322
- self.d_model = d_model
323
- self.d_state = d_state
324
- self.d_conv = d_conv
325
- self.expand = expand
326
- self.d_inner = int(self.expand * self.d_model)
327
- self.dt_rank = math.ceil(self.d_model / 16) if dt_rank == "auto" else dt_rank
328
- self.use_fast_path = use_fast_path
329
- self.layer_idx = layer_idx
330
- self.in_proj = nn.Linear(self.d_model, self.d_inner, bias=bias, **factory_kwargs)
331
- self.x_proj = nn.Linear(
332
- self.d_inner//2, self.dt_rank + self.d_state * 2, bias=False, **factory_kwargs
333
- )
334
- self.dt_proj = nn.Linear(self.dt_rank, self.d_inner//2, bias=True, **factory_kwargs)
335
- dt_init_std = self.dt_rank**-0.5 * dt_scale
336
- if dt_init == "constant":
337
- nn.init.constant_(self.dt_proj.weight, dt_init_std)
338
- elif dt_init == "random":
339
- nn.init.uniform_(self.dt_proj.weight, -dt_init_std, dt_init_std)
340
- else:
341
- raise NotImplementedError
342
- dt = torch.exp(
343
- torch.rand(self.d_inner//2, **factory_kwargs) * (math.log(dt_max) - math.log(dt_min))
344
- + math.log(dt_min)
345
- ).clamp(min=dt_init_floor)
346
- inv_dt = dt + torch.log(-torch.expm1(-dt))
347
- with torch.no_grad():
348
- self.dt_proj.bias.copy_(inv_dt)
349
- self.dt_proj.bias._no_reinit = True
350
- A = repeat(
351
- torch.arange(1, self.d_state + 1, dtype=torch.float32, device=device),
352
- "n -> d n",
353
- d=self.d_inner//2,
354
- ).contiguous()
355
- A_log = torch.log(A)
356
- self.A_log = nn.Parameter(A_log)
357
- self.A_log._no_weight_decay = True
358
- self.D = nn.Parameter(torch.ones(self.d_inner//2, device=device))
359
- self.D._no_weight_decay = True
360
- self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=bias, **factory_kwargs)
361
- self.conv1d_x = nn.Conv1d(
362
- in_channels=self.d_inner//2,
363
- out_channels=self.d_inner//2,
364
- bias=conv_bias//2,
365
- kernel_size=d_conv,
366
- groups=self.d_inner//2,
367
- **factory_kwargs,
368
- )
369
- self.conv1d_z = nn.Conv1d(
370
- in_channels=self.d_inner//2,
371
- out_channels=self.d_inner//2,
372
- bias=conv_bias//2,
373
- kernel_size=d_conv,
374
- groups=self.d_inner//2,
375
- **factory_kwargs,
376
- )
377
-
378
- def forward(self, hidden_states):
379
- """
380
- hidden_states: (B, L, D)
381
- Returns: same shape as hidden_states
382
- """
383
- _, seqlen, _ = hidden_states.shape
384
- xz = self.in_proj(hidden_states)
385
- xz = rearrange(xz, "b l d -> b d l")
386
- x, z = xz.chunk(2, dim=1)
387
- A = -torch.exp(self.A_log.float())
388
- x = F.silu(F.conv1d(input=x, weight=self.conv1d_x.weight, bias=self.conv1d_x.bias, padding='same', groups=self.d_inner//2))
389
- z = F.silu(F.conv1d(input=z, weight=self.conv1d_z.weight, bias=self.conv1d_z.bias, padding='same', groups=self.d_inner//2))
390
- x_dbl = self.x_proj(rearrange(x, "b d l -> (b l) d"))
391
- dt, B, C = torch.split(x_dbl, [self.dt_rank, self.d_state, self.d_state], dim=-1)
392
- dt = rearrange(self.dt_proj(dt), "(b l) d -> b d l", l=seqlen)
393
- B = rearrange(B, "(b l) dstate -> b dstate l", l=seqlen).contiguous()
394
- C = rearrange(C, "(b l) dstate -> b dstate l", l=seqlen).contiguous()
395
- y = selective_scan_fn(x,
396
- dt,
397
- A,
398
- B,
399
- C,
400
- self.D.float(),
401
- z=None,
402
- delta_bias=self.dt_proj.bias.float(),
403
- delta_softplus=True,
404
- return_last_state=None)
405
-
406
- y = torch.cat([y, z], dim=1)
407
- y = rearrange(y, "b d l -> b l d")
408
- out = self.out_proj(y)
409
- return out
410
-
411
-
412
- class Attention(nn.Module):
413
-
414
- def __init__(
415
- self,
416
- dim,
417
- num_heads=8,
418
- qkv_bias=False,
419
- qk_norm=False,
420
- attn_drop=0.,
421
- proj_drop=0.,
422
- norm_layer=nn.LayerNorm,
423
- ):
424
- super().__init__()
425
- assert dim % num_heads == 0
426
- self.num_heads = num_heads
427
- self.head_dim = dim // num_heads
428
- self.scale = self.head_dim ** -0.5
429
- self.fused_attn = True
430
-
431
- self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
432
- self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
433
- self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
434
- self.attn_drop = nn.Dropout(attn_drop)
435
- self.proj = nn.Linear(dim, dim)
436
- self.proj_drop = nn.Dropout(proj_drop)
437
-
438
- def forward(self, x):
439
- B, N, C = x.shape
440
- qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
441
- q, k, v = qkv.unbind(0)
442
- q, k = self.q_norm(q), self.k_norm(k)
443
-
444
- if self.fused_attn:
445
- x = F.scaled_dot_product_attention(
446
- q, k, v,
447
- dropout_p=self.attn_drop.p,
448
- )
449
- else:
450
- q = q * self.scale
451
- attn = q @ k.transpose(-2, -1)
452
- attn = attn.softmax(dim=-1)
453
- attn = self.attn_drop(attn)
454
- x = attn @ v
455
-
456
- x = x.transpose(1, 2).reshape(B, N, C)
457
- x = self.proj(x)
458
- x = self.proj_drop(x)
459
- return x
460
-
461
-
462
- class Block(nn.Module):
463
- def __init__(self,
464
- dim,
465
- num_heads,
466
- counter,
467
- transformer_blocks,
468
- mlp_ratio=4.,
469
- qkv_bias=False,
470
- qk_scale=False,
471
- drop=0.,
472
- attn_drop=0.,
473
- drop_path=0.,
474
- act_layer=nn.GELU,
475
- norm_layer=nn.LayerNorm,
476
- Mlp_block=Mlp,
477
- layer_scale=None,
478
- ):
479
- super().__init__()
480
- self.norm1 = norm_layer(dim)
481
- if counter in transformer_blocks:
482
- self.mixer = Attention(
483
- dim,
484
- num_heads=num_heads,
485
- qkv_bias=qkv_bias,
486
- qk_norm=qk_scale,
487
- attn_drop=attn_drop,
488
- proj_drop=drop,
489
- norm_layer=norm_layer,
490
- )
491
- else:
492
- self.mixer = MambaVisionMixer(d_model=dim,
493
- d_state=8,
494
- d_conv=3,
495
- expand=1
496
- )
497
-
498
- self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
499
- self.norm2 = norm_layer(dim)
500
- mlp_hidden_dim = int(dim * mlp_ratio)
501
- self.mlp = Mlp_block(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
502
- use_layer_scale = layer_scale is not None and type(layer_scale) in [int, float]
503
- self.gamma_1 = nn.Parameter(layer_scale * torch.ones(dim)) if use_layer_scale else 1
504
- self.gamma_2 = nn.Parameter(layer_scale * torch.ones(dim)) if use_layer_scale else 1
505
-
506
- def forward(self, x):
507
- x = x + self.drop_path(self.gamma_1 * self.mixer(self.norm1(x)))
508
- x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
509
- return x
510
-
511
-
512
- class MambaVisionLayer(nn.Module):
513
- """
514
- MambaVision layer"
515
- """
516
-
517
- def __init__(self,
518
- dim,
519
- depth,
520
- num_heads,
521
- window_size,
522
- conv=False,
523
- downsample=True,
524
- mlp_ratio=4.,
525
- qkv_bias=True,
526
- qk_scale=None,
527
- drop=0.,
528
- attn_drop=0.,
529
- drop_path=0.,
530
- layer_scale=None,
531
- layer_scale_conv=None,
532
- transformer_blocks = [],
533
- ):
534
- """
535
- Args:
536
- dim: feature size dimension.
537
- depth: number of layers in each stage.
538
- window_size: window size in each stage.
539
- conv: bool argument for conv stage flag.
540
- downsample: bool argument for down-sampling.
541
- mlp_ratio: MLP ratio.
542
- num_heads: number of heads in each stage.
543
- qkv_bias: bool argument for query, key, value learnable bias.
544
- qk_scale: bool argument to scaling query, key.
545
- drop: dropout rate.
546
- attn_drop: attention dropout rate.
547
- drop_path: drop path rate.
548
- norm_layer: normalization layer.
549
- layer_scale: layer scaling coefficient.
550
- layer_scale_conv: conv layer scaling coefficient.
551
- transformer_blocks: list of transformer blocks.
552
- """
553
-
554
- super().__init__()
555
- self.conv = conv
556
- self.transformer_block = False
557
- if conv:
558
- self.blocks = nn.ModuleList([ConvBlock(dim=dim,
559
- drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
560
- layer_scale=layer_scale_conv)
561
- for i in range(depth)])
562
- self.transformer_block = False
563
- else:
564
- self.transformer_block = True
565
- self.blocks = nn.ModuleList([Block(dim=dim,
566
- counter=i,
567
- transformer_blocks=transformer_blocks,
568
- num_heads=num_heads,
569
- mlp_ratio=mlp_ratio,
570
- qkv_bias=qkv_bias,
571
- qk_scale=qk_scale,
572
- drop=drop,
573
- attn_drop=attn_drop,
574
- drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
575
- layer_scale=layer_scale)
576
- for i in range(depth)])
577
- self.transformer_block = True
578
-
579
- self.downsample = None if not downsample else Downsample(dim=dim)
580
- self.do_gt = False
581
- self.window_size = window_size
582
-
583
- def forward(self, x):
584
- _, _, H, W = x.shape
585
-
586
- if self.transformer_block:
587
- pad_r = (self.window_size - W % self.window_size) % self.window_size
588
- pad_b = (self.window_size - H % self.window_size) % self.window_size
589
- if pad_r > 0 or pad_b > 0:
590
- x = torch.nn.functional.pad(x, (0,pad_r,0,pad_b))
591
- _, _, Hp, Wp = x.shape
592
- else:
593
- Hp, Wp = H, W
594
- x = window_partition(x, self.window_size)
595
-
596
- for _, blk in enumerate(self.blocks):
597
- x = blk(x)
598
- if self.transformer_block:
599
- x = window_reverse(x, self.window_size, Hp, Wp)
600
- if pad_r > 0 or pad_b > 0:
601
- x = x[:, :, :H, :W].contiguous()
602
- if self.downsample is None:
603
- return x
604
- return self.downsample(x)
605
-
606
-
607
- class MambaVision(nn.Module, PyTorchModelHubMixin):
608
- """
609
- MambaVision,
610
- """
611
-
612
- def __init__(self,
613
- dim,
614
- in_dim,
615
- depths,
616
- window_size,
617
- mlp_ratio,
618
- num_heads,
619
- drop_path_rate=0.2,
620
- in_chans=3,
621
- num_classes=1000,
622
- qkv_bias=True,
623
- qk_scale=None,
624
- drop_rate=0.,
625
- attn_drop_rate=0.,
626
- layer_scale=None,
627
- layer_scale_conv=None,
628
- **kwargs):
629
- """
630
- Args:
631
- dim: feature size dimension.
632
- depths: number of layers in each stage.
633
- window_size: window size in each stage.
634
- mlp_ratio: MLP ratio.
635
- num_heads: number of heads in each stage.
636
- drop_path_rate: drop path rate.
637
- in_chans: number of input channels.
638
- num_classes: number of classes.
639
- qkv_bias: bool argument for query, key, value learnable bias.
640
- qk_scale: bool argument to scaling query, key.
641
- drop_rate: dropout rate.
642
- attn_drop_rate: attention dropout rate.
643
- norm_layer: normalization layer.
644
- layer_scale: layer scaling coefficient.
645
- layer_scale_conv: conv layer scaling coefficient.
646
- """
647
- super().__init__()
648
- num_features = int(dim * 2 ** (len(depths) - 1))
649
- self.num_classes = num_classes
650
- self.patch_embed = PatchEmbed(in_chans=in_chans, in_dim=in_dim, dim=dim)
651
- dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
652
- self.levels = nn.ModuleList()
653
- for i in range(len(depths)):
654
- conv = True if (i == 0 or i == 1) else False
655
- level = MambaVisionLayer(dim=int(dim * 2 ** i),
656
- depth=depths[i],
657
- num_heads=num_heads[i],
658
- window_size=window_size[i],
659
- mlp_ratio=mlp_ratio,
660
- qkv_bias=qkv_bias,
661
- qk_scale=qk_scale,
662
- conv=conv,
663
- drop=drop_rate,
664
- attn_drop=attn_drop_rate,
665
- drop_path=dpr[sum(depths[:i]):sum(depths[:i + 1])],
666
- downsample=(i < 3),
667
- layer_scale=layer_scale,
668
- layer_scale_conv=layer_scale_conv,
669
- transformer_blocks=list(range(depths[i]//2+1, depths[i])) if depths[i]%2!=0 else list(range(depths[i]//2, depths[i])),
670
- )
671
- self.levels.append(level)
672
- self.norm = nn.BatchNorm2d(num_features)
673
- self.avgpool = nn.AdaptiveAvgPool2d(1)
674
- self.head = nn.Linear(num_features, num_classes) if num_classes > 0 else nn.Identity()
675
- self.apply(self._init_weights)
676
-
677
- def _init_weights(self, m):
678
- if isinstance(m, nn.Linear):
679
- trunc_normal_(m.weight, std=.02)
680
- if isinstance(m, nn.Linear) and m.bias is not None:
681
- nn.init.constant_(m.bias, 0)
682
- elif isinstance(m, nn.LayerNorm):
683
- nn.init.constant_(m.bias, 0)
684
- nn.init.constant_(m.weight, 1.0)
685
- elif isinstance(m, LayerNorm2d):
686
- nn.init.constant_(m.bias, 0)
687
- nn.init.constant_(m.weight, 1.0)
688
- elif isinstance(m, nn.BatchNorm2d):
689
- nn.init.ones_(m.weight)
690
- nn.init.zeros_(m.bias)
691
-
692
- @torch.jit.ignore
693
- def no_weight_decay_keywords(self):
694
- return {'rpb'}
695
-
696
- def forward_features(self, x):
697
- x = self.patch_embed(x)
698
- for level in self.levels:
699
- x = level(x)
700
- x = self.norm(x)
701
- x = self.avgpool(x)
702
- x = torch.flatten(x, 1)
703
- return x
704
-
705
- def forward(self, x):
706
- x = self.forward_features(x)
707
- x = self.head(x)
708
- return x
709
-
710
- def _load_state_dict(self,
711
- pretrained,
712
- strict: bool = False):
713
- _load_checkpoint(self,
714
- pretrained,
715
- strict=strict)
716
-
717
-
718
- @register_model
719
- def mamba_vision_T(pretrained=False, **kwargs):
720
- model_path = kwargs.pop("model_path", "/tmp/mamba_vision_T.pth.tar")
721
- pretrained_cfg = resolve_pretrained_cfg('mamba_vision_T').to_dict()
722
- update_args(pretrained_cfg, kwargs, kwargs_filter=None)
723
- model = MambaVision(depths=[1, 3, 8, 4],
724
- num_heads=[2, 4, 8, 16],
725
- window_size=[8, 8, 14, 7],
726
- dim=80,
727
- in_dim=32,
728
- mlp_ratio=4,
729
- resolution=224,
730
- drop_path_rate=0.2,
731
- **kwargs)
732
- model.pretrained_cfg = pretrained_cfg
733
- model.default_cfg = model.pretrained_cfg
734
- if pretrained:
735
- if not Path(model_path).is_file():
736
- url = model.default_cfg['url']
737
- torch.hub.download_url_to_file(url=url, dst=model_path)
738
- model._load_state_dict(model_path)
739
- return model
740
-
741
-
742
- @register_model
743
- def mamba_vision_T2(pretrained=False, **kwargs):
744
- model_path = kwargs.pop("model_path", "/tmp/mamba_vision_T2.pth.tar")
745
- pretrained_cfg = resolve_pretrained_cfg('mamba_vision_T2').to_dict()
746
- update_args(pretrained_cfg, kwargs, kwargs_filter=None)
747
- model = MambaVision(depths=[1, 3, 11, 4],
748
- num_heads=[2, 4, 8, 16],
749
- window_size=[8, 8, 14, 7],
750
- dim=80,
751
- in_dim=32,
752
- mlp_ratio=4,
753
- resolution=224,
754
- drop_path_rate=0.2,
755
- **kwargs)
756
- model.pretrained_cfg = pretrained_cfg
757
- model.default_cfg = model.pretrained_cfg
758
- if pretrained:
759
- if not Path(model_path).is_file():
760
- url = model.default_cfg['url']
761
- torch.hub.download_url_to_file(url=url, dst=model_path)
762
- model._load_state_dict(model_path)
763
- return model
764
-
765
-
766
- @register_model
767
- def mamba_vision_S(pretrained=False, **kwargs):
768
- model_path = kwargs.pop("model_path", "/tmp/mamba_vision_S.pth.tar")
769
- pretrained_cfg = resolve_pretrained_cfg('mamba_vision_S').to_dict()
770
- update_args(pretrained_cfg, kwargs, kwargs_filter=None)
771
- model = MambaVision(depths=[3, 3, 7, 5],
772
- num_heads=[2, 4, 8, 16],
773
- window_size=[8, 8, 14, 7],
774
- dim=96,
775
- in_dim=64,
776
- mlp_ratio=4,
777
- resolution=224,
778
- drop_path_rate=0.2,
779
- **kwargs)
780
- model.pretrained_cfg = pretrained_cfg
781
- model.default_cfg = model.pretrained_cfg
782
- if pretrained:
783
- if not Path(model_path).is_file():
784
- url = model.default_cfg['url']
785
- torch.hub.download_url_to_file(url=url, dst=model_path)
786
- model._load_state_dict(model_path)
787
- return model
788
-
789
-
790
- @register_model
791
- def mamba_vision_B(pretrained=False, **kwargs):
792
- model_path = kwargs.pop("model_path", "/tmp/mamba_vision_B.pth.tar")
793
- pretrained_cfg = resolve_pretrained_cfg('mamba_vision_B').to_dict()
794
- update_args(pretrained_cfg, kwargs, kwargs_filter=None)
795
- model = MambaVision(depths=[3, 3, 10, 5],
796
- num_heads=[2, 4, 8, 16],
797
- window_size=[8, 8, 14, 7],
798
- dim=128,
799
- in_dim=64,
800
- mlp_ratio=4,
801
- resolution=224,
802
- drop_path_rate=0.3,
803
- layer_scale=1e-5,
804
- layer_scale_conv=None,
805
- **kwargs)
806
- model.pretrained_cfg = pretrained_cfg
807
- model.default_cfg = model.pretrained_cfg
808
- if pretrained:
809
- if not Path(model_path).is_file():
810
- url = model.default_cfg['url']
811
- torch.hub.download_url_to_file(url=url, dst=model_path)
812
- model._load_state_dict(model_path)
813
- return model
814
-
815
-
816
- @register_model
817
- def mamba_vision_L(pretrained=False, **kwargs):
818
- model_path = kwargs.pop("model_path", "/tmp/mamba_vision_L.pth.tar")
819
- pretrained_cfg = resolve_pretrained_cfg('mamba_vision_L').to_dict()
820
- update_args(pretrained_cfg, kwargs, kwargs_filter=None)
821
- model = MambaVision(depths=[3, 3, 10, 5],
822
- num_heads=[4, 8, 16, 32],
823
- window_size=[8, 8, 14, 7],
824
- dim=196,
825
- in_dim=64,
826
- mlp_ratio=4,
827
- resolution=224,
828
- drop_path_rate=0.3,
829
- layer_scale=1e-5,
830
- layer_scale_conv=None,
831
- **kwargs)
832
- model.pretrained_cfg = pretrained_cfg
833
- model.default_cfg = model.pretrained_cfg
834
- if pretrained:
835
- if not Path(model_path).is_file():
836
- url = model.default_cfg['url']
837
- torch.hub.download_url_to_file(url=url, dst=model_path)
838
- model._load_state_dict(model_path)
839
- return model
840
-
841
-
842
- @register_model
843
- def mamba_vision_L2(pretrained=False, **kwargs):
844
- model_path = kwargs.pop("model_path", "/tmp/mamba_vision_L2.pth.tar")
845
- pretrained_cfg = resolve_pretrained_cfg('mamba_vision_L2').to_dict()
846
- update_args(pretrained_cfg, kwargs, kwargs_filter=None)
847
- model = MambaVision(depths=[3, 3, 12, 5],
848
- num_heads=[4, 8, 16, 32],
849
- window_size=[8, 8, 14, 7],
850
- dim=196,
851
- in_dim=64,
852
- mlp_ratio=4,
853
- resolution=224,
854
- drop_path_rate=0.3,
855
- layer_scale=1e-5,
856
- layer_scale_conv=None,
857
- **kwargs)
858
- model.pretrained_cfg = pretrained_cfg
859
- model.default_cfg = model.pretrained_cfg
860
- if pretrained:
861
- if not Path(model_path).is_file():
862
- url = model.default_cfg['url']
863
- torch.hub.download_url_to_file(url=url, dst=model_path)
864
- model._load_state_dict(model_path)
865
- return model