{ "cells": [ { "cell_type": "markdown", "id": "442ce0b9-8ae3-466e-8e0f-664b6a4eccf1", "metadata": {}, "source": [ "### plant disease prediction\n" ] }, { "cell_type": "markdown", "id": "9588c8cf-bd96-4910-ab85-acc65f4d2cdf", "metadata": {}, "source": [ "# importing data\n" ] }, { "cell_type": "markdown", "id": "d0f0a89b-d75d-4b4d-adb1-b64e0b7e287a", "metadata": {}, "source": [ "Dataset Link: https://www.kaggle.com/datasets/vipoooool/new-plant-diseases-dataset" ] }, { "cell_type": "markdown", "id": "02aa8ccd-97af-4af3-89ff-7ba1f430a337", "metadata": {}, "source": [ "# importing libraries" ] }, { "cell_type": "code", "execution_count": 3, "id": "53fabc84-9cda-4520-a983-c07a21ce6edc", "metadata": {}, "outputs": [], "source": [ "import tensorflow as tf\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import seaborn as sns" ] }, { "cell_type": "code", "execution_count": 4, "id": "97b73cf9-aba4-4487-a9b5-d3287d61b3f9", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "2.18.0\n" ] } ], "source": [ "import tensorflow as tf\n", "print(tf.__version__)\n" ] }, { "cell_type": "markdown", "id": "cdede3da-087e-495e-9aab-fb505fd2ab12", "metadata": {}, "source": [ "# data preprocessing" ] }, { "cell_type": "markdown", "id": "e35e66bc-2c73-467b-a38d-68b413988633", "metadata": {}, "source": [ "## train image preprocessing\n" ] }, { "cell_type": "code", "execution_count": 7, "id": "73909875-cf29-43b3-a4ec-5197e8233b71", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Found 70295 files belonging to 38 classes.\n" ] } ], "source": [ "training_set = tf.keras.utils.image_dataset_from_directory(\n", " 'train', #directory name\n", " labels=\"inferred\", #directory name is same as label name\n", " label_mode=\"categorical\", # more than 2 classes\n", " class_names=None, # no class name\n", " color_mode=\"rgb\",\n", " batch_size=32, # default batch size means at a time 32 images will be feeded to the NN\n", " image_size=(128, 128),\n", " shuffle=True, #shuffle data to reduce bias of model, will randomly train to learn better\n", " seed=None,\n", " validation_split=None,\n", " subset=None,\n", " interpolation=\"bilinear\",\n", " follow_links=False,\n", " crop_to_aspect_ratio=False\n", ")" ] }, { "cell_type": "markdown", "id": "c2eaf45f-f1b2-464f-96f7-2817d8144900", "metadata": {}, "source": [ "# validation image preprocessing" ] }, { "cell_type": "code", "execution_count": 8, "id": "bb1016c9-e79f-49d3-bfa6-2835ab8d24e5", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Found 17572 files belonging to 38 classes.\n" ] } ], "source": [ "validation_set = tf.keras.utils.image_dataset_from_directory(\n", " 'valid',\n", " labels=\"inferred\",\n", " label_mode=\"categorical\",\n", " class_names=None,\n", " color_mode=\"rgb\",\n", " batch_size=32,\n", " image_size=(128, 128),\n", " shuffle=True,\n", " seed=None,\n", " validation_split=None,\n", " subset=None,\n", " interpolation=\"bilinear\",\n", " follow_links=False,\n", " crop_to_aspect_ratio=False\n", ")" ] }, { "cell_type": "code", "execution_count": 11, "id": "20d514a8-744c-47af-8456-5d727f020e1c", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<_PrefetchDataset element_spec=(TensorSpec(shape=(None, 128, 128, 3), dtype=tf.float32, name=None), TensorSpec(shape=(None, 38), dtype=tf.float32, name=None))>" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "training_set\n" ] }, { "cell_type": "code", "execution_count": 13, "id": "eea0e64f-10c6-436c-bdab-f14ef147ae0d", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tf.Tensor(\n", "[[[[135. 129. 133. ]\n", " [135. 129. 133. ]\n", " [140. 134. 138. ]\n", " ...\n", " [138.25 129.25 132.25]\n", " [139.25 130.25 133.25]\n", " [146. 137. 140. ]]\n", "\n", " [[136.75 130.75 134.75]\n", " [139. 133. 137. ]\n", " [140.25 134.25 138.25]\n", " ...\n", " [144. 135. 138. ]\n", " [143.5 134.5 137.5 ]\n", " [145. 136. 139. ]]\n", "\n", " [[137.25 131.25 135.25]\n", " [140.5 134.5 138.5 ]\n", " [142.5 136.5 140.5 ]\n", " ...\n", " [146.25 137.25 140.25]\n", " [141.75 132.75 135.75]\n", " [138. 129. 132. ]]\n", "\n", " ...\n", "\n", " [[133.5 123.5 121.5 ]\n", " [132.5 122.5 120.5 ]\n", " [133.25 123.25 121.25]\n", " ...\n", " [128.25 122.25 126.25]\n", " [128.5 122.5 126.5 ]\n", " [118. 112. 116. ]]\n", "\n", " [[130.5 120.5 118.5 ]\n", " [135.25 125.25 123.25]\n", " [136.25 126.25 124.25]\n", " ...\n", " [125. 119. 123. ]\n", " [123.25 117.25 121.25]\n", " [120.75 114.75 118.75]]\n", "\n", " [[133. 123. 121. ]\n", " [132.5 122.5 120.5 ]\n", " [131.75 121.75 119.75]\n", " ...\n", " [124. 118. 122. ]\n", " [122.5 116.5 120.5 ]\n", " [119.5 113.5 117.5 ]]]\n", "\n", "\n", " [[[166.5 155.25 137.75]\n", " [155.75 143.75 130.75]\n", " [170.75 157.75 149.25]\n", " ...\n", " [193. 184. 177. ]\n", " [179. 170. 163. ]\n", " [181. 172. 165. ]]\n", "\n", " [[166.5 154.5 138.5 ]\n", " [162.5 150.5 137.5 ]\n", " [165.5 152.5 144. ]\n", " ...\n", " [179.5 170.5 163.5 ]\n", " [182.5 173.5 166.5 ]\n", " [171. 162. 155. ]]\n", "\n", " [[172.75 160.75 147.75]\n", " [163.5 151.25 140. ]\n", " [165.5 152.5 144.25]\n", " ...\n", " [177.75 168.75 161.75]\n", " [176.75 167.75 160.75]\n", " [177. 168. 161. ]]\n", "\n", " ...\n", "\n", " [[211.5 204.5 196.5 ]\n", " [221. 214.25 204.75]\n", " [168.75 162.5 149.75]\n", " ...\n", " [236.5 231.5 228.5 ]\n", " [235.5 230.5 227.5 ]\n", " [234.25 229.25 226.25]]\n", "\n", " [[216.25 209.25 200.25]\n", " [147.75 142. 126.5 ]\n", " [ 56. 52. 24.75]\n", " ...\n", " [235.5 230.5 227.5 ]\n", " [234.75 229.75 226.75]\n", " [235. 230. 227. ]]\n", "\n", " [[116.25 109.5 100. ]\n", " [ 56.5 51.25 31.5 ]\n", " [ 60.75 58.25 22.5 ]\n", " ...\n", " [234.75 229.75 226.75]\n", " [234. 229. 226. ]\n", " [235.5 230.5 227.5 ]]]\n", "\n", "\n", " [[[106. 116. 117. ]\n", " [107. 117. 118. ]\n", " [111.75 121.75 122.75]\n", " ...\n", " [113.75 122.75 121.75]\n", " [112.5 121.5 120.5 ]\n", " [116.5 125.5 124.5 ]]\n", "\n", " [[108.5 118.5 119.5 ]\n", " [110.25 120.25 121.25]\n", " [115.5 125.5 126.5 ]\n", " ...\n", " [115.75 124.75 123.75]\n", " [119.75 128.75 127.75]\n", " [116. 125. 124. ]]\n", "\n", " [[116. 126. 127. ]\n", " [114.75 124.75 125.75]\n", " [115.75 125.75 126.75]\n", " ...\n", " [116.5 125.5 124.5 ]\n", " [119.75 128.75 127.75]\n", " [115. 124. 123. ]]\n", "\n", " ...\n", "\n", " [[137.25 147.25 148.25]\n", " [141.75 151.75 152.75]\n", " [140.25 150.25 151.25]\n", " ...\n", " [142.75 151.75 150.75]\n", " [141.75 150.75 149.75]\n", " [141.25 150.25 149.25]]\n", "\n", " [[136. 146. 147. ]\n", " [139.5 149.5 150.5 ]\n", " [137. 147. 148. ]\n", " ...\n", " [145.75 154.75 153.75]\n", " [143.5 152.5 151.5 ]\n", " [144.75 153.75 152.75]]\n", "\n", " [[134.75 144.75 145.75]\n", " [133.5 143.5 144.5 ]\n", " [134. 144. 145. ]\n", " ...\n", " [148. 157. 156. ]\n", " [141.25 150.25 149.25]\n", " [144.75 153.75 152.75]]]\n", "\n", "\n", " ...\n", "\n", "\n", " [[[143.5 129.5 152.5 ]\n", " [149.75 135.75 158.75]\n", " [162.25 148.25 171.25]\n", " ...\n", " [198. 194. 209. ]\n", " [203.25 199.25 214.25]\n", " [198.5 194.5 209.5 ]]\n", "\n", " [[157.25 143.25 166.25]\n", " [170.75 156.75 179.75]\n", " [144.5 130.5 153.5 ]\n", " ...\n", " [191. 187. 202. ]\n", " [192.25 188.25 203.25]\n", " [199.5 195.5 210.5 ]]\n", "\n", " [[155.5 141.5 164.5 ]\n", " [121. 107. 130. ]\n", " [165.5 151.5 174.5 ]\n", " ...\n", " [186. 182. 197. ]\n", " [187.75 183.75 198.75]\n", " [193.25 189.25 204.25]]\n", "\n", " ...\n", "\n", " [[120. 109. 139. ]\n", " [135.5 124.5 154.5 ]\n", " [144.75 133.75 163.75]\n", " ...\n", " [156.5 150.5 178.5 ]\n", " [163. 157. 185. ]\n", " [162.25 156.25 184.25]]\n", "\n", " [[164.75 153.75 182. ]\n", " [112. 101. 131. ]\n", " [117.25 106.25 136.25]\n", " ...\n", " [165.75 159.75 187.75]\n", " [165.75 159.75 187.75]\n", " [168.75 162.75 190.75]]\n", "\n", " [[145.5 134.5 164.5 ]\n", " [131.5 120.5 150.5 ]\n", " [111. 100. 130. ]\n", " ...\n", " [163.5 157.5 185.5 ]\n", " [157.25 151.25 179.25]\n", " [160.75 154.75 182.75]]]\n", "\n", "\n", " [[[157.25 152.25 156.25]\n", " [188.75 183.75 187.75]\n", " [170.25 165.25 169.25]\n", " ...\n", " [208.5 206.5 209.5 ]\n", " [210.75 208.75 211.75]\n", " [206. 204. 207. ]]\n", "\n", " [[174.25 169.25 173.25]\n", " [167.25 162.25 166.25]\n", " [164.5 159.5 163.5 ]\n", " ...\n", " [198.75 196.75 199.75]\n", " [203.25 201.25 204.25]\n", " [213.75 211.75 214.75]]\n", "\n", " [[153.5 148.5 152.5 ]\n", " [147.5 142.5 146.5 ]\n", " [176.5 171.5 175.5 ]\n", " ...\n", " [208.25 206.25 209.25]\n", " [203.75 201.75 204.75]\n", " [201. 199. 202. ]]\n", "\n", " ...\n", "\n", " [[117.75 107.75 116.75]\n", " [141.5 131.5 140.5 ]\n", " [128.25 118.25 127.25]\n", " ...\n", " [148.75 141.75 149.75]\n", " [111.75 104.75 112.75]\n", " [130.5 123.5 131.5 ]]\n", "\n", " [[117. 107. 116. ]\n", " [119.75 109.75 118.75]\n", " [130.25 120.25 129.25]\n", " ...\n", " [128. 121. 129. ]\n", " [151.5 144.5 152.5 ]\n", " [120.25 113.25 121.25]]\n", "\n", " [[128. 118. 127. ]\n", " [120.5 110.5 119.5 ]\n", " [133.75 123.75 132.75]\n", " ...\n", " [137.75 130.75 138.75]\n", " [141.5 134.5 142.5 ]\n", " [120.75 113.75 121.75]]]\n", "\n", "\n", " [[[152. 138. 138. ]\n", " [129.75 115.75 115.75]\n", " [139. 125. 125. ]\n", " ...\n", " [ 21. 19. 24. ]\n", " [ 21. 19. 24. ]\n", " [ 21. 19. 24. ]]\n", "\n", " [[143.25 129.25 129.25]\n", " [113. 99. 99. ]\n", " [139.5 125.5 125.5 ]\n", " ...\n", " [ 21. 19. 24. ]\n", " [ 21. 19. 24. ]\n", " [ 21. 19. 24. ]]\n", "\n", " [[134.75 120.75 120.75]\n", " [127.5 113.5 113.5 ]\n", " [130.5 116.5 116.5 ]\n", " ...\n", " [ 21. 19. 24. ]\n", " [ 21. 19. 24. ]\n", " [ 21. 19. 24. ]]\n", "\n", " ...\n", "\n", " [[186.25 176.25 175.25]\n", " [189. 179. 178. ]\n", " [186.5 176.5 175.5 ]\n", " ...\n", " [158. 144. 141. ]\n", " [164.75 150.75 147.75]\n", " [159.25 145.25 142.25]]\n", "\n", " [[167.25 157.25 156.25]\n", " [183.25 173.25 172.25]\n", " [178.75 168.75 167.75]\n", " ...\n", " [159.25 145.25 142.25]\n", " [161.75 147.75 144.75]\n", " [165. 151. 148. ]]\n", "\n", " [[183. 173. 172. ]\n", " [196.5 186.5 185.5 ]\n", " [167. 157. 156. ]\n", " ...\n", " [157.75 143.75 140.75]\n", " [160.25 146.25 143.25]\n", " [163. 149. 146. ]]]], shape=(32, 128, 128, 3), dtype=float32) (32, 128, 128, 3)\n", "tf.Tensor(\n", "[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 1. ... 0. 0. 0.]\n", " ...\n", " [0. 1. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]], shape=(32, 38), dtype=float32) (32, 38)\n" ] } ], "source": [ "for x,y in training_set : #FOR A BATCH OF 32\n", " print(x,x.shape) # x image , x.shape (batch_size, height, width, color mode)\n", " print(y, y.shape) # y label, y.shape (batch_size, num_classes).\n", " break\n", " " ] }, { "cell_type": "markdown", "id": "67ba308f-4f8b-4a98-8c58-579e6df2bb1a", "metadata": {}, "source": [ "### to avoid overshooting \n", "1. we choose small learning rate .0001\n", "2. there may be a chance of underfitting , so increased number of neurons\n", "3. add more convolution layer to extract more features from images there may be possibility that model unable to capture relevant feature or model is confusing due to lack of feature so feed with more feature" ] }, { "cell_type": "markdown", "id": "137ae5eb-3ca0-4bd6-b819-154c78067f78", "metadata": {}, "source": [ "# building model" ] }, { "cell_type": "code", "execution_count": 49, "id": "bda0c13f-c027-4c2d-8fb7-b7ba90e25d09", "metadata": {}, "outputs": [], "source": [ "from tensorflow.keras.layers import Dense,Conv2D,Flatten,Dropout\n", "from tensorflow.keras.models import Sequential\n" ] }, { "cell_type": "markdown", "id": "b5078e0e-c1d6-400e-8963-f6cdb326af2d", "metadata": {}, "source": [ "## building a convolution layer" ] }, { "cell_type": "code", "execution_count": 17, "id": "aa10e670-c2e4-46a6-84c6-8a64217f35ff", "metadata": {}, "outputs": [], "source": [ "cnn = tf.keras.models.Sequential()\n" ] }, { "cell_type": "code", "execution_count": 19, "id": "71f7a067-94cf-403a-ba0e-83fe0912fa8d", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\ASUS\\anaconda3\\Lib\\site-packages\\keras\\src\\layers\\convolutional\\base_conv.py:107: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", " super().__init__(activity_regularizer=activity_regularizer, **kwargs)\n" ] } ], "source": [ "cnn.add(tf.keras.layers.Conv2D(filters=32,kernel_size=3,padding='same',activation='relu',input_shape=(128, 128, 3)))\n", "cnn.add(tf.keras.layers.Conv2D(filters=32,kernel_size=3,activation='relu'))\n", "cnn.add(tf.keras.layers.MaxPool2D(pool_size=2,strides=2))\n", "\n" ] }, { "cell_type": "code", "execution_count": 21, "id": "69895068-f3b3-417f-a585-47edf8a727de", "metadata": {}, "outputs": [], "source": [ "cnn.add(tf.keras.layers.Conv2D(filters=64,kernel_size=3,padding='same',activation='relu',input_shape=(128, 128, 3)))\n", "cnn.add(tf.keras.layers.Conv2D(filters=64,kernel_size=3,activation='relu'))\n", "cnn.add(tf.keras.layers.MaxPool2D(pool_size=2,strides=2))" ] }, { "cell_type": "code", "execution_count": 23, "id": "e6234adf-d05d-4d59-8281-16b50aec5734", "metadata": {}, "outputs": [], "source": [ "cnn.add(tf.keras.layers.Conv2D(filters=128,kernel_size=3,padding='same',activation='relu',input_shape=(128, 128, 3)))\n", "cnn.add(tf.keras.layers.Conv2D(filters=128,kernel_size=3,activation='relu'))\n", "cnn.add(tf.keras.layers.MaxPool2D(pool_size=2,strides=2))" ] }, { "cell_type": "code", "execution_count": 25, "id": "081967e6-17c5-460d-97f4-8c1d28af507f", "metadata": {}, "outputs": [], "source": [ "cnn.add(tf.keras.layers.Conv2D(filters=256,kernel_size=3,padding='same',activation='relu',input_shape=(128, 128, 3)))\n", "cnn.add(tf.keras.layers.Conv2D(filters=256,kernel_size=3,activation='relu'))\n", "cnn.add(tf.keras.layers.MaxPool2D(pool_size=2,strides=2))\n" ] }, { "cell_type": "code", "execution_count": 27, "id": "1cb91fb4-ff22-415c-89aa-db4383b25f9a", "metadata": {}, "outputs": [], "source": [ "cnn.add(tf.keras.layers.Conv2D(filters=512,kernel_size=3,padding='same',activation='relu',input_shape=(128, 128, 3)))\n", "cnn.add(tf.keras.layers.Conv2D(filters=512,kernel_size=3,activation='relu'))\n", "cnn.add(tf.keras.layers.MaxPool2D(pool_size=2,strides=2))\n" ] }, { "cell_type": "code", "execution_count": 29, "id": "e98fa900-5a21-4453-bbd3-a35aeb29e5ab", "metadata": {}, "outputs": [], "source": [ "cnn.add(tf.keras.layers.Dropout(0.25))" ] }, { "cell_type": "code", "execution_count": 31, "id": "53aecf01-e76e-4776-99e0-d1afc921ff2f", "metadata": {}, "outputs": [], "source": [ "cnn.add(tf.keras.layers.Flatten())\n" ] }, { "cell_type": "code", "execution_count": 33, "id": "2150a6cc-704e-4892-895c-cd14fd08181f", "metadata": {}, "outputs": [], "source": [ "cnn.add(tf.keras.layers.Dense(units=1500,activation='relu'))" ] }, { "cell_type": "code", "execution_count": 35, "id": "2c334542-7048-4733-8440-490f6d1426a7", "metadata": {}, "outputs": [], "source": [ "cnn.add(tf.keras.layers.Dropout(0.4)) #To avoid overfitting\n" ] }, { "cell_type": "code", "execution_count": 37, "id": "e876264d-6266-4f8b-a20a-465055b4980b", "metadata": {}, "outputs": [], "source": [ "#output layer\n", "cnn.add(Dense(units=38,activation='softmax'))\n" ] }, { "cell_type": "code", "execution_count": 39, "id": "0b9afc31-31bd-4df5-a958-bcbcc57650e8", "metadata": {}, "outputs": [], "source": [ "cnn.compile(\n", " optimizer=tf.keras.optimizers.Adam(learning_rate=0.0001),\n", " loss='categorical_crossentropy',\n", " metrics=['accuracy']\n", ")\n", "\n" ] }, { "cell_type": "markdown", "id": "0915a355-1a44-44b8-b26f-c266414fd643", "metadata": {}, "source": [ "## compiling model" ] }, { "cell_type": "code", "execution_count": 42, "id": "fd055bd2-298d-4a62-91ca-f0b750c55320", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Model: \"sequential\"\n",
       "
\n" ], "text/plain": [ "\u001b[1mModel: \"sequential\"\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
       "┃ Layer (type)                     Output Shape                  Param # ┃\n",
       "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
       "│ conv2d (Conv2D)                 │ (None, 128, 128, 32)   │           896 │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ conv2d_1 (Conv2D)               │ (None, 126, 126, 32)   │         9,248 │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ max_pooling2d (MaxPooling2D)    │ (None, 63, 63, 32)     │             0 │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ conv2d_2 (Conv2D)               │ (None, 63, 63, 64)     │        18,496 │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ conv2d_3 (Conv2D)               │ (None, 61, 61, 64)     │        36,928 │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ max_pooling2d_1 (MaxPooling2D)  │ (None, 30, 30, 64)     │             0 │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ conv2d_4 (Conv2D)               │ (None, 30, 30, 128)    │        73,856 │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ conv2d_5 (Conv2D)               │ (None, 28, 28, 128)    │       147,584 │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ max_pooling2d_2 (MaxPooling2D)  │ (None, 14, 14, 128)    │             0 │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ conv2d_6 (Conv2D)               │ (None, 14, 14, 256)    │       295,168 │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ conv2d_7 (Conv2D)               │ (None, 12, 12, 256)    │       590,080 │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ max_pooling2d_3 (MaxPooling2D)  │ (None, 6, 6, 256)      │             0 │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ conv2d_8 (Conv2D)               │ (None, 6, 6, 512)      │     1,180,160 │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ conv2d_9 (Conv2D)               │ (None, 4, 4, 512)      │     2,359,808 │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ max_pooling2d_4 (MaxPooling2D)  │ (None, 2, 2, 512)      │             0 │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ dropout (Dropout)               │ (None, 2, 2, 512)      │             0 │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ flatten (Flatten)               │ (None, 2048)           │             0 │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ dense (Dense)                   │ (None, 1500)           │     3,073,500 │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ dropout_1 (Dropout)             │ (None, 1500)           │             0 │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ dense_1 (Dense)                 │ (None, 38)             │        57,038 │\n",
       "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
       "
\n" ], "text/plain": [ "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", "│ conv2d (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m, \u001b[38;5;34m128\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m896\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ conv2d_1 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m126\u001b[0m, \u001b[38;5;34m126\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m9,248\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ max_pooling2d (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m63\u001b[0m, \u001b[38;5;34m63\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ conv2d_2 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m63\u001b[0m, \u001b[38;5;34m63\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m18,496\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ conv2d_3 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m61\u001b[0m, \u001b[38;5;34m61\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m36,928\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ max_pooling2d_1 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m30\u001b[0m, \u001b[38;5;34m30\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ conv2d_4 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m30\u001b[0m, \u001b[38;5;34m30\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m73,856\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ conv2d_5 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m147,584\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ max_pooling2d_2 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ conv2d_6 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m256\u001b[0m) │ \u001b[38;5;34m295,168\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ conv2d_7 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m256\u001b[0m) │ \u001b[38;5;34m590,080\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ max_pooling2d_3 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m6\u001b[0m, \u001b[38;5;34m6\u001b[0m, \u001b[38;5;34m256\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ conv2d_8 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m6\u001b[0m, \u001b[38;5;34m6\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m1,180,160\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ conv2d_9 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m2,359,808\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ max_pooling2d_4 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2\u001b[0m, \u001b[38;5;34m2\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ dropout (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2\u001b[0m, \u001b[38;5;34m2\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ flatten (\u001b[38;5;33mFlatten\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2048\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ dense (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1500\u001b[0m) │ \u001b[38;5;34m3,073,500\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ dropout_1 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1500\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ dense_1 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m38\u001b[0m) │ \u001b[38;5;34m57,038\u001b[0m │\n", "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
 Total params: 7,842,762 (29.92 MB)\n",
       "
\n" ], "text/plain": [ "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m7,842,762\u001b[0m (29.92 MB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
 Trainable params: 7,842,762 (29.92 MB)\n",
       "
\n" ], "text/plain": [ "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m7,842,762\u001b[0m (29.92 MB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
 Non-trainable params: 0 (0.00 B)\n",
       "
\n" ], "text/plain": [ "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "cnn.summary()\n" ] }, { "cell_type": "markdown", "id": "d6660798-93c4-42d9-9f09-ed4f78a07954", "metadata": {}, "source": [ "# Model Training" ] }, { "cell_type": "code", "execution_count": 45, "id": "21d65cb6-ed10-46a5-82ab-535a27cfd7e4", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/10\n", "\u001b[1m2197/2197\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1920s\u001b[0m 872ms/step - accuracy: 0.3927 - loss: 2.1373 - val_accuracy: 0.8395 - val_loss: 0.5147\n", "Epoch 2/10\n", "\u001b[1m2197/2197\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1839s\u001b[0m 837ms/step - accuracy: 0.8343 - loss: 0.5208 - val_accuracy: 0.9132 - val_loss: 0.2738\n", "Epoch 3/10\n", "\u001b[1m2197/2197\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1688s\u001b[0m 768ms/step - accuracy: 0.9096 - loss: 0.2843 - val_accuracy: 0.9298 - val_loss: 0.2148\n", "Epoch 4/10\n", "\u001b[1m2197/2197\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1737s\u001b[0m 791ms/step - accuracy: 0.9380 - loss: 0.1902 - val_accuracy: 0.9442 - val_loss: 0.1671\n", "Epoch 5/10\n", "\u001b[1m2197/2197\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1754s\u001b[0m 798ms/step - accuracy: 0.9546 - loss: 0.1415 - val_accuracy: 0.9393 - val_loss: 0.1882\n", "Epoch 6/10\n", "\u001b[1m2197/2197\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1804s\u001b[0m 821ms/step - accuracy: 0.9625 - loss: 0.1140 - val_accuracy: 0.9531 - val_loss: 0.1651\n", "Epoch 7/10\n", "\u001b[1m2197/2197\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1726s\u001b[0m 786ms/step - accuracy: 0.9720 - loss: 0.0882 - val_accuracy: 0.9613 - val_loss: 0.1230\n", "Epoch 8/10\n", "\u001b[1m2197/2197\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1726s\u001b[0m 786ms/step - accuracy: 0.9748 - loss: 0.0762 - val_accuracy: 0.9451 - val_loss: 0.1853\n", "Epoch 9/10\n", "\u001b[1m2197/2197\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1663s\u001b[0m 757ms/step - accuracy: 0.9788 - loss: 0.0649 - val_accuracy: 0.9633 - val_loss: 0.1275\n", "Epoch 10/10\n", "\u001b[1m2197/2197\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1655s\u001b[0m 753ms/step - accuracy: 0.9813 - loss: 0.0605 - val_accuracy: 0.9672 - val_loss: 0.1087\n" ] } ], "source": [ "training_history=cnn.fit(x=training_set,validation_data=validation_set,epochs=10)" ] }, { "cell_type": "code", "execution_count": null, "id": "a5ebe86f-17e8-4893-9cf3-19161a6c4b46", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "id": "d0d975c5-ce8b-4c30-8214-6be3025a1b64", "metadata": {}, "source": [ "## model evaluation\n", "\n" ] }, { "cell_type": "code", "execution_count": 53, "id": "143aed3b-fe1c-4686-b20c-e9d4925ce8b9", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\u001b[1m2197/2197\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m435s\u001b[0m 198ms/step - accuracy: 0.9920 - loss: 0.0249\n" ] } ], "source": [ "#model evaluation on training set\n", "train_loss,train_acc=cnn.evaluate(training_set)" ] }, { "cell_type": "code", "execution_count": 56, "id": "2fcf654c-2d84-4670-b8b6-290cea09498c", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.021998057141900063 0.9930293560028076\n" ] } ], "source": [ "print(train_loss,train_acc)" ] }, { "cell_type": "code", "execution_count": 58, "id": "ebd9c4f1-c9b8-42ec-9ab4-54c000e9aafc", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\u001b[1m550/550\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m109s\u001b[0m 198ms/step - accuracy: 0.9683 - loss: 0.1029\n" ] } ], "source": [ "#model evaluation on validation set\n", "val_loss,val_acc=cnn.evaluate(validation_set)\n" ] }, { "cell_type": "code", "execution_count": 60, "id": "eff609c6-1dab-4850-bbe7-e50400fd5b48", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.10868757963180542 0.9672206044197083\n" ] } ], "source": [ "print(val_loss,val_acc)" ] }, { "cell_type": "markdown", "id": "ce1dff94-361c-48ef-8ee6-6447a4b61860", "metadata": {}, "source": [ "# saving model\n" ] }, { "cell_type": "code", "execution_count": 64, "id": "9d9dac16-9984-4b54-9e56-cdfd192bd318", "metadata": {}, "outputs": [], "source": [ "cnn.save('trained_plant_disease_model.keras')" ] }, { "cell_type": "code", "execution_count": 66, "id": "00ad7882-ecbd-4a80-9911-241a424eadfb", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'accuracy': [0.5942385792732239,\n", " 0.8586385846138,\n", " 0.9172914028167725,\n", " 0.9438793659210205,\n", " 0.9573653936386108,\n", " 0.9653887152671814,\n", " 0.9726296067237854,\n", " 0.9761860966682434,\n", " 0.9804537892341614,\n", " 0.9816487431526184],\n", " 'loss': [1.3686121702194214,\n", " 0.44347867369651794,\n", " 0.2570914924144745,\n", " 0.17316663265228271,\n", " 0.13126106560230255,\n", " 0.10496789962053299,\n", " 0.08549622446298599,\n", " 0.07126972079277039,\n", " 0.06025422737002373,\n", " 0.056908320635557175],\n", " 'val_accuracy': [0.8394604921340942,\n", " 0.9131572842597961,\n", " 0.9297746419906616,\n", " 0.9442294836044312,\n", " 0.939335286617279,\n", " 0.9531072378158569,\n", " 0.9613020420074463,\n", " 0.94514000415802,\n", " 0.9632938504219055,\n", " 0.9672206044197083],\n", " 'val_loss': [0.5146704912185669,\n", " 0.2738073468208313,\n", " 0.21475432813167572,\n", " 0.1670544296503067,\n", " 0.18820756673812866,\n", " 0.1651061773300171,\n", " 0.1230238527059555,\n", " 0.1852666139602661,\n", " 0.12747249007225037,\n", " 0.10868765413761139]}" ] }, "execution_count": 66, "metadata": {}, "output_type": "execute_result" } ], "source": [ "training_history.history #Return Dictionary of history" ] }, { "cell_type": "code", "execution_count": 68, "id": "1aa22dc7-bf7e-4ee9-bc5c-f4f162fa251f", "metadata": {}, "outputs": [], "source": [ "#Recording History in json\n", "import json\n", "with open('training_hist.json','w') as f:\n", " json.dump(training_history.history,f)" ] }, { "cell_type": "markdown", "id": "b17db75f-2c2e-4418-9af8-0a3be21fbadb", "metadata": {}, "source": [ "# Accuracy Visualization\n" ] }, { "cell_type": "code", "execution_count": 76, "id": "84ab5090-aabb-463b-99ee-443630c45857", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAHFCAYAAADR1KI+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABw4ElEQVR4nO3deVhU1f8H8PeAMOwDoixuiIoK7oIiIC5pKC4/LU2yxF0ztSRt0cwsW0z9ui+YJqBlLmWa5ZKk5gZuBGZpbqG4gKgpuLGf3x+3GRhmWAaBGYb363nu48ydu3xmQOftOeeeKxNCCBAREREZMBN9F0BERERUEgYWIiIiMngMLERERGTwGFiIiIjI4DGwEBERkcFjYCEiIiKDx8BCREREBo+BhYiIiAweAwsREREZPAYWMkgvvPACLC0t8eDBgyK3efXVV2FmZobbt28jKioKMpkMV69erbQatbl69SpkMhmioqJU6yq6tt27d+Ojjz7S+lrDhg0xcuTICjlveYmPj0fXrl2hUCggk8mwZMmSEve5e/cu5HI5ZDIZTp8+XfFFGpFu3bpBJpOpFgsLC3h5eeHTTz9FVlaWvsvT+vfl22+/LdXvBRk3BhYySGPGjEFGRga+/fZbra+npaVh+/bt6NevH5ydndG3b1/ExsbC1dW1kistWUXXtnv3bnz88cdaX9u+fTtmzZpVIectL6NHj0ZycjI2b96M2NhYvPzyyyXu8/XXX6u+XNetW1fRJRqdRo0aITY2FrGxsfjuu+/g4eGBWbNmYfLkyfouTSsGFgIYWMhABQcHo06dOoiIiND6+qZNm/D06VOMGTMGAFC7dm106tQJcrm8MsssFX3W1q5dOzRu3LjSz6uLP//8Ez179kRwcDA6deoEFxeXEveJiIiAk5MTOnTooPpdMETZ2dnIycnRdxkaLC0t0alTJ3Tq1An9+/fHtm3b4OHhgfXr1yMjI0Pf5RFpxcBCBsnU1BQjRoxAXFwczp49q/F6ZGQkXF1dERwcDEB7M3J8fDz69esHJycnyOVy1KlTB3379sWNGzcAaO++UZLJZGrdLJcvX8aoUaPg4eEBKysr1K1bF/3799daW2GFa/vtt9/UmuQLLg0bNlTtt2XLFgQFBcHV1RWWlpbw9PTE9OnT8fjxY9U2I0eOxMqVK1U1KxflubR1CSUlJWHYsGGqz8XT0xMLFy5EXl6eahvlZ/O///0PixYtgru7O2xsbODn54fjx4+X+J4BKYgMGDAADg4OsLCwQNu2bbF+/XqNzyUnJwfh4eGq2kty4sQJ/PnnnwgNDcW4ceOQlpaGbdu2aWyXl5eH5cuXo23btrC0tIS9vT06deqEnTt3qm337bffws/PDzY2NrCxsUHbtm3VWm2K6lbr1q0bunXrpnqu/Ll+/fXXmDZtGurWrQu5XI7Lly/jzp07mDhxIry8vGBjYwMnJyc899xzOHLkiMZxMzMzMWfOHHh6esLCwgKOjo7o3r07YmJiAAA9evRA8+bNUfi+tUIINGnSBH379i3xMyysRo0aaNu2LbKystS6YYUQWLVqleozdHBwwODBg/HPP/+o7V+ef9cK69atG3bt2oVr166p/Y5T9VND3wUQFWX06NH44osvEBERgcWLF6vWnzt3DidPnsT06dNhamqqdd/Hjx/j+eefh7u7O1auXAlnZ2ekpKTg4MGDePjwoc613Lp1C46Ojvjiiy9Qu3Zt/Pvvv1i/fj18fX0RHx+PZs2alfpY7du3R2xsrNq6S5cuYcyYMWjRooXauj59+iAsLAzW1tb4+++/MW/ePJw8eRIHDhwAAMyaNQuPHz/G999/r3bMorqf7ty5A39/f2RlZeGTTz5Bw4YN8fPPP+Ptt9/GlStXsGrVKrXtV65ciebNm6ua42fNmoU+ffogMTERCoWiyPd44cIF+Pv7w8nJCcuWLYOjoyO++eYbjBw5Erdv38a7776r6irz8/PD4MGDMW3atFJ9fsowMXr0aNSvXx9hYWFYt24dhg0bprbdyJEj8c0332DMmDGYM2cOzM3N8fvvv6uF2g8//BCffPIJXnzxRUybNg0KhQJ//vknrl27VqpatJkxYwb8/PywevVqmJiYwMnJCXfu3AEAzJ49Gy4uLnj06BG2b9+Obt26Yf/+/argk5OTg+DgYBw5cgRhYWF47rnnkJOTg+PHjyMpKQn+/v6YMmUKBgwYgP3796Nnz56q8+7ZswdXrlzBsmXLylR3YmIi7O3tUbt2bdW61157DVFRUXjzzTcxb948/Pvvv5gzZw78/f1x5swZODs7l/vftcJWrVqF8ePH48qVK9i+ffszH4+qMEFkwLp27Spq1aolsrKyVOumTZsmAIiLFy+q1kVGRgoAIjExUQghxOnTpwUAsWPHjiKPnZiYKACIyMhIjdcAiNmzZxe5b05OjsjKyhIeHh7irbfeKvaYhWsr7Pbt26JRo0aiRYsW4v79+1q3ycvLE9nZ2eLQoUMCgDhz5ozqtUmTJomi/iq7ubmJESNGqJ5Pnz5dABAnTpxQ2+71118XMplMXLhwQe19tGrVSuTk5Ki2O3nypAAgNm3apPV8Si+//LKQy+UiKSlJbX1wcLCwsrISDx48UK0DICZNmlTs8ZQeP34s7OzsRKdOnVTrRowYIWQymbh8+bJq3eHDhwUAMXPmzCKP9c8//whTU1Px6quvFnvOwp+hUteuXUXXrl1Vzw8ePCgAiC5dupT4PnJyckR2drbo0aOHeOGFF1TrN2zYIACItWvXFrlvbm6uaNSokRgwYIDa+uDgYNG4cWORl5dX7Lm7du0qWrRoIbKzs0V2drZITk4WH374oQAgVq9erdouNjZWABALFy5U2//69evC0tJSvPvuu0KI8v+7pu3vS9++fYWbm1ux74uMH7uEyKCNGTMGd+/eVTXj5+Tk4JtvvkFgYCA8PDyK3K9JkyZwcHDAe++9h9WrV+PcuXPPVEdOTg4+//xzeHl5wdzcHDVq1IC5uTkuXbqE8+fPl/m4jx8/Rt++fZGRkYE9e/bA3t5e9do///yDV155BS4uLjA1NYWZmRm6du0KAGU+54EDB+Dl5YWOHTuqrR85ciSEEKqWG6W+ffuqtWK1bt0aAEpsgThw4AB69OiB+vXra5znyZMnGi1MpbV161akp6dj9OjRqnWjR4+GEAKRkZGqdXv27AEATJo0qchjRUdHIzc3t9htymLQoEFa169evRrt27eHhYUFatSoATMzM+zfv1/tZ7lnzx5YWFiovb/CTExMMHnyZPz8889ISkoCAFy5cgV79+7FxIkTS9Vd8tdff8HMzAxmZmZwdXXFnDlzMGPGDLz22muqbX7++WfIZDIMGzYMOTk5qsXFxQVt2rTBb7/9BqD8/64RFYWBhQza4MGDoVAoVF9Gu3fvxu3bt1WDbYuiUChw6NAhtG3bFu+//z5atGiBOnXqYPbs2cjOzta5jqlTp2LWrFkYOHAgfvrpJ5w4cQKnTp1CmzZtyjzgMycnB4MHD8bFixexe/dutS/3R48eITAwECdOnMCnn36K3377DadOncIPP/wAAGU+571797R2F9WpU0f1ekGOjo5qz5UDh0s6v67nKa1169bBwsICvXv3xoMHD/DgwQO0bt0aDRs2RFRUFHJzcwFIXV+mpqbFDuBVdtPUq1evTLUURdv7XrRoEV5//XX4+vpi27ZtOH78OE6dOoXevXurfZZ37txBnTp1YGJS/D/No0ePhqWlJVavXg1A6rqztLQsNugU1LhxY5w6dQonT57Ed999hzZt2mDu3LnYvHmzapvbt29DCAFnZ2dVuFEux48fx927dwGU/981oqJwDAsZNEtLSwwdOhRr165FcnIyIiIiYGtri5deeqnEfVu1aoXNmzdDCIE//vgDUVFRmDNnDiwtLTF9+nRYWFgAkAY5FqTty/Sbb77B8OHD8fnnn6utv3v3rlqriC7Gjx+P/fv3Y/fu3WjTpo3aawcOHMCtW7fw22+/qVpVABQ7L01pODo6Ijk5WWP9rVu3AAC1atV6puNX5HkuXryIo0ePAgAaNGigdZtffvkFffr0Qe3atZGbm4uUlJQix/Mox2rcuHFDoyWoIAsLC43fEUD62Wt7H9paOL755ht069YN4eHhausLj/GoXbs2jh49iry8vGJDi0KhwIgRI/DVV1/h7bffRmRkJF555ZVS/y5aWFjAx8cHANChQwd0794dLVq0QFhYGPr16wcbGxvUqlULMpkMR44c0XqFW8F15fl3jagobGEhgzdmzBjk5uZiwYIF2L17N15++WVYWVmVen+ZTIY2bdpg8eLFsLe3x++//w4AcHZ2hoWFBf744w+17X/88Uetxyj8j/auXbtw8+bNMrwj4IMPPkBkZCS++uortYGTBc8HQOOcX375pca2pW31AKQrTM6dO6f6DJQ2bNgAmUyG7t27l/o9lHQeZegqfB4rKyt06tRJ52MqB9uuXbsWBw8eVFt2794NMzMz1WXwyqvHCgeEgoKCgmBqalrsNoB0lVDh35GLFy/iwoULpa5d2+/PH3/8odE1FhwcjIyMDK1X0xT25ptv4u7duxg8eDAePHjwTHOoKAeU3759G8uXLwcA9OvXD0II3Lx5Ez4+PhpLq1attL7PZ/27po1cLjfYS9ep8rCFhQyej48PWrdujSVLlkAIUWJ3ECD1v69atQoDBw5Eo0aNIITADz/8gAcPHuD5558HAFX/fEREBBo3bow2bdrg5MmTWier69evH6KiotC8eXO0bt0acXFxWLBgQZm6E7777jt89tlnGDx4MJo2bap2mbBcLke7du3g7+8PBwcHTJgwAbNnz4aZmRk2btyIM2fOaBxP+cUxb948BAcHw9TUFK1bt4a5ubnGtm+99RY2bNiAvn37Ys6cOXBzc8OuXbuwatUqvP7662jatKnO70eb2bNn4+eff0b37t3x4YcfombNmti4cSN27dqF+fPnF3uFkTY5OTnYsGEDPD09MXbsWK3b9O/fHzt37sSdO3cQGBiI0NBQfPrpp7h9+zb69esHuVyO+Ph4WFlZ4Y033kDDhg3x/vvv45NPPsHTp08xdOhQKBQKnDt3Dnfv3lVNxhcaGophw4Zh4sSJGDRoEK5du4b58+erXU1Tkn79+uGTTz7B7Nmz0bVrV1y4cAFz5syBu7u72jwtQ4cORWRkJCZMmIALFy6ge/fuyMvLw4kTJ+Dp6ak2qV7Tpk3Ru3dv7NmzB507d9ZopdPV8OHDsWjRIvzvf//DpEmTEBAQgPHjx2PUqFE4ffo0unTpAmtrayQnJ+Po0aNo1aoVXn/99XL/u6ZNq1at8MMPPyA8PBze3t4wMTFRtRBRNaK34b5EOli6dKkAILy8vLS+XvjKgr///lsMHTpUNG7cWFhaWgqFQiE6duwooqKi1PZLS0sTY8eOFc7OzsLa2lr0799fXL16VePKhfv374sxY8YIJycnYWVlJTp37iyOHDmicaVIaa4Smj17tgCgdSl4JURMTIzw8/MTVlZWonbt2mLs2LHi999/1zh+ZmamGDt2rKhdu7aQyWRq59J2hcu1a9fEK6+8IhwdHYWZmZlo1qyZWLBggcjNzdV4HwsWLND4rAt/NkU5e/as6N+/v1AoFMLc3Fy0adOmyKtESrpKaMeOHQKAWLJkSZHb7N27V+2qltzcXLF48WLRsmVLYW5uLhQKhfDz8xM//fST2n4bNmwQHTp0EBYWFsLGxka0a9dOrc68vDwxf/580ahRI2FhYSF8fHzEgQMHirxK6LvvvtOoLTMzU7z99tuibt26wsLCQrRv317s2LFDjBgxQuPql6dPn4oPP/xQeHh4CHNzc+Ho6Ciee+45ERMTo3HcqKgoAUBs3ry52M+vIOVVQtrs2rVLABAff/yxal1ERITw9fUV1tbWwtLSUjRu3FgMHz5cnD59WghR/n/XtF0l9O+//4rBgwcLe3t71e84VT8yIQrNPkRERFXCoEGDcPz4cVy9ehVmZmb6LoeoQrFLiIioCsnMzMTvv/+OkydPYvv27Vi0aBHDClULbGEhIqpCrl69Cnd3d9jZ2eGVV17BihUripzxmciYMLAQERGRweNlzURERGTwdA4shw8fRv/+/VGnTh3IZDLs2LGjxH0OHToEb29vWFhYoFGjRqrZGQvatm0bvLy8IJfL4eXlxZtcERERkYrOgeXx48do06YNVqxYUartExMT0adPHwQGBiI+Ph7vv/8+3nzzTbXbwcfGxiIkJAShoaE4c+YMQkNDMWTIEJw4cULX8oiIiMgIPdMYFplMhu3bt2PgwIFFbvPee+9h586dajf4mjBhAs6cOaOa5TEkJATp6emqG5YBQO/eveHg4IBNmzaVqpa8vDzcunULtra2pbr5FxEREemfEAIPHz4s8T5aFX5Zc2xsLIKCgtTW9erVC+vWrUN2djbMzMwQGxuLt956S2ObJUuWFHnczMxMtftS3Lx5E15eXuVaOxEREVWO69evFzt7eIUHlpSUFDg7O6utc3Z2Rk5ODu7evQtXV9cit0lJSSnyuHPnzlVNnV3Q9evXYWdnVz7FExERUYVKT09H/fr1YWtrW+x2lTJxXOEuGmUvVMH12rYprmtnxowZmDp1quq58g3b2dkxsBAREVUxJQ3nqPDA4uLiotFSkpqaiho1asDR0bHYbQq3uhQkl8u13vKciIiIjE+Fz8Pi5+eH6OhotXX79u2Dj4+Pajrporbx9/ev6PKIiIioCtC5heXRo0e4fPmy6nliYiISEhJQs2ZNNGjQADNmzMDNmzexYcMGANIVQStWrMDUqVMxbtw4xMbGYt26dWpX/0yZMgVdunTBvHnzMGDAAPz444/49ddfcfTo0XJ4i0RERFTV6dzCcvr0abRr1w7t2rUDAEydOhXt2rXDhx9+CABITk5GUlKSant3d3fs3r0bv/32G9q2bYtPPvkEy5Ytw6BBg1Tb+Pv7Y/PmzYiMjETr1q0RFRWFLVu2wNfX91nfHxERERkBo7mXUHp6OhQKBdLS0jjoloiIqIoo7fc37yVEREREBo+BhYiIiAweAwsREREZPAYWIiIiMngMLERERGTwGFiIiIjI4DGwEBERkcGrlJsfEhERURWRlwdkZ+cvWVn5j+vUAfR0Hz8GFiIiooogBPD4MfDokfqXfsHHhZ+XZbvyOEbBx7m5Rb+nkyeBDh0q7zMsgIGFiIioJDk5wL//AvfuFb1oez0rS9+Vlw8zM2kpLsxUMAYWIiKqPoSQWjyKCx7aQkhaWtnPKZNJX/bm5vlf/EU9Lu/tyuPYNWpI70HPGFiIiKhqys4uudVDWwDJzi77Oe3tAUfHkpeaNfMfW1sbxBd+VcfAQkRE+qMc5/HgQf6Slib9WVIYefiw7Oe1sNAMFiUt9vZSawPpBT95IiIqu7w8ID1de+AozfO0tGcbFyGTAQ4O2ls2ilusrJ7xjVNlY2AhIqrOsrM1A0RxYaPwuvT08qmjRg0peCgUUkuGvX1+ECkuhNjbA6am5VMDGTQGFiIiY5CVBVy/Dly9Cty9W/oA8uRJ+Zzf0lI9bNjbl/y84DpLS47zoGIxsBARVQXZ2fmBRNty86bUPVNWtra6Bw7lc4VCb5OJUfXBwEJEZAiys4EbN9RDSGKiboHEwgJo2BBwcdEtcNjZcTApGTz+hhIRVYacHCmQFAwhBZcbN0ofSIpanJzYrUJGi4GFiKg8KANJUV02N26UfDWMXF58IHF2ZiChaouBhYioNHJypG4ZbWEkMbH0gcTNTTOIuLvnt5CYmFTkuyDSKisLuH9fmvqm4J+F133+OVC/vn5qZGAhIgKksFEwkBTuurl+veRAYm6uGUiUYUTZQsJAQhUkN1e6CKyk0KFtXWkvFps4kYGFiKjiZWRIQeTKFeDyZfU/ExOlVpTimJnlB5KCQUS5uLgwkNAzUd7qqCyh41ludwRIvY0KhTT9Tc2a0p8FH9esCdSrVz7vsywYWIjIuDx8KAUQbaHk+nXpG6EoBQOJtsXVlYGEdHLnDnDhQukDyP37JefmklhbawYNbeGj8DqFwrDn4GNgIaKqRQjpX/jCYeTyZWlJTS1+fxsboEkTaWncOP/Pxo2BunUN+19sqhL++QfYsUNajh0r2/Q45ualDxoF1zk4SPsaIwYWIjI8QgDJydpDyZUr0gytxalVSz2MFPyzdm2ju9ImK0saZqP8eJydgZ49pS8yqnhCAGfOANu3SyHljz/UX3d3l37tShM+lI858a8mBhYi0o+cHKmLpqhQ8vRp8fvXrasZRpSPFYrKeQ+VKDNTGmajbEi6dCn/8bVrmuOBTUyADh2A3r2lpUMHNh6Vp9xc4OjR/JaUq1fzXzM1Bbp2BQYOBAYMABo00E+NxkYmRHEdulVHeno6FAoF0tLSYGdnp+9yiAhQ/5Yt2G1TmkGupqbSeBJtrSTu7kZ5t92MDKk7QVsoSUoqvmvBykr6aBo1krb/80/11x0cgOefl8JLr15AnToV+16M0dOnwK+/Si0pP/0k3bJJydJS+lxfeAHo21e6LyOVTmm/v9nCQkTP5tEj7WNJSjPIVS6XvmG1hRI3N2kQrJF5+lQKJQXDiPJxSR9XweE3Hh75j5s0kcYDF+xCuHED+OUXaYmOlgZzbt0qLQDQqpX0Bdu7N9C5M28FVJT794Fdu6RWlL17gceP81+rWRPo318KKc8/b5QZ2qCwhYWIdJOUJI0kPHpUWs6eLf5b1ta26K6bunWN8qqbJ0+kvKYtlNy4Ufy+trbqYaTg47JOdJuTA5w8KYWXvXuBU6fUf2RWVkD37vndR02a6H4OY3LzZn5Xz2+/qTcE1q8vBZSBA4HAQN6CqTyU9vubgYWIipabK/UtFAwo169rbldwkGvh1hIjHOQKqDcsFQ4mt24Vv69CUXQoqYyP6+5dqWtj714pxKSkqL/eqFF+11H37lKIMnbnz0sBZft2KdAV1LKlFFBeeAFo184of531ioGFiHT35In0X3FlQImJAdLT1bcxNQXatwcCAqS+hIAAacI0I/TwofbxJJcuaX7JF+bgUHQocXQ0nC89IaSrWpTh5ehR6cbRSmZm0o9Z2X3UurXh1P4s8vKkYKK8sufChfzXZDLA318KKQMHssWpolVoYFm1ahUWLFiA5ORktGjRAkuWLEFgYGCR269cuRIrVqzA1atX0aBBA8ycORPDhw9XvR4VFYVRo0Zp7Pf06VNYWFiUqiYGFqIyuHNHvfUkLk5zIKyNDeDnJ31rde4M+PpKM1MZkZQU6WP4+2/1YHL7dvH7OTpqjiVRPq+qlxQ/fCh1g+zdKy3//KP+uotLfnh5/vmqNbg0K0t6b9u3Az/+KF05r2RuDvToIbWi9O9vtBncIFXYoNstW7YgLCwMq1atQkBAAL788ksEBwfj3LlzaKDl2q3w8HDMmDEDa9euRYcOHXDy5EmMGzcODg4O6N+/v2o7Ozs7XCgYcYFShxUiKgUhpG/jggHl4kXN7erUyQ8nnTtLozONqKNeCKkr58iR/OXy5aK3r11bs4XEw0Pq7XJwqLy6K4utrfSFrfzn+fLl/PBy8KAU7tavlxaZLP/S6V69gI4dDe9X5dEjYM8eqRVl1y716ettbaUregYOBIKDAf5f17Dp3MLi6+uL9u3bIzw8XLXO09MTAwcOxNy5czW29/f3R0BAABYsWKBaFxYWhtOnT+Po0aMApBaWsLAwPChpMqhisIWFqJCsLCA+XgomypBy547mdi1b5nfvdO4sXZ1jDG3+/8nNlcYFFwwohbtzZDKpq6NdO81QYoRTupRZZqb0a6QcvHv2rPrr9vbShHXKAKOv+86kpkqXHW/fLo3VyczMf83FRZobZeBAaXwOr47SvwppYcnKykJcXBymT5+utj4oKAgxMTFa98nMzNRoKbG0tMTJkyeRnZ0Ns/8uW3z06BHc3NyQm5uLtm3b4pNPPkG7du2KrCUzMxOZBX4L0wv3sxNVN2lpQGxsfkA5cUJz8jW5XPpvsDKg+PlV3b6LImRmSmMTlOEkJkbzpnDm5lLLQGCgtPj7S1+2VDy5XOo26dEDmD9fuppm3z4pvCgvnf7+e2kBgBYt8q886twZqMhG8+Kmw2/SROrqeeEFqUfTCC9MqxZ0Cix3795Fbm4unJ2d1dY7OzsjpYgRaL169cJXX32FgQMHon379oiLi0NERASys7Nx9+5duLq6onnz5oiKikKrVq2Qnp6OpUuXIiAgAGfOnIGHh4fW486dOxcff/yxLuUTGZfr19VbT/74Q/Py4po18wfGdu4MeHsb3X8p09OlUKIMKCdPqv+PGpCa/v398wNKx44V++VZXdStC4waJS25uVJQVA7ePXEC+OsvaVm4UJpYrXv3/PEvHh7P1pBX0nT43t75lx97eRlVo2G1pVOX0K1bt1C3bl3ExMTAz89Ptf6zzz7D119/jb///ltjn6dPn2LSpEn4+uuvIYSAs7Mzhg0bhvnz5+P27dtwcnLS2CcvLw/t27dHly5dsGzZMq21aGthqV+/PruEyDjl5kr/8hcMKElJmts1bqweUJo1M7r/Tt6+Lb39I0eAw4elL63CM8A6OeWHk8BAqbvH0MZWGLt796TuGGX3UcEBroA0WbEyvDz3XOkunc7JkX79i5sO/4UXpC6f+vXL8c1QhaqQLqFatWrB1NRUozUlNTVVo9VFydLSEhEREfjyyy9x+/ZtuLq6Ys2aNbC1tUWtWrW07mNiYoIOHTrg0qVLRdYil8shN7L/KRKpPH0qNRUoA4q2fg1TU2nQhTKgBARI050aESGkGfwLjj/RNk64USP1gPKs/3unZ+foCISESIsQ0ngXZXg5elT6ua5eLS01aki/vsqxL23a5OfskqbD791bakXp18/oejepkDINuvX29saqVatU67y8vDBgwACtg2616dq1K+rWrYtvv/1W6+tCCHTs2BGtWrVCREREqY7JQbdUpRW8vPjYMeny4oKTYQDqlxcHBEid8TY2+qm3guTlSfPUFQwohSdhk8mkC5cKBhTeF6dqefRIurxYGWAKX6Xl7AwEBUnTAnE6fONXYZc1T506FaGhofDx8YGfnx/WrFmDpKQkTJgwAQAwY8YM3Lx5Exs2bAAAXLx4ESdPnoSvry/u37+PRYsW4c8//8T69etVx/z444/RqVMneHh4ID09HcuWLUNCQgJWrlypa3lEBk35hfzbL5k4veMGrP+9jtp3/oLTvfNwQipq4w6ckA4nKFDTRQ7TLgH53TtG2K+RlQWcPp0fTo4dAwpfLGhmpjlA1hgvJ65ObGykFpF+/aTnV67kh5cDB6Ruv6+/zt++QYP8mWY7dza6vwZUSjr/2ENCQnDv3j3MmTMHycnJaNmyJXbv3g03NzcAQHJyMpIK9K3n5uZi4cKFuHDhAszMzNC9e3fExMSgYcOGqm0ePHiA8ePHIyUlBQqFAu3atcPhw4fRsWPHZ3+HRHqkCii/Scuh3/Lw730TAHIAjf9bumnd1yRVwPGgDE5/AU47pPlAnJykRdtje3vD7wZ5+FC6kEkZUE6ckO5QXJCNjeYAWUtL/dRLlaNxY2DiRGnJzJR6QKOjpau5/u//OB0+STg1P1E50ggoh4B//1XfxhqP0BlHEVDzb+R6tkSqXRPcMauD1AfmSE2Veofu3dP93DVqlBxqCj63san4L4E7d9S7dxISpPHDBdWuLf2vuUsXKaC0acP/QRNVJxXWJURE+UoVUEyfonPuIXTDb+iG3+DdsQbMpk8D/u8NaeCsFjk50uDCO3ekSbCUS8HnBR+np0v7JCdrXo1RFAuL4oNN4ccltXIIAVy7lh9ODh9Wvz+LUsOG6uNPmjXj/56JqGQMLEQ6KFVAsRbo3OwOuv27Hd2uRsI7Nw5myJFGCr77P2lMSgnf0DVqSDNylvZ+JpmZRYeZwo9v35auvMjIkK6M1nZ1tDY2NtrDjEIhXVp85Ahw44bmfi1bqgcUfc1+SkRVGwMLUTHy8qTpTwoGlMLdNdbWUpdGt8AcdMv4Bd4/zITZ72ekF83MgGGhwNtvS7NXVRC5XAoCpQ0Djx+XvvXmzh1pcOyjR9JS+GZ4BdWoAfj45IeTgABeakpE5YOBhagAnQJKN2nx9kiHWeQaYMkSaa5yQLqL2oQJwJtvStOBGhhra2kpMPa9SEJIXU6Fg0zB8TZNm0oBxdeXl5kSUcVgYKFqrUwBxVtqOMGtW8CyZUB4uPSNDkgTgoSFAePHG81d82Qy6a0oFNKEbERE+sDAQtVKaQKKlZV6QPHx+S+gKJ0/D/zvf9JEEcrJ3Tw9gXfeAV55xeju1UNEZAgYWMiolUtAUTp2TLpF7c6d+esCA4F33wX69DG6e/YQERkSBhYyKnl5wLlz6gGl4L1HAB0CivKAO3cCCxZIs1kBUh/JwIFSi0qBm4ASEVHFYWChKq3cA4pSRgbwzTdS149yMhG5HBg+HJg2TZo8hIiIKg0DC1UpQmh28ZRLQFF68EC6fezSpYDyruT29tKc4W+8UfqJUYiIqFwxsJDBS0+Xbi+/ezewZ4/m3XsLBxRvb+keJDq5fl26LHnNGmmyEUCa1GTqVGDsWMDW9tnfCBERlRkDCxkcZSvKnj1SSDl6VJp2XsnSUrMFReeAonT2rNTt8+23+Sdp1Uoan/Lyyzo0zRARUUViYCGD8OgRsH9/fki5fl399aZNgeBg6WKcLl2k++CUmRBSX9L8+dIJlbp3l6746dWLN7chIjIwDCykF0JIY1mV3TyHD0vTvytZWEj5oU8fKag0blwOJ83NBbZvl4LKqVPSOhMTYNAgqUWlQ4dyOAkREVUEBhaqNE+eAAcP5oeUxET11xs1kgJKnz5SV09JdwcutadPgfXrpa6fK1ekdRYWwKhR0hiVJk3K6URERFRRGFioQl2+LAWU3bulq3oyM/NfMzcHunbNDykeHuXcE/Pvv8CqVdL0+XfuSOtq1gQmT5aW2rXL8WRERFSRGFioXGVkSMNDlCHl8mX11xs0yA8o3bsDNjYVUMTVq8DixcBXX0nNOgDg5ibNnzJ6tHRzICIiqlIYWOiZJSbmd/McOCD1wCiZmUmz1ysHzHp6VuB41oQEaUbaLVuk8SoA0K6dNJB28GCgBn/diYiqKv4LTjrLzASOHMkPKX//rf563br5g2V79ADs7CqwGCGky4vmzweio/PXP/+8FFR69OAVP0RERoCBhUolKSn/kuP9+4HHj/NfMzUFAgLyu3patqyEjJCTA3z/vRRU4uPzCxkyRLrip127Ci6AiIgqEwMLaZWdLd2cWDkW5a+/1F93ccnv5unZU5q9vlJkZgJr1wILF0pjVQBpqtuxY4G33gIaNqykQoiIqDIxsJDKzZvA3r1SQImOBh4+zH/NxES6MbEypLRpI62rVE+fAv/3f9I8/QBQqxbw5pvSfX4cHSu5GCIiqkwMLNVYTg4QG5vf1XPmjPrrtWtLASU4GAgKkq4I1puMDOCFF6SwYm0tdQWNGlWOk7UQEZEhY2CpZlJS1FtRHjzIf00mAzp2zB8w6+2th1YUbTIzpdlof/lF6v7ZvVuan5+IiKoNBpZq4uBBaSxqXJz6+po1gd69pZASFGSAc6llZQEvvSSFFEtLYNcuhhUiomqIgaUauHABGDAgf0yKt3f+FT0dOkgX1xik7GwgJAT46SdpKv2ffpLm7CciomqHgcXIPXoEvPiiFFYCA4HvvgOcnfVdVSlkZwNDhwI7dgByOfDjj9KcKkREVC0ZwggFqiBCAGPGAOfOAXXqAFu3VpGwkpMDhIYC27ZJNxzavl3qryIiomqLgcWILV4shZQaNaSWFRcXfVdUCrm5wIgR0vT6ZmZSaAkO1ndVRESkZwwsRurQIWlmekAKLv7++q2nVHJzpUuVv/02P2X166fvqoiIyAAwsBihmzelGepzc4Fhw4BJk/RdUSnk5Umz1X79tTQKeMsWaaQwERERGFiMTlaWdGPi1FSgdWvgyy+rwL3/8vKA114DoqKksLJpkzRSmIiI6D9lCiyrVq2Cu7s7LCws4O3tjSNHjhS7/cqVK+Hp6QlLS0s0a9YMGzZs0Nhm27Zt8PLyglwuh5eXF7Zv316W0qq9qVOB48ele/v88IM0z5pBE0KaWv+rr6RZ6r7+Wpp3hYiIqCCho82bNwszMzOxdu1ace7cOTFlyhRhbW0trl27pnX7VatWCVtbW7F582Zx5coVsWnTJmFjYyN27typ2iYmJkaYmpqKzz//XJw/f158/vnnokaNGuL48eOlristLU0AEGlpabq+JaOxYYMQUgIQ4uef9V1NKeTlCTFpklSwTCbE11/ruyIiIqpkpf3+lgkhhC4Bx9fXF+3bt0d4eLhqnaenJwYOHIi5c+dqbO/v74+AgAAsWLBAtS4sLAynT5/G0aNHAQAhISFIT0/Hnj17VNv07t0bDg4O2LRpU6nqSk9Ph0KhQFpaGuzs7HR5S0YhIUG6OWFGBjB7NvDRR/quqARCSHdXXrpU6rOKjJSuDiIiomqltN/fOnUJZWVlIS4uDkGF5sQICgpCTEyM1n0yMzNhYWGhts7S0hInT55EdnY2ACA2NlbjmL169SrymKTu/n1pyEdGhjR77Ycf6ruiEggBvP22FFYAqTuIYYWIiIqhU2C5e/cucnNz4Vxo9jFnZ2ekpKRo3adXr1746quvEBcXByEETp8+jYiICGRnZ+Pu3bsAgJSUFJ2OCUhBKD09XW2pjvLypCuBEhMBd3dpCIhB3LCwKEIA06cDixZJz7/8Ehg9Wr81ERGRwSvTV5us0GUnQgiNdUqzZs1CcHAwOnXqBDMzMwwYMAAjR44EAJgWuImNLscEgLlz50KhUKiW+vXrl+WtVHlz5kj3BbSwkAbZ1qyp74qKIQQwcyYwf770fNUqYPx4/dZERERVgk6BpVatWjA1NdVo+UhNTdVoIVGytLREREQEnjx5gqtXryIpKQkNGzaEra0tatWqBQBwcXHR6ZgAMGPGDKSlpamW69ev6/JWjMKuXcDHH0uPv/wSaNtWr+WU7KOPAOU4p2XLgNdf12s5RERUdegUWMzNzeHt7Y3o6Gi19dHR0fAvYSpVMzMz1KtXD6ampti8eTP69esHk//6Lvz8/DSOuW/fvmKPKZfLYWdnp7ZUJ1euSF1BgHRV8PDh+q2nRHPmSAsgdQe98YZ+6yEioipF57s1T506FaGhofDx8YGfnx/WrFmDpKQkTJgwAYDU8nHz5k3VXCsXL17EyZMn4evri/v372PRokX4888/sX79etUxp0yZgi5dumDevHkYMGAAfvzxR/z666+qq4hI3ZMnwKBBwIMH0pVBixfru6ISfP65dOkSACxYIF0dREREpAOdA0tISAju3buHOXPmIDk5GS1btsTu3bvh5uYGAEhOTkZSUpJq+9zcXCxcuBAXLlyAmZkZunfvjpiYGDRs2FC1jb+/PzZv3owPPvgAs2bNQuPGjbFlyxb4+vo++zs0MkJIk8KeOQM4OUm32zE313dVxZg/Xxq3AkjdQW+/rd96iIioStJ5HhZDVV3mYVm5Epg8WZrBfv9+oGtXfVdUjEWLgGnTpMeffpofXIiIiP5TIfOwkH7FxABhYdLj+fMNPKwsW5YfVj76iGGFiIieCQNLFZGSIt3UMCdHuhOzQQ8DWbkSmDJFevzBB1VgJjsiIjJ0DCxVQHY2EBICJCcDXl7AunUGfAfm1aulPitAmiBuzhwDLpaIiKoKBpYq4L33gMOHAVtbaXI4Gxt9V1SEr77Kn1vl7belq4MYVoiIqBwwsBi4zZvzL1tevx5o1ky/9RQpMjJ/1tqwMGmQDcMKERGVEwYWA/bXX8CYMdLj6dOBF17Qbz1F+vprqVAhpAnhFi1iWCEionLFwGKg0tKkgPLkCdCzp3RVsEH69ltg5EgprLz+unQHZoYVIiIqZwwsBigvDxgxArh0CWjQANi0SZp3xeBs2QKEhkoFjx8PrFjBsEJERBWCgcUAzZsH/PijNIPt998D/90j0rBs2wa8+qoUVkaPBsLDARP+OhERUcXgN4yBiY6Wpi4BpOlMOnTQbz1abd8OvPwykJsrNQWtXcuwQkREFYrfMgbk2jVg6FCp0WLsWGkxODt3SjPX5eRILSzr1jGsEBFRheM3jYHIyJDuwHzvHuDjAyxfru+KtNi1K3+63ZdfBqKiDHRwDRERGRsGFgMxeTIQFwc4OkrjViws9F1RIb/8Arz4ojTt7ksvSZcy19D5Zt9ERERlwsBiANauze9Z2bwZcHPTd0WF/PorMGAAkJUlhZaNGxlWiIioUjGw6NmpU/m33vn0U2nOFYNy4ADQvz+QmSmFlk2bADMzfVdFRETVDAOLHt25I41bycoCBg6UZrM1KIcOSWElIwPo1w/YulW61pqIiKiSMbDoSU6OdEXQ9etA06bS+FWDmnPtyBGgb19pqt3gYGlgDcMKERHpCQOLnnzwAbB/P2BtLd2BWaHQd0UFxMQAffoAjx8Dzz8vFSiX67sqIiKqxhhY9OCHH6TZbAEgIgJo0UK/9ag5cQLo3Rt49Ah47jlpyl2Du2SJiIiqGwaWSvb339K9AgFg6lRpDjaDceoUEBQEPHwIdOsG/PQTYGmp76qIiIgYWCrTw4fSVcEPHwJdugBffKHvigr4/XcprKSnA4GBwM8/A1ZW+q6KiIgIAANLpRECGDMGOH8eqFNHuuDGYK4OTkiQrqd+8AAICJBmtLW21ndVREREKgwslWTRIuC776SQ8v33gLOzviv6z9mzUli5fx/o1AnYvRuwtdV3VURERGoYWCrBb78B770nPV68GPDz02s5+f76C+jRQ7qBUYcOwN69gJ2dvqsiIiLSwMBSwW7ckAbW5uYCoaHAxIn6rug/589LVwHduQN4ewP79hnYtdVERET5GFgqUGamdJ/AO3eANm2A1asNZHK4CxeksJKaCrRtK4UVe3t9V0VERFQkBpYK9NZbwPHjUhbYts1ALrq5dAno3h1ISQFat5ZubFizpr6rIiIiKhYDSwVZvx4ID5daVDZuBBo31ndFAK5ckcJKcjLQsqUUVhwd9V0VERFRiRhYKkB8PDBhgvR49mxplnu9u3pV6ga6eRPw8pLuC1C7tr6rIiIiKhUGlnL277/SHZgzMqSgMmuWviv6z4wZQFIS0KyZFFacnPRdERERUakxsJSjvDzg1VeBxESgUSPgm28AE0P4hIUADh2SHn/5JeDiot96iIiIdGQIX6dG4+OPpalMLCykGxw6OOi7ov/cuCGNWzE1leZbISIiqmIYWMrJzz8Dc+ZIj9eskS5jNhjHj0t/tmljIJcqERER6aZMgWXVqlVwd3eHhYUFvL29ceTIkWK337hxI9q0aQMrKyu4urpi1KhRuHfvnur1qKgoyGQyjSUjI6Ms5VW6y5eBYcOkx5MmSRPEGRRlYOnUSb91EBERlZHOgWXLli0ICwvDzJkzER8fj8DAQAQHByMpKUnr9kePHsXw4cMxZswY/PXXX/juu+9w6tQpjB07Vm07Ozs7JCcnqy0WFhZle1eV6MkTaZBtWpo05f6iRfquSAsGFiIiquJ0DiyLFi3CmDFjMHbsWHh6emLJkiWoX78+wsPDtW5//PhxNGzYEG+++Sbc3d3RuXNnvPbaazh9+rTadjKZDC4uLmqLoRMCGD8e+OMP6aKb774DzM31XVUhWVnA779LjxlYiIioitIpsGRlZSEuLg5BQUFq64OCghATE6N1H39/f9y4cQO7d++GEAK3b9/G999/j759+6pt9+jRI7i5uaFevXro168f4uPji60lMzMT6enpaktlW7lSmhTO1BTYuhWoW7fSSyjZH39I11jXrAk0aaLvaoiIiMpEp8By9+5d5ObmwtnZWW29s7MzUlJStO7j7++PjRs3IiQkBObm5nBxcYG9vT2WL1+u2qZ58+aIiorCzp07sWnTJlhYWCAgIACXLl0qspa5c+dCoVColvr16+vyVp7ZsWPS1PsAsGAB0LVrpZ6+9Ap2BxnEjYyIiIh0V6ZBt7JCX3xCCI11SufOncObb76JDz/8EHFxcdi7dy8SExMxQTkVLIBOnTph2LBhaNOmDQIDA7F161Y0bdpULdQUNmPGDKSlpamW69evl+WtlElKinRTw5wcICQECAurtFPrjuNXiIjICNTQZeNatWrB1NRUozUlNTVVo9VFae7cuQgICMA777wDAGjdujWsra0RGBiITz/9FK6urhr7mJiYoEOHDsW2sMjlcsjlcl3KLxfZ2cCQIdK0Ji1aAF99ZeANFwwsRERkBHRqYTE3N4e3tzeio6PV1kdHR8Pf31/rPk+ePIFJoeleTU1NAUgtM9oIIZCQkKA1zOjbu+8CR44AtrbS5HA2NvquqBh37kg3PJTJgI4d9V0NERFRmenUwgIAU6dORWhoKHx8fODn54c1a9YgKSlJ1cUzY8YM3Lx5Exs2bAAA9O/fH+PGjUN4eDh69eqF5ORkhIWFoWPHjqhTpw4A4OOPP0anTp3g4eGB9PR0LFu2DAkJCVi5cmU5vtVnt2kTsGSJ9HjDBqBpU72WU7ITJ6Q/PT0BhUK/tRARET0DnQNLSEgI7t27hzlz5iA5ORktW7bE7t274ebmBgBITk5Wm5Nl5MiRePjwIVasWIFp06bB3t4ezz33HObNm6fa5sGDBxg/fjxSUlKgUCjQrl07HD58GB0NqFXg7FlAOXXMjBnAwIF6Lad02B1ERERGQiaK6pepYtLT06FQKJCWlgY7O7tyPXZaGuDjI81o27OndL+g/3q1DFvPntKdmdesAcaN03c1REREGkr7/c17CZUgLw8YPlwKKw0aSN1CVSKs5OYCJ09Kj3199VsLERHRM2JgKcHcucDOnYBcDmzbBtSqpe+KSun8eeDhQ8DaWrqciYiIqApjYCnG48fA2rXS45UrpW6hKkM5fqVjxyrSJERERFQ0nQfdVifW1sCpU1I30Jgx+q5GRxxwS0RERoQtLCWoXRt48019V1EGDCxERGREGFiMUXo6cO6c9JgDbomIyAgwsBijU6cAIQB3d6CIWyYQERFVJQwsxojdQUREZGQYWIwRAwsRERkZBhZjIwQDCxERGR0GFmPzzz/A3bvSTHdt2+q7GiIionLBwGJslK0r7dsD5ub6rYWIiKicMLAYG3YHERGREWJgMTYMLEREZIQYWIzJ06dAQoL0mBPGERGREWFgMSa//w7k5AAuLkCDBvquhoiIqNwwsBiTgt1BMpl+ayEiIipHDCzGhONXiIjISDGwGBMGFiIiMlIMLMbixg1pMTEBfHz0XQ0REVG5YmAxFidOSH+2bg1YW+u3FiIionLGwGIslIGF3UFERGSEGFiMBcevEBGREWNgMQbZ2cDp09JjBhYiIjJCDCzG4OxZaZZbBwfAw0Pf1RAREZU7BhZjoOwO8vWVrhIiIiIyMvx2MwYcv0JEREaOgcUYMLAQEZGRY2Cp6u7dAy5dkh537KjfWoiIiCoIA0tVp5x/pVkzadAtERGREWJgqerYHURERNUAA0tVx8BCRETVQJkCy6pVq+Du7g4LCwt4e3vjyJEjxW6/ceNGtGnTBlZWVnB1dcWoUaNw7949tW22bdsGLy8vyOVyeHl5Yfv27WUprXrJy+OU/EREVC3oHFi2bNmCsLAwzJw5E/Hx8QgMDERwcDCSkpK0bn/06FEMHz4cY8aMwV9//YXvvvsOp06dwtixY1XbxMbGIiQkBKGhoThz5gxCQ0MxZMgQnFB+GZN2f/8NpKcDVlZAy5b6roaIiKjCyIQQQpcdfH190b59e4SHh6vWeXp6YuDAgZg7d67G9v/73/8QHh6OK1euqNYtX74c8+fPx/Xr1wEAISEhSE9Px549e1Tb9O7dGw4ODti0aVOp6kpPT4dCoUBaWhrs7Ox0eUtVV0QEMGYM0LUr8Ntv+q6GiIhIZ6X9/taphSUrKwtxcXEICgpSWx8UFISYmBit+/j7++PGjRvYvXs3hBC4ffs2vv/+e/Tt21e1TWxsrMYxe/XqVeQxASAzMxPp6elqS7XD7iAiIqomdAosd+/eRW5uLpydndXWOzs7IyUlRes+/v7+2LhxI0JCQmBubg4XFxfY29tj+fLlqm1SUlJ0OiYAzJ07FwqFQrXUr19fl7diHDjgloiIqokyDbqVyWRqz4UQGuuUzp07hzfffBMffvgh4uLisHfvXiQmJmLChAllPiYAzJgxA2lpaapF2b1UbTx8CPz5p/TY11e/tRAREVWwGrpsXKtWLZiammq0fKSmpmq0kCjNnTsXAQEBeOeddwAArVu3hrW1NQIDA/Hpp5/C1dUVLi4uOh0TAORyOeRyuS7lG5fTp6WrhNzcAFdXfVdDRERUoXRqYTE3N4e3tzeio6PV1kdHR8Pf31/rPk+ePIFJoTsIm5qaApBaUQDAz89P45j79u0r8pgEdgcREVG1olMLCwBMnToVoaGh8PHxgZ+fH9asWYOkpCRVF8+MGTNw8+ZNbNiwAQDQv39/jBs3DuHh4ejVqxeSk5MRFhaGjh07ok6dOgCAKVOmoEuXLpg3bx4GDBiAH3/8Eb/++iuOHj1ajm/VyDCwEBFRNaJzYAkJCcG9e/cwZ84cJCcno2XLlti9ezfc3NwAAMnJyWpzsowcORIPHz7EihUrMG3aNNjb2+O5557DvHnzVNv4+/tj8+bN+OCDDzBr1iw0btwYW7ZsgS/HZmgnBAMLERFVKzrPw2KoqtU8LImJQKNGgJmZNHGchYW+KyIiIiqTCpmHhQyEsnWlXTuGFSIiqhYYWKoidgcREVE1w8BSFTGwEBFRNcPAUtVkZADx8dJjBhYiIqomGFiqmvh4IDsbcHICGjbUdzVERESVgoGlqinYHVTMrQuIiIiMCQNLVcPxK0REVA0xsFQ1J05IfzKwEBFRNcLAUpUkJwPXrgEmJoCPj76rISIiqjQMLFWJsnWlZUvA1la/tRAREVUiBpaqhONXiIiommJgqUoYWIiIqJpiYKkqcnKAU6ekxwwsRERUzTCwVBV//gk8eQIoFECzZvquhoiIqFIxsFQVyu6gjh2lq4SIiIiqEX7zVRUcv0JERNUYA0tVwcBCRETVGANLVfDvv8CFC9JjX1/91kJERKQHDCxVwcmT0p8eHoCjo35rISIi0gMGlqqA3UFERFTNMbBUBQwsRERUzTGwGLq8PN6hmYiIqj0GFkN36RLw4AFgaQm0aqXvaoiIiPSCgcXQKbuDfHwAMzP91kJERKQnDCyGjuNXiIiIGFgMHgMLERERA4tBe/wY+OMP6TEDCxERVWMMLIbs9GnpKqH69YE6dfRdDRERkd4wsBgyZXcQp+MnIqJqjoHFkHH8ChEREQAGFsMlBAMLERHRfxhYDFVSEpCSAtSoAbRvr+9qiIiI9IqBxVApW1fatpVmuSUiIqrGyhRYVq1aBXd3d1hYWMDb2xtHjhwpctuRI0dCJpNpLC1atFBtExUVpXWbjIyMspRnHNgdREREpKJzYNmyZQvCwsIwc+ZMxMfHIzAwEMHBwUhKStK6/dKlS5GcnKxarl+/jpo1a+Kll15S287Ozk5tu+TkZFhYWJTtXRkDBhYiIiIVnQPLokWLMGbMGIwdOxaenp5YsmQJ6tevj/DwcK3bKxQKuLi4qJbTp0/j/v37GDVqlNp2MplMbTsXF5eyvSNjkJkJ/P679JiBhYiISLfAkpWVhbi4OAQFBamtDwoKQkxMTKmOsW7dOvTs2RNubm5q6x89egQ3NzfUq1cP/fr1Q3x8fLHHyczMRHp6utpiNBISgKwsoFYtoFEjfVdDRESkdzoFlrt37yI3NxfOzs5q652dnZGSklLi/snJydizZw/Gjh2rtr558+aIiorCzp07sWnTJlhYWCAgIACXLl0q8lhz586FQqFQLfXr19flrRi2EyekPzt1AmQy/dZCRERkAMo06FZW6EtUCKGxTpuoqCjY29tj4MCBaus7deqEYcOGoU2bNggMDMTWrVvRtGlTLF++vMhjzZgxA2lpaarl+vXrZXkrhonjV4iIiNTU0GXjWrVqwdTUVKM1JTU1VaPVpTAhBCIiIhAaGgpzc/NitzUxMUGHDh2KbWGRy+WQy+WlL74qYWAhIiJSo1MLi7m5Oby9vREdHa22Pjo6Gv7+/sXue+jQIVy+fBljxowp8TxCCCQkJMDV1VWX8ozD7dtAYqLUFdShg76rISIiMgg6tbAAwNSpUxEaGgofHx/4+flhzZo1SEpKwoQJEwBIXTU3b97Ehg0b1PZbt24dfH190bJlS41jfvzxx+jUqRM8PDyQnp6OZcuWISEhAStXrizj26rClONXWrQA7Oz0WwsREZGB0DmwhISE4N69e5gzZw6Sk5PRsmVL7N69W3XVT3JyssacLGlpadi2bRuWLl2q9ZgPHjzA+PHjkZKSAoVCgXbt2uHw4cPo2LFjGd5SFcc7NBMREWmQCSGEvosoD+np6VAoFEhLS4NdVW6ZeO454OBBYO1aoNDVVERERMamtN/fvJeQIcnNBU6elB5zwC0REZEKA4sh+esv4PFjwNYW8PTUdzVEREQGg4HFkCjHr3TsCJia6rcWIiIiA8LAYkg4/woREZFWDCyGhIGFiIhIKwYWQ/HgAXD+vPSYlzQTERGpYWAxFMqrgxo3BmrX1m8tREREBoaBxVAUvEMzERERqWFgMRQcv0JERFQkBhZDIAQDCxERUTEYWAzB5cvAv/8CFhZA69b6roaIiMjgMLAYAmXrirc3YG6u31qIiIgMEAOLIeAdmomIiIrFwGIIOH6FiIioWAws+vbkCXDmjPSYgYWIiEgrBhZ9i4sDcnOBOnWAevX0XQ0REZFBYmDRt4LdQTKZfmshIiIyUAws+sbxK0RERCViYNEnIYDYWOkxAwsREVGRGFj06cYNIDkZMDWV5mAhIiIirRhY9EnZHdSmDWBlpd9aiIiIDBgDiz5x/AoREVGpMLDo04kT0p8MLERERMViYNGXrCxpDhaAgYWIiKgEDCz68scfQEYGULMm0KSJvqshIiIyaAws+sIJ44iIiEqNgUVfOOCWiIio1BhY9EUZWHx99VsHERFRFcDAog937gBXrkiPO3bUby1ERERVAAOLPigvZ/b0BOzt9VoKERFRVcDAog8cv0JERKQTBhZ9YGAhIiLSSZkCy6pVq+Du7g4LCwt4e3vjyJEjRW47cuRIyGQyjaVFixZq223btg1eXl6Qy+Xw8vLC9u3by1Ka4cvNBU6elB4zsBAREZWKzoFly5YtCAsLw8yZMxEfH4/AwEAEBwcjKSlJ6/ZLly5FcnKyarl+/Tpq1qyJl156SbVNbGwsQkJCEBoaijNnziA0NBRDhgzBCeVYD2Ny/jzw8CFgbQ0UCm1ERESknUwIIXTZwdfXF+3bt0d4eLhqnaenJwYOHIi5c+eWuP+OHTvw4osvIjExEW5ubgCAkJAQpKenY8+ePartevfuDQcHB2zatKlUdaWnp0OhUCAtLQ12dna6vKXK9dVXwLhxQPfuwIED+q6GiIhIr0r7/a1TC0tWVhbi4uIQFBSktj4oKAgxMTGlOsa6devQs2dPVVgBpBaWwsfs1atXscfMzMxEenq62lIlcPwKERGRznQKLHfv3kVubi6cnZ3V1js7OyMlJaXE/ZOTk7Fnzx6MHTtWbX1KSorOx5w7dy4UCoVqqV+/vg7vRI8YWIiIiHRWpkG3skL3vhFCaKzTJioqCvb29hg4cOAzH3PGjBlIS0tTLdevXy9d8fqUng6cOyc95gy3REREpVZDl41r1aoFU1NTjZaP1NRUjRaSwoQQiIiIQGhoKMzNzdVec3Fx0fmYcrkccrlcl/L179QpQAjA3R0o4fMiIiKifDq1sJibm8Pb2xvR0dFq66Ojo+Hv71/svocOHcLly5cxZswYjdf8/Pw0jrlv374Sj1nlsDuIiIioTHRqYQGAqVOnIjQ0FD4+PvDz88OaNWuQlJSECRMmAJC6am7evIkNGzao7bdu3Tr4+vqiZcuWGsecMmUKunTpgnnz5mHAgAH48ccf8euvv+Lo0aNlfFsGioGFiIioTHQOLCEhIbh37x7mzJmD5ORktGzZErt371Zd9ZOcnKwxJ0taWhq2bduGpUuXaj2mv78/Nm/ejA8++ACzZs1C48aNsWXLFvga0zgPIXiHZiIiojLSeR4WQ2Xw87BcuQI0aQKYm0uDb6va+BsiIqIKUCHzsNAzULautG/PsEJERKQjBpbKwvErREREZcbAUlkYWIiIiMqMgaUyPH0KJCRIjxlYiIiIdMbAUhl+/x3IyQFcXIAGDfRdDRERUZXDwFIZCnYHleIWBkRERKSOgaUycPwKERHRM2FgqQwMLERERM+EgaWi3bwJ3LgBmJgAPj76roaIiKhKYmCpaCdOSH+2bg1YW+u3FiIioiqKgaWisTuIiIjomTGwVDQGFiIiomfGwFKRsrOB06elx7xDMxERUZkxsFSks2elWW7t7YGmTfVdDRERUZXFwFKRlN1Bvr7SVUJERERUJvwWrUgcv0JERFQuGFgqEgMLERFRuWBgqSj37gGXLkmPO3bUby1ERERVHANLRVFOGNesGVCzpn5rISIiquIYWCoKu4OIiIjKDQNLRWFgISIiKjcMLBUhLy+/S4iBhYiI6JkxsFSEv/8G0tMBKyugZUt9V0NERFTlMbBUBGXrSocOQI0a+q2FiIjICDCwVASOXyEiIipXDCwVgYGFiIioXDGwlLeHD4E//5Qe8w7NRERE5YKBpbydPi1dJdSgAeDqqu9qiIiIjAIDS3ljdxAREVG5Y2ApbwwsRERE5Y6BpTwJwcBCRERUARhYytPVq0BqKmBmBrRrp+9qiIiIjEaZAsuqVavg7u4OCwsLeHt748iRI8Vun5mZiZkzZ8LNzQ1yuRyNGzdGRESE6vWoqCjIZDKNJSMjoyzl6Y+ydaVdO8DCQr+1EBERGRGdp2HdsmULwsLCsGrVKgQEBODLL79EcHAwzp07hwYNGmjdZ8iQIbh9+zbWrVuHJk2aIDU1FTk5OWrb2NnZ4cKFC2rrLKralz67g4iIiCqEzoFl0aJFGDNmDMaOHQsAWLJkCX755ReEh4dj7ty5Gtvv3bsXhw4dwj///IOaNWsCABo2bKixnUwmg4uLi67lGBYGFiIiogqhU5dQVlYW4uLiEBQUpLY+KCgIMTExWvfZuXMnfHx8MH/+fNStWxdNmzbF22+/jadPn6pt9+jRI7i5uaFevXro168f4uPjdXwrepaRAShrZmAhIiIqVzq1sNy9exe5ublwdnZWW+/s7IyUlBSt+/zzzz84evQoLCwssH37dty9excTJ07Ev//+qxrH0rx5c0RFRaFVq1ZIT0/H0qVLERAQgDNnzsDDw0PrcTMzM5GZmal6np6erstbKX/x8UB2NuDkBGhpQSIiIqKyK9OthGUymdpzIYTGOqW8vDzIZDJs3LgRCoUCgNStNHjwYKxcuRKWlpbo1KkTOhVolQgICED79u2xfPlyLFu2TOtx586di48//rgs5VeMgt1BRXwWREREVDY6dQnVqlULpqamGq0pqampGq0uSq6urqhbt64qrACAp6cnhBC4ceOG9qJMTNChQwdcunSpyFpmzJiBtLQ01XL9+nVd3kr5O3FC+pPdQUREROVOp8Bibm4Ob29vREdHq62Pjo6Gv7+/1n0CAgJw69YtPHr0SLXu4sWLMDExQb169bTuI4RAQkICXIu5F49cLoednZ3aolcccEtERFRhdJ6HZerUqfjqq68QERGB8+fP46233kJSUhImTJgAQGr5GD58uGr7V155BY6Ojhg1ahTOnTuHw4cP45133sHo0aNhaWkJAPj444/xyy+/4J9//kFCQgLGjBmDhIQE1TENXnIycO2a1BXk46PvaoiIiIyOzmNYQkJCcO/ePcyZMwfJyclo2bIldu/eDTc3NwBAcnIykpKSVNvb2NggOjoab7zxBnx8fODo6IghQ4bg008/VW3z4MEDjB8/HikpKVAoFGjXrh0OHz6Mjh07lsNbrATK7qCWLQFbW/3WQkREZIRkQgih7yLKQ3p6OhQKBdLS0iq/e2j6dGDePGDcOGDNmso9NxERURVW2u9v3kuoPHD8ChERUYViYHlWOTnAqVPSYwYWIiKiCsHA8qz+/BN48gSwswOaN9d3NUREREaJgeVZKbuDfH0BE36cREREFYHfsM+K41eIiIgqXJmm5qcCGFiIqBzk5uYiOztb32UQlTszMzOYmpo+83EYWJ7Fv/8CFy5Ij3199VsLEVVJQgikpKTgwYMH+i6FqMLY29vDxcWlyPsOlgYDy7M4eVL608MDcHTUby1EVCUpw4qTkxOsrKye6R90IkMjhMCTJ0+QmpoKAMXecqckDCzPgt1BRPQMcnNzVWHFkf/pISOlvA1PamoqnJycytw9xEG3z4KBhYiegXLMipWVlZ4rIapYyt/xZxmnxcBSVnl5+V1CDCxE9AzYDUTGrjx+xxlYyurSJeD+fcDSEmjVSt/VEBFVad26dUNYWFipt7969SpkMhkSEhIqrCYyLAwsZaXsDvL2BszM9FsLEVElkclkxS4jR44s03F/+OEHfPLJJ6Xevn79+khOTkbLli3LdL6yCAoKgqmpKY4r//2nSsVBt2XF8StEVA0lJyerHm/ZsgUffvghLiind0D+AEul7OxsmJXiP3U1a9bUqQ5TU1O4uLjotM+zSEpKQmxsLCZPnox169ahk57/7S/t52pM2MJSVgwsRFQNubi4qBaFQgGZTKZ6npGRAXt7e2zduhXdunWDhYUFvvnmG9y7dw9Dhw5FvXr1YGVlhVatWmHTpk1qxy3cJdSwYUN8/vnnGD16NGxtbdGgQQOsWbNG9XrhLqHffvsNMpkM+/fvh4+PD6ysrODv768WpgDg008/hZOTE2xtbTF27FhMnz4dbdu2LfF9R0ZGol+/fnj99dexZcsWPH78WO31Bw8eYPz48XB2doaFhQVatmyJn3/+WfX6sWPH0LVrV1hZWcHBwQG9evXC/fv3Ve91yZIlasdr27YtPvroI9VzmUyG1atXY8CAAbC2tsann36K3NxcjBkzBu7u7rC0tESzZs2wdOlSjdojIiLQokULyOVyuLq6YvLkyQCA0aNHo1+/fmrb5uTkwMXFBRERESV+JpWNgaUsHj8G/vhDeszAQkTlSQjp35jKXoQot7fw3nvv4c0338T58+fRq1cvZGRkwNvbGz///DP+/PNPjB8/HqGhoThx4kSxx1m4cCF8fHwQHx+PiRMn4vXXX8fff/9d7D4zZ87EwoULcfr0adSoUQOjR49WvbZx40Z89tlnmDdvHuLi4tCgQQOEh4eX+H6EEIiMjMSwYcPQvHlzNG3aFFu3blW9npeXh+DgYMTExOCbb77BuXPn8MUXX6gu301ISECPHj3QokULxMbG4ujRo+jfvz9yc3NLPHdBs2fPxoABA3D27FmMHj0aeXl5qFevHrZu3Ypz587hww8/xPvvv69WW3h4OCZNmoTx48fj7Nmz2LlzJ5o0aQIAGDt2LPbu3avWarZ79248evQIQ4YM0am2SiGMRFpamgAg0tLSKv5kv/0mBCBEvXoVfy4iMlpPnz4V586dE0+fPs1f+eiR9O9LZS+PHulcf2RkpFAoFKrniYmJAoBYsmRJifv26dNHTJs2TfW8a9euYsqUKarnbm5uYtiwYarneXl5wsnJSYSHh6udKz4+XgghxMGDBwUA8euvv6r22bVrlwCg+nx9fX3FpEmT1OoICAgQbdq0KbbWffv2idq1a4vs7GwhhBCLFy8WAQEBqtd/+eUXYWJiIi5cuKB1/6FDh6ptX5ibm5tYvHix2ro2bdqI2bNnq54DEGFhYcXWKYQQEydOFIMGDVI9r1Onjpg5c2aR23t5eYl58+apng8cOFCMHDmyxPPoSuvv+n9K+/3NFpayYHcQEVGRfHx81J7n5ubis88+Q+vWreHo6AgbGxvs27cPSUlJxR6ndevWqsfKrifljKml2Uc5q6pynwsXLqBjx45q2xd+rs26desQEhKCGjWkYZ9Dhw7FiRMnVN1NCQkJqFevHpo2bap1f2ULy7Mq/LkCwOrVq+Hj44PatWvDxsYGa9euVX2uqampuHXrVrHnHjt2LCIjI1Xb79q1S61VypBw0G1ZMLAQUUWxsgIePdLPecuJtbW12vOFCxdi8eLFWLJkCVq1agVra2uEhYUhKyur2OMUHlQqk8mQl5dX6n2Uc38U3KfwfCCihK6wf//9Fzt27EB2drZa91Fubi4iIiIwb948jYHGhZX0uomJiUYd2iZYK/y5bt26FW+99RYWLlwIPz8/2NraYsGCBaqutpLOCwDDhw/H9OnTERsbi9jYWDRs2BCBgYEl7qcPDCy6EoKBhYgqjkwGFPpiquqOHDmCAQMGYNiwYQCkAHHp0iV4enpWah3NmjXDyZMnERoaqlp3+vTpYvfZuHEj6tWrhx07dqit379/P+bOnatqObpx4wYuXryotZWldevW2L9/Pz7++GOt56hdu7baOJL09HQkJiaW+H6OHDkCf39/TJw4UbXuypUrqse2trZo2LAh9u/fj+7du2s9hqOjIwYOHIjIyEjExsZi1KhRJZ5XXxhYdJWUBKSkADVqAO3b67saIiKD16RJE2zbtg0xMTFwcHDAokWLkJKSUumB5Y033sC4cePg4+MDf39/bNmyBX/88QcaNWpU5D7r1q3D4MGDNeZ7cXNzw3vvvYddu3ZhwIAB6NKlCwYNGoRFixahSZMm+PvvvyGTydC7d2/MmDEDrVq1wsSJEzFhwgSYm5vj4MGDeOmll1CrVi0899xziIqKQv/+/eHg4IBZs2aV6n47TZo0wYYNG/DLL7/A3d0dX3/9NU6dOgV3d3fVNh999BEmTJgAJycnBAcH4+HDhzh27BjeeOMN1TZjx45Fv379kJubixEjRpThk60cHMOiK2XrStu20iy3RERUrFmzZqF9+/bo1asXunXrBhcXFwwcOLDS63j11VcxY8YMvP3222jfvj0SExMxcuRIWFhYaN0+Li4OZ86cwaBBgzRes7W1RVBQENatWwcA2LZtGzp06IChQ4fCy8sL7777ruoqoKZNm2Lfvn04c+YMOnbsCD8/P/z444+qMTEzZsxAly5d0K9fP/Tp0wcDBw5E48aNS3w/EyZMwIsvvoiQkBD4+vri3r17aq0tADBixAgsWbIEq1atQosWLdCvXz9cunRJbZuePXvC1dUVvXr1Qp06dUr+IPVEJkrqwKsi0tPToVAokJaWBjs7u4o70VtvAUuWAJMnA8uXV9x5iMjoZWRkIDExEe7u7kV+aVLFev755+Hi4oKvv/5a36XozZMnT1CnTh1ERETgxRdfrJBzFPe7Xtrvb3YJ6YrjV4iIqqQnT55g9erV6NWrF0xNTbFp0yb8+uuviI6O1ndpepGXl4eUlBQsXLgQCoUC//d//6fvkorFwKKLzEzg99+lxwwsRERVikwmw+7du/Hpp58iMzMTzZo1w7Zt29CzZ099l6YXSUlJcHd3R7169RAVFaXqojJUhl2doTlzBsjKAmrVAooZpEVERIbH0tISv/76q77LMBgNGzYs8bJuQ8JBt7pQdgf5+kqXHhIREVGlYGDRBcevEBER6QUDiy4YWIiIiPSCgaW0bt8GEhOlrqAOHfRdDRERUbXCwFJaytuge3kBCoV+ayEiIqpmGFhKi91BREREesPAUloMLERE5aZbt24ICwtTPW/YsCGWLFlS7D4ymUzjJoRlUV7HocpVpsCyatUq1fS63t7eOHLkSLHbZ2ZmYubMmXBzc4NcLkfjxo0RERGhts22bdvg5eUFuVwOLy8vbN++vSylVYzcXODkSekxAwsRVWP9+/cvcqK12NhYyGQy/K6cYFMHp06dwvjx45+1PDUfffQR2rZtq7E+OTkZwcHB5Xquojx9+hQODg6oWbMmnj59WinnNFY6B5YtW7YgLCwMM2fORHx8PAIDAxEcHIykpKQi9xkyZAj279+PdevW4cKFC9i0aROaN2+uej02NhYhISEIDQ3FmTNnEBoaiiFDhuCEctyIvv31F/D4MWBrC1Ty3UWJiAzJmDFjcODAAVy7dk3jtYiICLRt2xbty3An+9q1a8PKyqo8SiyRi4sL5HJ5pZxr27ZtaNmyJby8vPDDDz9UyjmLIoRATk6OXmt4JkJHHTt2FBMmTFBb17x5czF9+nSt2+/Zs0coFApx7969Io85ZMgQ0bt3b7V1vXr1Ei+//HKp60pLSxMARFpaWqn3KbUvvxQCEKJHj/I/NhFVW0+fPhXnzp0TT58+1XcppZadnS2cnZ3FRx99pLb+8ePHwtbWVixfvlzcvXtXvPzyy6Ju3brC0tJStGzZUnz77bdq23ft2lVMmTJF9dzNzU0sXrxY9fzixYsiMDBQyOVy4enpKfbt2ycAiO3bt6u2effdd4WHh4ewtLQU7u7u4oMPPhBZWVlCCCEiIyMFALUlMjJSCCE0jvPHH3+I7t27CwsLC1GzZk0xbtw48fDhQ9XrI0aMEAMGDBALFiwQLi4uombNmmLixImqcxWnW7duYvXq1SI8PFx0795d4/U///xT9OnTR9ja2gobGxvRuXNncfnyZdXr69atE15eXsLc3Fy4uLiISZMmCSGESExMFABEfHy8atv79+8LAOLgwYNCCCEOHjwoAIi9e/cKb29vYWZmJg4cOCAuX74s/u///k84OTkJa2tr4ePjI6Kjo9XqysjIEO+8846oV6+eMDc3F02aNBFfffWVyMvLE40bNxYLFixQ2/7s2bNCJpOp1V5Qcb/rpf3+1qmFJSsrC3FxcQgKClJbHxQUhJiYGK377Ny5Ez4+Ppg/fz7q1q2Lpk2b4u2331ZrGouNjdU4Zq9evYo8JiB1M6Wnp6stFYbjV4iokgghNehW9lLaGdpr1KiB4cOHIyoqSm1a9++++w5ZWVl49dVXkZGRAW9vb/z888/4888/MX78eISGhpa61TwvLw8vvvgiTE1Ncfz4caxevRrvvfeexna2traIiorCuXPnsHTpUqxduxaLFy8GAISEhGDatGlo0aIFkpOTkZycjJCQEI1jPHnyBL1794aDgwNOnTqF7777Dr/++ismT56stt3Bgwdx5coVHDx4EOvXr0dUVBSioqKKfR9XrlxBbGwshgwZgiFDhiAmJgb//POP6vWbN2+iS5cusLCwwIEDBxAXF4fRo0erWkHCw8MxadIkjB8/HmfPnsXOnTvRpEmTUn2GBb377ruYO3cuzp8/j9atW+PRo0fo06cPfv31V8THx6NXr17o37+/Wk/J8OHDsXnzZixbtgznz5/H6tWrYWNjA5lMhtGjRyMyMlLtHBEREQgMDETjxo11rq/Uio0zhdy8eVMAEMeOHVNb/9lnn4mmTZtq3adXr15CLpeLvn37ihMnTohdu3YJNzc3MWrUKNU2ZmZmYuPGjWr7bdy4UZibmxdZy+zZszXSMyqqhcXTU2ph+emn8j82EVVb2v7X+eiR9M9NZS+PHpW+7vPnzwsA4sCBA6p1Xbp0EUOHDi1ynz59+ohp06apnhfXwvLLL78IU1NTcf36ddXre/bs0WgZKWz+/PnC29tb9Xz27NmiTZs2GtsVPM6aNWuEg4ODeFTgA9i1a5cwMTERKSkpQgiphcXNzU3k5OSotnnppZdESEhIkbUIIcT7778vBg4cqHo+YMAAMXPmTNXzGTNmCHd39yJbaurUqaO2fUG6tLDs2LGj2DqFEMLLy0ssX75cCCHEhQsXBACNVhelW7duCVNTU3HixAkhhBBZWVmidu3aIioqqsjjV3oLi5Ks0H10hBAa65Ty8vIgk8mwceNGdOzYEX369MGiRYsQFRWl1sqiyzEBYMaMGUhLS1Mt169fL8tbKdmDB8D589JjX9+KOQcRURXSvHlz+Pv7qy6euHLlCo4cOYLRo0cDAHJzc/HZZ5+hdevWcHR0hI2NDfbt21fsWMeCzp8/jwYNGqBevXqqdX5+fhrbff/99+jcuTNcXFxgY2ODWbNmlfocBc/Vpk0bWFtbq9YFBAQgLy8PFy5cUK1r0aIFTE1NVc9dXV2Rmppa5HFzc3Oxfv16DBs2TLVu2LBhWL9+PXJzcwEACQkJCAwMhJmZmcb+qampuHXrFnr06KHT+9HGx8dH7fnjx4/x7rvvwsvLC/b29rCxscHff/+t+uwSEhJgamqKrl27aj2eq6sr+vbtq/r5//zzz8jIyMBLL730zLUWR6e7NdeqVQumpqZISUlRW5+amgpnZ2et+7i6uqJu3bpQFJhszdPTE0II3LhxAx4eHnBxcdHpmAAgl8srZ9CU8uqgxo2B2rUr/nxEVK1ZWQGPHunnvLoYM2YMJk+ejJUrVyIyMhJubm6qL9eFCxdi8eLFWLJkCVq1agVra2uEhYUhKyurVMcWWvqnCv8H9vjx43j55Zfx8ccfo1evXlAoFNi8eTMWLlyo0/so7j/HBdcXDhUymQx5eXlFHveXX37BzZs3NbqhcnNzsW/fPgQHB8PS0rLI/Yt7DQBMTExU9StlZ2dr3bZgGAOAd955B7/88gv+97//oUmTJrC0tMTgwYNVP5+Szg0AY8eORWhoKBYvXozIyEiEhIRU+KBpnVpYzM3N4e3tjejoaLX10dHR8Pf317pPQEAAbt26hUcF/gZevHgRJiYmqvTs5+enccx9+/YVecxKpexzZesKEVUCmQywtq78Rdcb0A8ZMgSmpqb49ttvsX79eowaNUr1BX/kyBEMGDAAw4YNQ5s2bdCoUSNcunSp1Mf28vJCUlISbt26pVoXGxurts2xY8fg5uaGmTNnwsfHBx4eHhpXLpmbm6taM4o7V0JCAh4/fqx2bBMTEzRt2rTUNRe2bt06vPzyy0hISFBbXn31Vaxbtw4A0Lp1axw5ckRr0LC1tUXDhg2xf/9+rcev/d9/oJOTk1XrEhISSlXbkSNHMHLkSLzwwgto1aoVXFxccPXqVdXrrVq1Ql5eHg4dOlTkMfr06QNra2uEh4djz549qta1ClVix1YhmzdvFmZmZmLdunXi3LlzIiwsTFhbW4urV68KIYSYPn26CA0NVW3/8OFDUa9ePTF48GDx119/iUOHDgkPDw8xduxY1TbHjh0Tpqam4osvvhDnz58XX3zxhahRo4Y4fvx4qeuqsKuE+vSROniXLSvf4xJRtVcVrxIqaMyYMcLBwUGYmJiIa9euqdaHhYWJ+vXri2PHjolz586JsWPHCjs7OzFgwADVNsWNYcnNzRVeXl6iR48eIiEhQRw+fFh4e3urjT3ZsWOHqFGjhti0aZO4fPmyWLp0qahZs6ZQKBSqY27cuFFYW1uL+Ph4cefOHZGRkSGEUB/D8vjxY+Hq6ioGDRokzp49Kw4cOCAaNWokRowYoTqO8iqhgqZMmSK6du2q9XNJTU0VZmZmYs+ePRqv7du3T5iZmYnU1FRx9+5d4ejoKF588UVx6tQpcfHiRbFhwwbx999/CyGEiIqKEhYWFmLp0qXi4sWLIi4uTiwr8F3UqVMnERgYqPpu7dixo9YxLPfv31erYeDAgaJt27YiPj5eJCQkiP79+wtbW1u1n8fIkSNF/fr1xfbt28U///wjDh48KLZs2aJ2nPfff1+Ym5uL5s2ba/0cCiqPMSw6BxYhhFi5cqVwc3MT5ubmon379uLQoUOq10aMGKHxQzx//rzo2bOnsLS0FPXq1RNTp04VT548Udvmu+++E82aNRNmZmaiefPmYtu2bTrVVGGBpVs3IWQyIU6eLN/jElG1V9UDS0xMjAAggoKC1Nbfu3dPDBgwQNjY2AgnJyfxwQcfiOHDh5c6sAghDfzs3LmzMDc3F02bNhV79+7VGHT7zjvvCEdHR2FjYyNCQkLE4sWL1QJLRkaGGDRokLC3ty+Xy5oLKi6w/O9//xP29vZaB9NmZ2eLmjVrioULFwohhDhz5owICgoSVlZWwtbWVgQGBoorV66otl+9erXqu9HV1VW88cYbqtfOnTsnOnXqJCwtLUXbtm1Vl36XFFgSExNF9+7dhaWlpahfv75YsWKFxs/j6dOn4q233hKurq6qy5ojIiLUjnPlyhUBQMyfP1/r51BQeQQWmRClvZjNsKWnp0OhUCAtLQ12dnblfXCpg7eGTkN+iIiKlZGRgcTERNXM4URVybFjx9CtWzfcuHGj2DGnQPG/66X9/uY3cGmUdwAiIiKqojIzM3H9+nXMmjULQ4YMKTGslBfe/JCIiIhKbdOmTWjWrBnS0tIwf/78SjsvAwsRERGV2siRI5Gbm4u4uDjUrVu30s7LwEJEREQGj4GFiIiIDB4DCxGRnhnJxZpERSqP33EGFiIiPVFO9/7kyRM9V0JUsZS/49rum1RavKyZiEhPTE1NYW9vr7qJnpWVVbE3fSWqaoQQePLkCVJTU2Fvb692A0ldMbAQEemRi4sLABR751+iqs7e3l71u15WDCxERHokk8ng6uoKJyenIu+2S1SVmZmZPVPLihIDCxGRATA1NS2Xf9SJjBUH3RIREZHBY2AhIiIig8fAQkRERAbPaMawKCelSU9P13MlREREVFrK7+2SJpczmsDy8OFDAED9+vX1XAkRERHp6uHDh1AoFEW+LhNGMid0Xl4ebt26BVtbW068pEV6ejrq16+P69evw87OTt/lEPgzMTT8eRgW/jwMS0X+PIQQePjwIerUqQMTk6JHqhhNC4uJiQnq1aun7zIMnp2dHf/yGxj+TAwLfx6GhT8Pw1JRP4/iWlaUOOiWiIiIDB4DCxERERk8BpZqQi6XY/bs2ZDL5fouhf7Dn4lh4c/DsPDnYVgM4edhNINuiYiIyHixhYWIiIgMHgMLERERGTwGFiIiIjJ4DCxERERk8BhYjNzcuXPRoUMH2NrawsnJCQMHDsSFCxf0XRb9Z+7cuZDJZAgLC9N3KdXWzZs3MWzYMDg6OsLKygpt27ZFXFycvsuqtnJycvDBBx/A3d0dlpaWaNSoEebMmYO8vDx9l1YtHD58GP3790edOnUgk8mwY8cOtdeFEPjoo49Qp04dWFpaolu3bvjrr78qpTYGFiN36NAhTJo0CcePH0d0dDRycnIQFBSEx48f67u0au/UqVNYs2YNWrdure9Sqq379+8jICAAZmZm2LNnD86dO4eFCxfC3t5e36VVW/PmzcPq1auxYsUKnD9/HvPnz8eCBQuwfPlyfZdWLTx+/Bht2rTBihUrtL4+f/58LFq0CCtWrMCpU6fg4uKC559/XnU/v4rEy5qrmTt37sDJyQmHDh1Cly5d9F1OtfXo0SO0b98eq1atwqeffoq2bdtiyZIl+i6r2pk+fTqOHTuGI0eO6LsU+k+/fv3g7OyMdevWqdYNGjQIVlZW+Prrr/VYWfUjk8mwfft2DBw4EIDUulKnTh2EhYXhvffeAwBkZmbC2dkZ8+bNw2uvvVah9bCFpZpJS0sDANSsWVPPlVRvkyZNQt++fdGzZ099l1Kt7dy5Ez4+PnjppZfg5OSEdu3aYe3atfouq1rr3Lkz9u/fj4sXLwIAzpw5g6NHj6JPnz56rowSExORkpKCoKAg1Tq5XI6uXbsiJiamws9vNDc/pJIJITB16lR07twZLVu21Hc51dbmzZvx+++/49SpU/oupdr7559/EB4ejqlTp+L999/HyZMn8eabb0Iul2P48OH6Lq9aeu+995CWlobmzZvD1NQUubm5+OyzzzB06FB9l1btpaSkAACcnZ3V1js7O+PatWsVfn4Glmpk8uTJ+OOPP3D06FF9l1JtXb9+HVOmTMG+fftgYWGh73Kqvby8PPj4+ODzzz8HALRr1w5//fUXwsPDGVj0ZMuWLfjmm2/w7bffokWLFkhISEBYWBjq1KmDESNG6Ls8gtRVVJAQQmNdRWBgqSbeeOMN7Ny5E4cPH0a9evX0XU61FRcXh9TUVHh7e6vW5ebm4vDhw1ixYgUyMzNhamqqxwqrF1dXV3h5eamt8/T0xLZt2/RUEb3zzjuYPn06Xn75ZQBAq1atcO3aNcydO5eBRc9cXFwASC0trq6uqvWpqakarS4VgWNYjJwQApMnT8YPP/yAAwcOwN3dXd8lVWs9evTA2bNnkZCQoFp8fHzw6quvIiEhgWGlkgUEBGhc5n/x4kW4ubnpqSJ68uQJTEzUv5pMTU15WbMBcHd3h4uLC6Kjo1XrsrKycOjQIfj7+1f4+dnCYuQmTZqEb7/9Fj/++CNsbW1VfZAKhQKWlpZ6rq76sbW11Rg/ZG1tDUdHR44r0oO33noL/v7++PzzzzFkyBCcPHkSa9aswZo1a/RdWrXVv39/fPbZZ2jQoAFatGiB+Ph4LFq0CKNHj9Z3adXCo0ePcPnyZdXzxMREJCQkoGbNmmjQoAHCwsLw+eefw8PDAx4eHvj8889hZWWFV155peKLE2TUAGhdIiMj9V0a/adr165iypQp+i6j2vrpp59Ey5YthVwuF82bNxdr1qzRd0nVWnp6upgyZYpo0KCBsLCwEI0aNRIzZ84UmZmZ+i6tWjh48KDW74wRI0YIIYTIy8sTs2fPFi4uLkIul4suXbqIs2fPVkptnIeFiIiIDB7HsBAREZHBY2AhIiIig8fAQkRERAaPgYWIiIgMHgMLERERGTwGFiIiIjJ4DCxERERk8BhYiEhvnjx5gkGDBsHOzg4ymQwPHjzQd0lF6tatG8LCwvRdBlG1xcBCVI2MHDkSMpkMX3zxhdr6HTt2VMrdVgtbv349jhw5gpiYGCQnJ0OhUGhsExUVBZlMprHwbtdE1QvvJURUzVhYWGDevHl47bXX4ODgoNdarly5Ak9PzxLvo2RnZ6dxk0J9BCwi0h+2sBBVMz179oSLiwvmzp1b7Hbbtm1DixYtIJfL0bBhQyxcuFDncxV3jG7dumHhwoU4fPgwZDIZunXrVuRxZDIZXFxc1JaCt7Pv1q0bJk+ejMmTJ8Pe3h6Ojo744IMPUPDOI/fv38fw4cPh4OAAKysrBAcH49KlS2rnOXbsGLp27QorKys4ODigV69euH//vur1vLw8vPvuu6hZsyZcXFzw0Ucfqe3/0UcfoUGDBpDL5ahTpw7efPNNnT8zItKOgYWomjE1NcXnn3+O5cuX48aNG1q3iYuLw5AhQ/Dyyy/j7Nmz+OijjzBr1ixERUWV+jwlHeOHH37AuHHj4Ofnh+TkZPzwww/P9L7Wr1+PGjVq4MSJE1i2bBkWL16Mr776SvX6yJEjcfr0aezcuROxsbEQQqBPnz7Izs4GACQkJKBHjx5o0aIFYmNjcfToUfTv3x+5ublq57C2tsaJEycwf/58zJkzB9HR0QCA77//HosXL8aXX36JS5cuYceOHWjVqtUzvSciKqBSbrFIRAZhxIgRYsCAAUIIITp16iRGjx4thBBi+/btouA/B6+88op4/vnn1fZ95513hJeXV6nPVZpjTJkyRXTt2rXY40RGRgoAwtraWm0peOyuXbsKT09PkZeXp1r33nvvCU9PTyGEEBcvXhQAxLFjx1Sv3717V1haWoqtW7cKIYQYOnSoCAgIKLKOrl27is6dO6ut69Chg3jvvfeEEEIsXLhQNG3aVGRlZRX7foiobNjCQlRNzZs3D+vXr8e5c+c0Xjt//jwCAgLU1gUEBODSpUtqLQ7FKY9jKNna2iIhIUFtiYyMVNumU6dOauNa/Pz8VOc6f/48atSoAV9fX9Xrjo6OaNasGc6fPw8gv4WlOK1bt1Z77urqitTUVADASy+9hKdPn6JRo0YYN24ctm/fjpycHJ3eJxEVjYGFqJrq0qULevXqhffff1/jNSGExqBWUWA8SGmUxzGUTExM0KRJE7Wlbt26OtVSUo2WlpYlHsfMzEztuUwmQ15eHgCgfv36uHDhAlauXAlLS0tMnDgRXbp0UXU5EdGzYWAhqsa++OIL/PTTT4iJiVFb7+XlhaNHj6qti4mJQdOmTWFqalqqY5fHMXRx/PhxjeceHh4wNTWFl5cXcnJycOLECdXr9+7dw8WLF+Hp6QlAaj3Zv3//M9VgaWmJ//u//8OyZcvw22+/ITY2FmfPnn2mYxKRhJc1E1VjrVq1wquvvorly5errZ82bRo6dOiATz75BCEhIYiNjcWKFSuwatUq1TY9evTACy+8gMmTJ2s9dmmOUVpCCKSkpGisd3JygomJ9P+u69evY+rUqXjttdfw+++/Y/ny5aqrkjw8PDBgwACMGzcOX375JWxtbTF9+nTUrVsXAwYMAADMmDEDrVq1wsSJEzFhwgSYm5vj4MGDeOmll1CrVq0Sa4yKikJubi58fX1hZWWFr7/+GpaWlnBzc9P5/RKRJrawEFVzn3zyiUaXSfv27bF161Zs3rwZLVu2xIcffog5c+Zg5MiRqm2uXLmCu3fvFnnc0hyjtNLT0+Hq6qqxKMePAMDw4cPx9OlTdOzYEZMmTcIbb7yB8ePHq16PjIyEt7c3+vXrBz8/PwghsHv3blU3T9OmTbFv3z6cOXMGHTt2hJ+fH3788UfUqFG6/9fZ29tj7dq1CAgIULXW/PTTT3B0dNT5/RKRJpkoa6cyEZGB6NatG9q2bYslS5bouxQiqiBsYSEiIiKDx8BCREREBo9dQkRERGTw2MJCREREBo+BhYiIiAweAwsREREZPAYWIiIiMngMLERERGTwGFiIiIjI4DGwEBERkcFjYCEiIiKDx8BCREREBu//Ac6cGicGqqTNAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "epochs = [i for i in range(1,11)]\n", "plt.plot(epochs,training_history.history['accuracy'],color='red',label='Training Accuracy')\n", "plt.plot(epochs,training_history.history['val_accuracy'],color='blue',label='Validation Accuracy')\n", "plt.xlabel('No. of Epochs')\n", "plt.title('Visualization of Accuracy Result')\n", "plt.legend()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "id": "1cb6141a-adaf-4334-b8b2-20c5900d077e", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "id": "499ca80e-dd07-4b4e-a929-dcc22c763c79", "metadata": {}, "source": [ "# some other matrices for evaluation\n" ] }, { "cell_type": "code", "execution_count": 81, "id": "2ae1c71e-2409-4822-8351-08babff5ba2d", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['Apple___Apple_scab',\n", " 'Apple___Black_rot',\n", " 'Apple___Cedar_apple_rust',\n", " 'Apple___healthy',\n", " 'Blueberry___healthy',\n", " 'Cherry_(including_sour)___Powdery_mildew',\n", " 'Cherry_(including_sour)___healthy',\n", " 'Corn_(maize)___Cercospora_leaf_spot Gray_leaf_spot',\n", " 'Corn_(maize)___Common_rust_',\n", " 'Corn_(maize)___Northern_Leaf_Blight',\n", " 'Corn_(maize)___healthy',\n", " 'Grape___Black_rot',\n", " 'Grape___Esca_(Black_Measles)',\n", " 'Grape___Leaf_blight_(Isariopsis_Leaf_Spot)',\n", " 'Grape___healthy',\n", " 'Orange___Haunglongbing_(Citrus_greening)',\n", " 'Peach___Bacterial_spot',\n", " 'Peach___healthy',\n", " 'Pepper,_bell___Bacterial_spot',\n", " 'Pepper,_bell___healthy',\n", " 'Potato___Early_blight',\n", " 'Potato___Late_blight',\n", " 'Potato___healthy',\n", " 'Raspberry___healthy',\n", " 'Soybean___healthy',\n", " 'Squash___Powdery_mildew',\n", " 'Strawberry___Leaf_scorch',\n", " 'Strawberry___healthy',\n", " 'Tomato___Bacterial_spot',\n", " 'Tomato___Early_blight',\n", " 'Tomato___Late_blight',\n", " 'Tomato___Leaf_Mold',\n", " 'Tomato___Septoria_leaf_spot',\n", " 'Tomato___Spider_mites Two-spotted_spider_mite',\n", " 'Tomato___Target_Spot',\n", " 'Tomato___Tomato_Yellow_Leaf_Curl_Virus',\n", " 'Tomato___Tomato_mosaic_virus',\n", " 'Tomato___healthy']" ] }, "execution_count": 81, "metadata": {}, "output_type": "execute_result" } ], "source": [ "class_name = validation_set.class_names\n", "class_name" ] }, { "cell_type": "code", "execution_count": null, "id": "e8638f67-6b28-4d2c-998c-f16cec6e896a", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 83, "id": "08f196bb-3fac-4bef-a035-15e70734b8e2", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Found 17572 files belonging to 38 classes.\n" ] } ], "source": [ "test_set = tf.keras.utils.image_dataset_from_directory(\n", " 'valid',\n", " labels=\"inferred\",\n", " label_mode=\"categorical\",\n", " class_names=None,\n", " color_mode=\"rgb\",\n", " batch_size=1,\n", " image_size=(128, 128),\n", " shuffle=False,\n", " seed=None,\n", " validation_split=None,\n", " subset=None,\n", " interpolation=\"bilinear\",\n", " follow_links=False,\n", " crop_to_aspect_ratio=False\n", ")" ] }, { "cell_type": "code", "execution_count": 120, "id": "bbd689ad-be66-4ad7-9ed1-69acdbc5a46b", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 120, "metadata": {}, "output_type": "execute_result" } ], "source": [ "true_categories = tf.concat([y for x, y in test_set], axis=0)\n", "true_categories\n" ] }, { "cell_type": "code", "execution_count": 121, "id": "a4aee10d-2fae-44b3-aa2f-3a0de4e6a64f", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\u001b[1m17572/17572\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m285s\u001b[0m 16ms/step\n" ] }, { "data": { "text/plain": [ "array([[9.9999988e-01, 3.3471348e-08, 2.1387747e-11, ..., 1.3603307e-15,\n", " 7.7116793e-15, 3.7964813e-14],\n", " [9.9999928e-01, 7.2361371e-07, 1.6094959e-11, ..., 6.8785015e-16,\n", " 3.5936860e-14, 1.0498910e-15],\n", " [1.0000000e+00, 8.4939736e-11, 1.6974948e-12, ..., 3.3928901e-18,\n", " 4.0079137e-16, 1.9003264e-14],\n", " ...,\n", " [2.0551154e-08, 3.0149122e-10, 1.6399183e-07, ..., 2.3108573e-08,\n", " 1.4036464e-09, 9.9990940e-01],\n", " [1.5902291e-08, 5.1030976e-12, 1.7909015e-08, ..., 2.4625149e-09,\n", " 3.4698380e-11, 9.9999774e-01],\n", " [9.4405635e-18, 4.2614794e-19, 4.8604243e-16, ..., 9.9192852e-18,\n", " 8.5534095e-17, 9.9999905e-01]], dtype=float32)" ] }, "execution_count": 121, "metadata": {}, "output_type": "execute_result" } ], "source": [ "y_pred = cnn.predict(test_set)\n", "y_pred" ] }, { "cell_type": "code", "execution_count": 123, "id": "7c0346f6-9894-4913-a097-89eb23788941", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 123, "metadata": {}, "output_type": "execute_result" } ], "source": [ "predicted_categories = tf.argmax(y_pred, axis=1)\n", "predicted_categories" ] }, { "cell_type": "code", "execution_count": 124, "id": "4c225260-508e-4c31-a209-a90ac25181ca", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 124, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Y_true = tf.argmax(true_categories, axis=1)\n", "Y_true" ] }, { "cell_type": "code", "execution_count": 130, "id": "cb1a4332-5347-49bf-ba21-b630d0655c96", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[483, 9, 1, ..., 0, 0, 0],\n", " [ 0, 494, 1, ..., 0, 0, 0],\n", " [ 0, 0, 430, ..., 0, 0, 1],\n", " ...,\n", " [ 0, 0, 1, ..., 485, 0, 0],\n", " [ 0, 0, 0, ..., 0, 443, 0],\n", " [ 0, 0, 0, ..., 0, 0, 465]], dtype=int64)" ] }, "execution_count": 130, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from sklearn.metrics import confusion_matrix,classification_report\n", "cm = confusion_matrix(Y_true,predicted_categories)\n", "cm" ] }, { "cell_type": "code", "execution_count": 126, "id": "ce474eb5-ae1c-47e0-8c3c-259d36da7da3", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " precision recall f1-score support\n", "\n", " Apple___Apple_scab 0.98 0.96 0.97 504\n", " Apple___Black_rot 0.97 0.99 0.98 497\n", " Apple___Cedar_apple_rust 0.96 0.98 0.97 440\n", " Apple___healthy 0.97 0.96 0.96 502\n", " Blueberry___healthy 0.97 0.98 0.97 454\n", " Cherry_(including_sour)___Powdery_mildew 0.98 0.98 0.98 421\n", " Cherry_(including_sour)___healthy 0.98 1.00 0.99 456\n", "Corn_(maize)___Cercospora_leaf_spot Gray_leaf_spot 0.95 0.94 0.94 410\n", " Corn_(maize)___Common_rust_ 0.98 1.00 0.99 477\n", " Corn_(maize)___Northern_Leaf_Blight 0.96 0.96 0.96 477\n", " Corn_(maize)___healthy 0.99 1.00 0.99 465\n", " Grape___Black_rot 0.97 0.99 0.98 472\n", " Grape___Esca_(Black_Measles) 1.00 0.98 0.99 480\n", " Grape___Leaf_blight_(Isariopsis_Leaf_Spot) 1.00 1.00 1.00 430\n", " Grape___healthy 1.00 1.00 1.00 423\n", " Orange___Haunglongbing_(Citrus_greening) 0.99 0.99 0.99 503\n", " Peach___Bacterial_spot 0.93 0.98 0.96 459\n", " Peach___healthy 0.98 0.97 0.98 432\n", " Pepper,_bell___Bacterial_spot 0.90 0.97 0.93 478\n", " Pepper,_bell___healthy 0.93 0.96 0.94 497\n", " Potato___Early_blight 0.96 0.99 0.98 485\n", " Potato___Late_blight 0.96 0.96 0.96 485\n", " Potato___healthy 0.97 0.98 0.97 456\n", " Raspberry___healthy 0.97 1.00 0.98 445\n", " Soybean___healthy 1.00 0.95 0.98 505\n", " Squash___Powdery_mildew 0.99 0.97 0.98 434\n", " Strawberry___Leaf_scorch 1.00 0.96 0.98 444\n", " Strawberry___healthy 0.99 0.98 0.99 456\n", " Tomato___Bacterial_spot 0.92 0.98 0.95 425\n", " Tomato___Early_blight 0.91 0.89 0.90 480\n", " Tomato___Late_blight 0.98 0.83 0.90 463\n", " Tomato___Leaf_Mold 1.00 0.94 0.97 470\n", " Tomato___Septoria_leaf_spot 0.93 0.91 0.92 436\n", " Tomato___Spider_mites Two-spotted_spider_mite 1.00 0.93 0.96 435\n", " Tomato___Target_Spot 0.88 0.95 0.92 457\n", " Tomato___Tomato_Yellow_Leaf_Curl_Virus 0.99 0.99 0.99 490\n", " Tomato___Tomato_mosaic_virus 0.99 0.99 0.99 448\n", " Tomato___healthy 0.99 0.97 0.98 481\n", "\n", " accuracy 0.97 17572\n", " macro avg 0.97 0.97 0.97 17572\n", " weighted avg 0.97 0.97 0.97 17572\n", "\n" ] } ], "source": [ "# Precision Recall Fscore\n", "print(classification_report(Y_true,predicted_categories,target_names=class_name))" ] }, { "cell_type": "markdown", "id": "1cc91183-e346-4042-bda1-58d18d84b268", "metadata": {}, "source": [ "# confusion matrix visualisation\n" ] }, { "cell_type": "code", "execution_count": 128, "id": "e3bc899f-ba5e-40bf-9d69-4f74dcb25fb7", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAC1YAAAx4CAYAAACMceiBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5hU5f028HvpRemKIPbesGBX7CVGRWOPLcaSRIzGqDExmp+aokaNsXcjWGPFoFGxoqixYcXeQQQRQURB2s77B++Mu7LAgrADzudzXXtl5sw5z/nOvc85s5LvPltVKBQKAQAAAAAAAAAAAACoYI3KXQAAAAAAAAAAAAAAQLlprAYAAAAAAAAAAAAAKp7GagAAAAAAAAAAAACg4mmsBgAAAAAAAAAAAAAqnsZqAAAAAAAAAAAAAKDiaawGAAAAAAAAAAAAACqexmoAAAAAAAAAAAAAoOJprAYAAAAAAAAAAAAAKp7GagAAAAAAAAAAAACg4mmsBgAAAAAAAAAAAAAqnsZqAAAAqGGrrbZKVVVVqqqq0qdPn3KXw3cccsghpe/PaaedVu5yYL5bdtllS3N+4MCBde7Tp0+f0j5bbbVVg9Y3Jz788MNSnVVVVeUuhwVEoVDIzTffnF133TXdunVLixYtSnOkXbt25S6v3haW65AFj7kDAAAAAAsWjdUAAAAstGo22db11bx583Tu3Dkbbrhhjj766Dz55JPlLvkH6bvNkt/9atWqVbp06ZJVV101W265ZY499thcf/31+eijj8pdOgsg1zWVZvz48bnzzjvzq1/9Kj169MjSSy+dli1bpnXr1unWrVs233zzHHfccbn33nszbdq0cpc7T02dOjW9evXK/vvvn3vuuSfDhw/PpEmTyl0Wc6Fmc3Dxa9lll02hUJijcU4//fQZxtFsDAAAAAA0JI3VAAAA/GBNnjw5o0aNynPPPZeLL744m2++ebbZZpt8/PHH5S6tQdVsTvrwww8b/PwTJ07MyJEj89Zbb+Xxxx/PBRdckIMPPjjLLbdcfvSjH6V///4NXhMLL9f1gqE+K2kzaxMnTszZZ5+dZZddNnvuuWeuuOKKvPDCCxk2bFi++eabTJgwIcOHD8+TTz6Zf/7zn9l5553TrVu3nHnmmfnmm2/KXf48ccEFF+See+4pPe/SpUu23nrr7Ljjjtlxxx2z3XbblbE6vq+PPvoojz322Bwdc/3118+naurvtNNOK93fDjnkkHKXAwAAAAA0sCblLgAAAADmhfbt22fDDTeste2bb77Jhx9+WGtl5EcffTSbbLJJnnnmmXTt2rWhy6wIG2ywQTp06FB6Pm3atIwbNy5jx47Nhx9+mKlTpyZJCoVCBgwYkAEDBmT33XfPVVddlU6dOpWrbBZArmt+qD744IPsvPPOeeONN2ptb9KkSZZbbrkstthiady4cUaMGJFhw4aVVnEeOXJk/vjHP+a6666b4diF0TXXXFN63Lt371x88cWpqqoqY0XMa9ddd129V5x+8skn8957783fggAAAAAAZkNjNQAAAD8I3bt3z/3331/nay+88EJ69+6dZ555Jkny8ccf54gjjsh///vfhiyxYpx99tkzbaKaMGFCBg8enJtuuinXXXddJkyYkCS56667Mnjw4DzzzDPp0qXLTMfu06dP+vTpMx+qZkHkuq6fQw45ZKFYVXXZZZdNoVAodxll9+qrr2a77bbLqFGjStvWW2+9/OEPf8gOO+yQtm3b1tp/woQJefDBB9O3b9/069cvSTJixIgGrXl+mDBhQt58883S89/97ncLdVP1wnIdNoQ2bdqkcePGGTt2bG6//fZccskladmy5WyPu+6660qPl1122bL8lY1yMHcAAAAAYMHSqNwFAAAAwPy23nrr5dFHH0337t1L2+699968/PLLZayqMrVq1So9e/bMZZddlvfffz/bbLNN6bVhw4Zlt912y8SJE8tYIQsL1zULo6+++ip77bVXqam6qqoq55xzTp5//vnsvffeMzRVJ9Pvm7vttlvuvPPOPPPMM1lvvfUauuz5YuzYsbUa7ZdaaqkyVsO81LRp0+yzzz5JkvHjx+euu+6a7TGTJk3KrbfemmR6Y3avXr3mZ4kAAAAAADOlsRoAAICK0LJly5xxxhm1tt13331lqoYk6dy5cx544IHssssupW3PPfdcLrroojJWxcLEdc3C5thjj83bb79den7xxRfnhBNOqPdKzRtuuGGeeOKJHHzwwfOrxAYzZcqUWs8bN25cpkqYH2rO0ZorUc9M//7988UXXyRJ9tprr3qtcA0AAAAAMD9orAYAAKBibLvttmnatGnp+auvvvq9xvvwww9z2WWX5ac//WnWWmuttGvXLk2bNk2HDh2y+uqr5/DDD8+AAQPqPV5VVVXp68MPP0ySjBs3LhdccEE22WSTdO7cOS1atMjSSy+d/fbbL4888shMxxo4cGBprJqWW265WucpfpXrT9A3btw4ffv2zRJLLFHadt555+Wbb76pc/9DDjmkVPNpp502y7E/++yznHPOOdl+++3TtWvXtGzZMk2bNk27du2yxhprZI899sg555yTd955p161Tp06NTfffHP233//rLTSSmnTpk1atWqV5ZZbLvvss09uueWWVFdX12us6urqDBo0KKeeemp23HHHLLPMMmndunWaN2+eLl26pGfPnvnTn/6UoUOH1mu8otdffz2/+93vsvHGG6dTp05p2rRpWrRokcUWWyw9evTIz372s1x99dX5/PPP6zXemDFjcuGFF+ZHP/pRlllmmbRs2TJt27bNaqutliOPPDJPPfXUHNU3P8zuuj7ttNPqnOcPPPBADj744Ky66qpp27btLK+DQqGQu+++O4cddlhWXXXVtG/fvnQt7rrrrrn66qszefLkOap75MiROfXUU7POOuukbdu2adOmTVZfffUcddRReeWVV+ZorD59+pTe41ZbbVWvYwqFQvr3758jjjgia6yxRmm+tG/fPuutt16OOOKI9OvXr1bz64cfflg6z0cffVTavvXWW9d5X/luLTWPr28j8cSJE3PFFVdk5513Ls3Bdu3aZbXVVssvfvGLPPTQQ/UaZ2YZvfrqqznqqKOy2mqrZZFFFkmbNm3SvXv3nHjiiRk5cmS9xq6voUOHpm/fvqXnP/7xj9O7d+85Hqdly5a58MILZ7vfW2+9lZNPPjkbbLBBOnfuXLq/bLrppvnzn/+cYcOG1et8W221VSm7Pn36JEmmTZuWW2+9NT/+8Y+z9NJLp3nz5uncuXO23377/Otf/5rpvbDmHFhuueVqvVbXHCp+Fs6sjtmZ2Vh1eeihh3LooYdmzTXXTLt27dKkSZO0atUq3bp1y+abb56jjz46/fr1y6RJk+o8fm6uw+HDh+evf/1rNttss3Tp0iXNmzfP4osvnh49euSkk07KG2+8Ua9xZvbZeP/992evvfbK8ssvnxYtWqRTp07p2bNnzj///Jm+j3ll0003zYorrpgkefDBB2d7PdVsvp7TXxyYMmVKBgwYkBNPPDHbbLNNllxyybRs2TItW7ZMt27dst122+WMM87IZ599NstxinPs9NNPL23r27dvnXOzrjm17LLLll4bOHBgkuTLL7/MZZddlm222SZLL710mjVrVuv1ZPZzZ8SIEenUqVNpn3333Xe2mXz++efp2rVr6Ziav8QGAAAAAMxGAQAAABZSP/vZzwpJCkkKW265Zb2O6dKlS+mYHXfccYbXt9xyy9Lr11577UzH+clPflKoqqoq7Turr549exZGjhw529pqHvPBBx8Unn766cLSSy89y7GPPvroQnV19QxjPfroo/Wqrfj1s5/9rF751eWDDz6oNdajjz46x2P85S9/qTXGLbfcUud+Nb/np5566kzHu/nmmwtt27at9/v/9NNPZ1nfo48+WlhllVVmO866665beOedd2Y51htvvFFYcskl61VX06ZNC6effnqd3+OaqqurCyeeeGKhUaNG9Rp3tdVWm+V4hUKhcOmllxbat28/27H23XffwldffTXb8eprXl/Xp556aq15Pm7cuMLee+9d7+vg5ZdfLmywwQazzWGFFVYoPPPMM/Wqt1+/foUOHTrMdKzGjRsXzjrrrEKhUCgss8wys722rr322jnK7H//+19h7bXXrtdcWXvttUvHffdan93Xd2v57vGzc9999xWWWmqp2Z5nxx13nO099rsZVVdXF/72t78VGjduPNNx27RpU3j44YdnW2d9HXfccbXGf+GFF+bZ2DVNnTq1cMIJJxSaNGkyy9xatmxZOOOMM2Y73nc/F0eMGFHYaqutZjn2ZpttVvjiiy9mGGtO59AHH3ww0zrqY2Zj1TR27NjCjjvuWO+ajjzyyDrHmdPr8Oyzzy60atVqludq0qRJ4dhjjy1MmTJllmN997NxVve54teqq65aGDZs2GzrrK+a779jx46FQqFQOP3000vbzj333JkeO2rUqNJ8XXbZZQvV1dWF3//+9/XK89FHHy107NixXt+71q1bF6688sqZjlVzjs3p/CwUZrxf/+9//6u1reZXzft5feZOv379ah3ft2/fmb6PQmH6z6nFfRdffPF6/RwKAAAAAEzXJAAAAFBBaq4q26xZs7ke55VXXkmhUEgyfdXlFVZYIYsvvniaNWuWzz//PG+88UbpXIMGDcpmm22WF154IW3atKnX+EOGDMlPf/rTfPXVV2nUqFFWX331LLbYYvnss8/y2muvlc590UUXZZlllsnxxx9f6/gOHTpkxx13TJJaq2ZvscUWadmy5QznW2utteY8hHno8MMPz5/+9KfS88ceeyz77LPPXI01YMCAHHDAAbVWTF1yySWz3HLLpUWLFhk/fnw++OCDjBo1qvT6rFaavuWWW3LwwQfXmjudO3fOCiuskKZNm+add97JJ598kiR58cUXs9lmm2XQoEFZeeWV6xxv9OjRGT58eOn5oosumhVXXDHt2rXLtGnTMnTo0NIqmFOmTMmpp56a8ePH55xzzplpjaecckrOPvvs0vOqqqqstNJK6dq1axo1apSxY8fmnXfeyVdffTXb95skxx57bC644IJa21ZYYYV069YtkydPzmuvvZYvv/yylM9HH32URx99NC1atJjluPNLfa/rQqGQ/fffP//973+TTL9OVllllTRq1CjvvvvuDPs/9thj6dWrV+m9Jkm7du2y6qqrpkWLFvnoo4/ywQcfJEnee++9bLPNNhkwYEA222yzmdZwzz33ZO+9987UqVNL2zp37pyVV145EydOzKuvvppJkyblD3/4QxZZZJH6h1BPd955Zw444IBaq8I3a9Ysq622Wjp27Jivvvoqb7/9dr744oskKf1vMn2l5OJ95bHHHiuNscEGG6RDhw4znKt79+5zXedtt92W/ffff6Y5DRkypHT+AQMGZPPNN8+jjz6abt261Wv8008/vbQqbZs2bbLaaqulRYsWefPNN/Ppp58mmb7SbK9evfLaa69lmWWWmev3UnT33XeXHq+33npZd911v/eY3zVt2rTss88+ufPOO0vbqqqqstpqq2XxxRfPJ598krfffjvJ9NXA//jHP2bo0KG57LLL6jX+V199le233z5DhgxJMn2F3mWWWSYTJ07MSy+9VLoWn3zyyRx44IG13nNSew5NnDgxjz/+eOm14vbv7j8/FQqF7LrrrnniiSdK21q0aJFVV101HTt2zJQpUzJ69Oi88847pdXb6/uXCWalrnvsiiuumG7dumX06NGlz/mpU6fm/PPPz3vvvZc777wzTZrM/p/zp02blj322CMPP/xwkqRLly5ZccUVM23atLz88sv5+uuvkyRvvvlmdt111zz33HP1GnduHHTQQTnttNNSKBRy/fXXz/CzStFNN91UutYPPPDAeq9onyQff/xxrb/C0L59+6ywwgpp06ZNJk+enPfeey8jRoxIknz99df5xS9+kcmTJ+eoo46aYawNN9wwLVq0yLvvvpv33nsvSdK1a9eZ/ow0q/n57rvv5vjjjy99fhS/v1988UXefPPNer+/ot133z2HH354rr766iTJr3/96/Ts2XOGld+T5Oqrr06/fv1Kz6+55pp07tx5js8JAAAAABWrnF3dAAAA8H3M6cq2n332Wa1Vpg877LAZ9qnviphrrbVW4bDDDivcf//9hYkTJ87w+ldffVW49NJLa62a/Itf/GKW9aXGSoTF1RcPO+ywwieffFJrvzfeeKOw1lpr1VqBcdy4cfUad2Yrdn4f82LF6kKhUFhuueVKY6y11lp17lOfFavXXHPNWqumvvzyy3Xu99FHHxUuvPDCwuqrr14YMWJEnfu88MILhWbNmpXG23TTTQtPPvnkDPs98sgjhRVXXLG033rrrVeYPHlynWMOGjSosPzyyxfOOOOMwmuvvVbnatTvvvtu4eCDDy6NV1VVVed5C4VCYcSIEYWmTZuW9j3iiCPqfD/V1dWFF198sXDyyScXevbsWedYhUKhcPHFF9f6fh5yyCGF999/v9Y+kydPLlx11VWF1q1bl/Y7+uijZzrmnJjX13XNFasXXXTRQpLCEkssUbj11lsLU6dOLe03bdq0Wu9z2LBhtVaVXn311Qv33XdfYdq0abXGHzx4cK0VrZdaaqnC2LFj66x11KhRtcbs2LFj4dZbb6015tixY0srG7do0aKwyCKLzPbaqu9KuS+//HKhRYsWpX3bt29fuPjiiwtffvllrf2qq6sLL7zwQuG3v/1tYY011qhzrPqspP1d9V2x+t133601t5ZYYolCv379auU0bty4wkknnVTre7/11lvPdHX3mhl16NChUFVVVWjXrl3h2muvrXWtVldXF/r06VPruj/wwAPr9f5mZcSIEbXe++9+97vvPWZdzjzzzFrn+dGPflR47733au3z6quvFjbeeONa+83q867m52Lxs2mzzTabYcXtMWPGFPbZZ59a4z700EMzHXdOVzCfHytW33777aXXmzVrVjj//PMLX3/99Qz7TZo0qfDggw8Wfv7znxd+85vf1Hmu+l6HN998c626Nthgg8JLL71Ua58PP/ywsMsuu9Tab1Z/paHmfbP4PVp99dVnuDYnTJhQ+M1vflNr3Kuvvnqm486JulasLhQKhZ49e5a2z+zzeL311ivt8/bbbxcKhUK9V6y+/vrrC927dy9ccMEFM8z1opdeeqmw0047lcZr0aLFDJ9rNX33Lx3UV837YvHzZocddii88cYbtfYbM2ZMYcyYMaXn9Z07X331VWGllVaq9TNOzc+xQqFQeOedd2rdP2e2wjoAAAAAMHMaqwEAAFhozWkD5iWXXFKrmaiuPwdf38atr776ql41Pvfcc6Wm1xYtWhQ+++yzme5bs7YkhT/84Q8z3Xfo0KGFVq1alfa95ppr6jXugtxYveeee5bGaN26dZ37zK6xeujQoaXXF1lkkZk2uNZUXV09Q7NscXvNBvbdd9+9MGXKlJmOM2rUqMJSSy1V2r9Pnz517jdhwoQ6z1eXY489tjTennvuWec+1113XWmfzTffvF7jfrcRq2jYsGG1Gm/POeecWY4zaNCgQpMmTQpJCo0aNZplo1p9zevrumaDXJJCmzZtCm+99dZsx63Z1LjRRhvN8pr/+uuvC+uuu25p/9NOO63O/Xr37l2rse/555+f6ZinnHLKDPeE79tYXbPGxRdfvPD666/PdN+i8ePH17l9fjZW77bbbqV92rZtO0NTYk3nnnturTFvuummOvermVGSQsuWLWdoDK7pH//4R619Z5ZDfd1zzz21zn/LLbd8r/HqMnLkyELz5s1L5/jxj38802v966+/Lmy44Yalfdu3b19nQ3GhUPtzsTjHvvnmmzr3nTp1amGdddYp7XvQQQfNtN4FobH60EMPLb1+yimn1GvMmWVan+vwm2++KSy++OKl/dZbb72Z3lumTZtW6NWrV2nfJk2aFD766KM6961530xSWG211Wb5+bfrrruW9p3VL9rMiZk1Vl911VWl7ccff/wMx7322mul1zfeeOPS9vo2Vtf357Fp06YV9thjj1nWUjQvGquTFHbeeeeZzpea6nsPLxQKhWeffbb0uZuk8Oc//7n02pQpU2pd16ussspMr2sAAAAAYOYaBQAAACrA22+/nT/96U+l582bN88uu+wy1+O1bt26Xvutv/762W+//ZIk33zzTR544IF6HbfyyivnL3/5y0xfX2qppbLnnnuWnj/55JP1GndB1qlTp9Ljr7/+OlOmTJnjMT7++OPS4zXWWCPt2rWb7TFVVVVp1GjGfyK5//778+qrryZJOnbsmD59+qRJkyYzHWexxRbLueeeW3p+2WWX1blfy5Yt6zxfXf7yl7+kZcuWSZJ77703U6dOnWGfmu95s802q9e4jRs3rnP7RRddlG+++SZJst122+WEE06Y5Tibb755jjjiiCRJdXV1rrjiinqdf16Zm+v61FNPzcorrzzLfV5//fX897//TZI0a9YsN9100yyv+VatWuXyyy8vPb/88stTKBRq7TNhwoTccMMNpee//e1v06NHj+9V55x48MEH8+KLL5aeX3nllVlttdVme9wiiywyz2qoj6FDh+aee+4pPT/99NOz6qqrznT/4447LhtttFHp+cUXX1yv85x00klZd911Z/r6L3/5y9K1N3HixFrZzY1Ro0bVer7UUkt9r/HqcvXVV2fSpElJpn9GXXXVVTO91lu1apVrrrmm9PrYsWNz4403zvYcjRs3zrXXXpvmzZvP9PWjjz669HxB/2yal/fP+rj99ttLc6GqqirXXHPNTO8tjRo1ypVXXplFF100STJ16tR632OvuOKKWX7+HXvssaXHzz77bJ2fLfPKPvvskxYtWiRJbrrppkybNq3W63379i09Pvjgg+d4/Pr+PNaoUaOcc845pef9+/ef43PNiebNm8/yGpxbG2ywQU477bTS8z//+c959tlnZ3jctGnT3HTTTWnVqtU8PT8AAAAAVAKN1QAAAPxgTZo0KW+99VbOOuusbLTRRhkzZkzptaOPPjpdunRpkDpqNv0999xz9Trm0EMPnWUTbzK9qbXozTffnLviFiDt27ev9bzm96u+is1bSfLOO+9kwoQJc11PzSbYQw45JG3btp3tMT/5yU9KTUzPP/98xo8fP9fnT6Y3ta6xxhpJpjd3vvbaazPsU/M9v/zyy9/rfDXf829+85t6HXPAAQeUHj/66KPf6/z18X2u6yZNmuSQQw6Z7TluvPHGUmP0rrvumuWXX362x2y44YZZccUVkyQjR46c4Zp89NFH8+WXXyaZ3lDZu3fvWY7XpEmT/PKXv5zteevr3//+d+nxWmutld12222ejT0v3XPPPaXGy1atWuXwww+f5f5VVVW15upTTz2Vzz77bLbn+cUvfjHL11u3bp111lmn9Pz73mO/ez+rz/1kTv3nP/8pPd5rr73StWvXWe6/5pprZtttt63z+JnZfvvts9xyy81yn5qfTR988EEmT54823HLZV7eP+ujZsZbbLFFrTlWl86dO+enP/1pncfPzKqrrpqePXvOcp9NNtmk9As+kyZNygcffDDbcedWmzZtSvebESNG5KGHHiq9Vl1dXWrob9asWfbdd9/5VkeSLL/88qVf4nr33XfzxRdfzLdz7bzzzvPt58yTTjqp9D2eOnVqDjzwwDzwwAM544wzSvv8+c9/znrrrTdfzg8AAAAAP3Sz/n9oAQAAYCHx2GOPpaqqql777rTTTjnzzDPnyXmrq6vzxBNP5Omnn85bb72VL774IhMmTKi1Wu3w4cPrfDwrm2yyyWz36datW+nx/GwOaijV1dW1ntf3+1nT6quvnlatWmXChAkZM2ZM9txzz1xyySX1aoz9rkGDBpUeb7311vU6pmnTpll55ZXz0ksvZdq0aXnllVdmuQrqF198kQEDBuTFF1/Mxx9/nC+//HKGJsT33nuv9Hj48OFZe+21a72+/vrrlx7ff//9OfHEE/PHP/6xXqt11/T+++/nk08+KT3faqut6nXcmmuuWXr84osvplAozNX3ri7z+rpeffXV06FDh9mONTff+2R6Fu+++26S5IUXXqi1InRxFdFiHTWv35nZaaedcvzxx9f7/LNS8z3VXO1+QfPMM8+UHm+xxRb1Wo125513TlVVVem+++yzz2bnnXee6f7LLbdcOnfuPNtx5+U9triSdFGzZs2+13h1jV+zMXinnXaq13G77LJL6S8p1Mx+Zub0s6lQKGTcuHFZbLHF6lVPQ1t//fVLKxeffvrp6dKlS/bff//Z/mLT3KqZ8Zx8j6688sokyRtvvJHx48eXVrGuS32+Ry1btkzHjh1Lv4Qwv3+GOPjgg3PLLbckSa677rrsuOOOSZKHH3649HPRLrvsUq/786x8+umnGTBgQF5++eWMGDEi48ePn+GvX3z11VdJps/NTz75ZI4/K+ur5i8YzGuNGjXK9ddfn7XXXjvjxo3LO++8k5122qn0c9QWW2yRE088cb6dHwAAAAB+6DRWAwAAUDE6deqU3/3udznhhBNKKzV+H9ddd11OOeWUDBs2rN7HjBs3rl77LbHEErPdp+afd/8+KzMvKL6bzXdXsK6P5s2b58gjj8w//vGPJNMbjVdcccVssskm2WGHHbL55ptn4403nm2z5vjx42t9X88444xcdNFF9arho48+Kj0ePXp0nfuMHTs2J510Uvr06TNDw+Ws1DV/Nt9886y//vp5/vnnkyTnnHNOLrroomy//fbZdttts+mmm2a99dZL48aNZzl2zdWwmzRpkr322qvedRVNmTIlX3755XxZjXdm5uS6rm+Dfc0srrnmmtx99931Ou7VV18tPf7u975mg3zNZvRZWXnlldO0adMZGgPnVHV1danhO0l69Ojxvcabn2rmtNZaa9XrmDZt2mSZZZbJhx9+OMMYdanP/TWZt/fY7zZvFlcvn1eGDRtW65cy6ptd9+7dS49Hjx6dL7/8Mm3atJnp/nP62ZQs2J9Phx12WM4555yMHz8+EydOzM9+9rMcf/zx2XnnnbPVVltl0003zcorrzxPzjV16tQMHTq09HxuvkfV1dX54IMPam37rnLM79nZcccd07lz53z66ae56667Ss3h1113XWmfgw8+eK7HHz58eI477rjccccdpRXv66O+P5PNjbn5ha45scwyy+SSSy7JgQcemOTbX05r27Ztrr/++nnycy4AAAAAVCqN1QAAAPwgtG/fPhtuuGGtbc2bN0/btm2z7LLLZuONN862226b5s2bz5PzHX300bn44ovn+Lj6NtHO6WqmNVfIXlgVV85MkkUWWSRNmzadq3HOOOOMfPjhh7njjjuSTM/mqaeeylNPPZVk+qrSm222Wfbff/8cdNBBadGixQxjfP7557WeF4+dU3U1bY0YMSJbbrll3nnnnTker675U1VVlTvuuCM77bRTXn/99STJN998k7vvvrvUENymTZvssMMOOeSQQ2a6km/N9zx16tQMGDBgjutLpr/nedVYPa+v61mt8lpUXV1da/XWF198cY5qLvru937s2LGlxx07dqzXGI0bN07btm1n2qBfX2PHjq11j1hQVw9Oaq+c26lTp3of16lTp1Jjdc2s6zI3q0V/33vsd1finV2Nc+q7Kw7XN7vv7jd27NhZNlaXI7v5qWvXrrnzzjuz9957lzIcPXp0+vbtm759+yaZvgL3brvtliOOOGKGvxgwJ+bl92hWFsTvUePGjfPTn/40559/fiZMmJDbb789e++9d/r165dk+j3xxz/+8VyN/frrr2errbaq9TNEfc3JLzbNqfp83nxfBxxwQM4777y88MILpW1nn312ll566fl+bgAAAAD4IdNYDQAAwA9C9+7dc//99zfIuf7973/XaqpeY401cthhh2WTTTbJsssum7Zt26ZFixapqqpKkvTp0yc///nPG6S2hdngwYNLj1dYYYW5HqdZs2a5/fbb079//1x44YUZOHBgrRUsp0yZkoEDB2bgwIE5/fTT06dPn2y33Xa1xvj666/n+vw1FVeQrOnQQw8tNVU3atQoe+21V37yk59krbXWypJLLplWrVrVaozbaqut8thjj83yPEsvvXReeOGFXHnllbnyyiszZMiQWq9/+eWXuf3223P77bdn4403zk033ZTllluu1j7z8z3PrXl9XddnBc+JEyfOk/fw3TFqriY8J42P8+KXQb7bPDivfsFkfqhZ69zmND+bJefWd1evHTJkSLbddtt5Nv5333N9s/vuXFgQs5vftttuu7z11lv5xz/+keuvvz4jRoyo9frHH3+cSy65JJdeeml+9rOf5ZJLLplhVe76qPTv0cEHH5zzzz8/yfS/+NGoUaPS585+++03V79MNW3atOyzzz6lpurmzZvnwAMPzM4775zVV189Xbp0ScuWLWuNveyyy9b6yxLzS0OsGN2/f/9aTdVJcuedd+aII44o/QwKAAAAAMw5jdUAAAAwh84666zS49133z233nrrLBuCxo8f3xBlLdSGDx9eq9GpZ8+e33vMXr16pVevXhk3blwef/zxDBo0KI888kheeOGF0uqcw4cPz84775zHHnssG2+8cenYdu3a1Rrrww8/zDLLLPO9a3rppZdqNQr/+9//zt577z3LY+o7f5o3b56jjz46Rx99dIYNG5aBAwdm0KBBeeihh/LBBx+U9nv66aez9dZb58UXX0z79u1L22u+52WXXbbWMZWkdevWadq0aaZMmZIkGThwYLbccsvvPW7NVYDn5J4wL+4f353Pda2kvqCoudr5nLz3L7/8svT4u+93QbDeeuuldevWpUbSZ599dp6O/91V4sePH1+vHGrmliyY2c2tOfkFicUXXzx///vfc9ZZZ+XVV1/NoEGDMnDgwDzyyCMZM2ZMkumrOvfp0ydjxozJf/7znzmup67vUX38UL5H6667btZaa628+uqreeyxx2qtxH/wwQfP1Zh33313XnvttSTT/xrFI488kk033XSWx/xQfiYbOXJkDj/88Bm2DxgwIBdffHGOPvroMlQFAAAAAD8M83/ZBAAAAPgBGTVqVF5++eXS83/+85+zXWXxk08+md9lLfSuvvrqWs/nRSNrUdu2bbPrrrvm7LPPzvPPP5+hQ4fm97//fRo3bpxk+krCJ598cq1jOnXqVGu1yeIK09/Xgw8+WHq85ZZbzrapOpm7+bPUUkvloIMOypVXXpn3338/gwcPzk9+8pPS6x999FGtVdeT6Y2FRcOGDcs333wzx+f9oVhsscVKj+fV975mvh9++GG9jhkzZswMTZVzo1WrVll00UVLz+fVe5ofamZf3+b+QqFQa9+aYywomjRpUqvh85577plnq8QnM77n+mb33nvvlR43bty41i9bLGhqrvBc/MWHWRk7duwcn6Oqqirdu3fPUUcdldtuuy2ffvpp7rnnnnTv3r20T//+/TNo0KA5HnuRRRZJy5YtS8/n5nuULJjzu74OOuigJNOv2eJfVlh11VWz4YYbztV4NT9T999//9k2VU+YMCFffPHFXJ1rQXPooYeWVupeaqml8stf/rL02oknnpjXX3+9XKUBAAAAwEJPYzUAAADMgWHDhpUed+rUKcsuu+xsj3nqqafmY0WzV/PPwRdXal6QfP7557nssstKz7t06ZJdd911vp2vW7duOeuss3LKKaeUtj3++OOZNGlS6Xnz5s2zzjrrlJ4//PDD8+TcQ4cOLT3eYIMNZrv/Bx98kJEjR37v86633nq54447svXWW5e2PfDAA7X22WCDDUrN5NOmTctjjz32vc+7sKq5evm8+t6vu+66pccvvvhipk2bNttjnnvuuXly7qT2e3r88ce/93g1f/FgXt5X1ltvvdLjZ555pl7HDBkyJF999VWdYyxIjjjiiNLjL7/8Mtdff/08G7tz587p2rVr6Xl9s3v66adLj9daa63Z/qJQOdX85YD6NE0XG3e/jyZNmmTnnXfOQw89lE6dOpW2f/f+WV817wNz8z1q3759vX7uWFAdeOCBpV9qKio2W8+NOf1MfeaZZ+q1kvn8ur/NKxdffHHuu+++JNN/xuvbt28uvPDCrL322kmSb775JgcccEAmT55czjIBAAAAYKGlsRoAAADmQM1VMms2LM/M+++/P1crW85LrVu3Lj2eOHFiGSuZ0bRp03LwwQfn008/LW074YQT0rx58/l+7t133730eOrUqfn8889rvb7DDjuUHvft23eerOA8p/Onb9++3/ucNc/Xq1ev0vOamSdJu3btaq0aevnll8+zcy9san7v77rrrnnS3N6zZ8/S4zFjxtRaaXVm/v3vf3/v8xZtt912pcd33HFHxowZ873Gm1/3lZo5vf7667X+QsDM3HjjjaXH7dq1y5prrjnP6pmX9thjjyy//PKl53/84x8zYsSIuRqrrlXHa2Z38803z3aMKVOm5NZbb63z+AXR0ksvXXr86quvznb///znP/Ps3Isttlg222yz0vPv3j/rq2bGd9xxR70aX2vO780337xenx0Lqi5dumTbbbctPa+qqsqBBx441+PNr8/UBfnnpjfeeCMnnnhi6fnxxx+frbfeOs2aNcuNN96YFi1aJEleeuml/OlPfypXmQAAAACwUNNYDQAAAHOgS5cupcefffZZnc1tNf3mN78p+2qHSyyxROnxe++9V8ZKavv000+z3Xbb5d577y1t23jjjXPUUUfN9ZhzknXNFW6T6SuB1nTUUUeVVm8dMWJETjrppLmuq6jm/HnyySdnue+HH36Yf/zjH7Mdc27fc4cOHWZ4/dhjjy09/s9//pO77rqr3mP/kBx44IGl1Wm/+eab9O7d+3tfx6uttlp69OhRev5///d/s1y1+o033sgNN9zwvc5Z02GHHZZWrVolSSZMmJDf/OY332u8+XVf2X777bPUUkuVns/uuhs2bFguvvji0vNDDjlkhhVxFxSNGzfOJZdcUmoAHTt2bHbdddeMHj16jsa59dZba60+X3TooYeWHr/44ou1mqbrcuGFF+bjjz8uPT/ssMPmqI6GVnMl8nvvvTcTJkyY6b4ffvhhrr766tmOOS/vn/Xx85//vPT4008/zfnnnz/L/e+4445aK1sv6N+j+rjvvvsyZcqU0lfNhvk5NSefqc8880y976kL6s9NkydPzgEHHFBq9u7evXv++te/ll5fY401ctZZZ5Wen3vuuRX91ycAAAAAYG5prAYAAIA5sMwyy2SZZZYpPT/66KPrXHFyypQp6d27d+65556GLK9ONZvRLr300kyaNKlstUycODGPP/54jjzyyCy33HIZOHBg6bVlllkmd9111/darfrGG2/MAQcckMGDB8+2jtNOO630fIMNNkjLli1r7dOtW7f89re/LT0///zzc/zxx882v1GjRuVvf/tbjjnmmBle23LLLUuPn3rqqVx33XV1jvHBBx9kxx13nKH5uy7HHntsTjrppAwbNmyW+3300Ue59NJLS8+32GKLGfbZe++9s8kmmySZ3nC4//775/rrr59tDa+//np++ctfpk+fPrPdd2HQunXr/PnPfy4979evXw444ICMHz9+lseNGzcuF198cfbbb786X//DH/5Qevzcc8+ld+/emTp16gz7ffzxx9ltt93qfG1udezYMSeccELp+Q033JBf//rXs1yJffTo0TNt/Kx5X/nXv/6VcePGzZM6GzdunN///vel5/fdd19+97vfpbq6eoZ9R44cmV122SVff/11kunft5q/HLAg+tGPflRrHgwePDgbb7xxvT4rXnnlleyyyy7Zd99967w3bL/99rVWnT/88MNn2mz6n//8p1bT+i677JK11157Tt5Kg9t5553TrFmzJNNXfa85T2r65JNP0qtXr9ler0my7bbb5rLLLsuXX345y/3uv//+PProo6Xndd0/62OVVVbJXnvtVXp+8skn584776xz36effrpWs/zaa6+dXXbZZa7OuyBp1KhRmjRpkiZNmnzvX4Ko+Zl666235uGHH65zvxdeeCG9evWa5S+z1FTz/vbiiy/W+lmlnP70pz/lxRdfTJI0b948N9544ww/Mx1zzDGlv7pQXV2dgw8+eJ7dnwEAAACgUjQpdwEAAACwsPnNb36T4447LkkyYMCA9OjRI0ceeWTWWGONTJ48OS+//HKuueaavPnmm2ncuHEOOuigsjac7r///qWVS++///506dIl66yzTtq0aVPaZ5tttqmzEXhunHjiibVW86yurs64cePyxRdf5P3336+zWXSPPfbIlVdemY4dO36vc0+dOjU33XRTbrrppqy88srZcccd06NHj3Tp0iWtW7fOF198kRdffDH/+te/8sEHH5SO++Mf/1jneH/729/y/PPP55FHHkmSnHfeefn3v/+d/fffPxtvvHEWW2yxTJ06NaNHj86QIUPyxBNP5PHHH8+0adOy7777zjDelltumXXWWScvvfRSkumr6w4YMCB77LFHOnfunNGjR+ehhx7KtddemwkTJmSttdZKy5Yt8+yzz870PY8bNy4XXnhh/v73v2fTTTfNlltumbXXXjuLLbZYmjZtmk8//TSDBg3KtddeW2oeXHTRRXP00UfPMFajRo1y2223ZYMNNsiIESMyceLEHHzwwfnnP/+ZvfbaK2uvvXbatm2bCRMmZOTIkXnxxRfz0EMPZciQIUmSddddt37fqIXAkUcemaeffrrU/H7zzTfn/vvvz/7775/NN9+8tKLpmDFj8vrrr+d///tfHnrooUyePDkbbbRRnWPutdde6dWrV/r3758kufLKK/Pss8/miCOOyGqrrZaJEyfmiSeeyGWXXZYvvvgim266aYYOHVprVeHv4//+7//y2GOPlVYwveSSS3L33XfnwAMPzEYbbZQOHTpk/PjxeeuttzJw4MDcd9996dKlS53Nyj/96U9zzjnnpFAo5KWXXsqSSy6Z9dZbL+3bty+tyLzmmmvWWk21vnr37p1+/fqVmiTPPffcDBw4MIcddlhWWWWVfPPNN3nyySdz+eWX5/PPPy8dd95559X6xZcF1V//+tdMnjy5tCL9e++9l1133TVrrrlmfvzjH2fdddfNYostlqqqqowcOTJvvvlm7rnnnlJD5cxUVVWlT58+WX/99TNhwoSMHz8+W265ZQ466KDssssuWWyxxTJixIjccccdue2220rHdezYMVdcccV8fc/zQocOHXLooYfm8ssvT5JcfPHFefvtt3PIIYekW7duGTt2bB577LFcddVVGT9+fA488MDZrlD8/vvvp3fv3jnuuOOyww47ZJNNNslqq62WDh06ZNq0aRk6dGjuvffe3H777aXm/h49emTHHXec6/dxySWXZNCgQfn0008zderU7LnnnvnJT36SvffeO0suuWRGjx6de++9N3379i19XrZo0SLXXXfdArsae7nsu+++OemkkzJy5MhMnTo1O+20Uw4//PD86Ec/Svv27TNixIjce++9ufHGGzN16tTssMMOeeONN2b7i0irrbZa6bO6UChk6623Tvfu3bPUUkulSZNv/y+VK6+8Mosvvvj8fptJksceeyznnntu6flZZ52VNddcc4b9qqqqcu2116Z79+75/PPPM3To0PTu3Ts33nhjg9QJAAAAAD8EGqsBAABgDh1zzDEZMGBABgwYkCQZMmRIjjrqqBn2a9SoUf75z39m0UUXLWtj9W677VarwWzs2LG1Vt5Mknbt2s2z8z333HP12q9Ro0bZfvvtc9RRR2XXXXedZ+cvevvtt/P222/Pdr+//e1v2X333et8rUmTJvnvf/+bww8/vNSU9Mknn9RqbpoTVVVVueGGG7LZZptl3LhxKRQKpUbw71pyySVz++235xe/+EW9xi4UCnnyySdnukJtUevWrXPHHXdkqaWWqvP1JZdcMk8//XR22223UgP4iy++ONumzh+ia6+9Nosvvnjp+z127NhccsklueSSS+Z6zBtvvDE77LBD/ve//yVJXnrppTrvH926dctNN91Ua0XW76tx48a59957s99+++Xuu+9OkgwdOjRnnHHGHI+1zjrr5OSTTy41Tn/99dcZNGhQrX2++OKLuaqzqqoq/fr1S69evUorxT7//PN5/vnnZ3rMOeecU+9rpdwaNWqUc889N2ussUZOPPHEjB49Osn0z5LiLynMSteuXfO3v/2tztdWW221DBgwILvsskvGjRuXadOmpU+fPjP9DOrSpUseeOCBdO3ada7fT0M688wzM2jQoLz22mtJkgceeCAPPPDADPv17NkzV1555Wwbq4u++eab9O/fv/RLDzOz4oor5o477vheDc6LL754Bg4cmO233770SxP9+vVLv3796tx/0UUXTf/+/dO9e/e5PucPVcuWLXPjjTdmp512yuTJkzNlypRcdtllueyyy2bYd/XVV88NN9yQDTbYoF5jX3XVVdl+++1L97FXXnklr7zySq19Zrai/7w2bty4HHzwwaXm/u222y6/+c1vZrp/165dc+WVV2bPPfdMktx0003ZZZdd8tOf/rRB6gUAAACAhV2jchcAAAAAC5vGjRunf//+Oe6442b4E+xFa665ZgYMGFDnqsDlcP311+fOO+/MXnvtleWXXz6tW7curSo7v7Vo0SKLL754VlpppWy++eY5+uij07dv33zwwQe5//7752lT9dZbb50TTzwxa6655izfX1VVVbbYYos89thjM12tumb9N9xwQ+6///707NkzjRrN/J9TGjdunE033TTnnXdeLr744jr3WWONNfL0009n8803r/P1pk2bZt99981LL72UlVdeeZa1JckvfvGLHHrooenWrdts38f++++fIUOGZPvtt5/lvksvvXSeffbZXH755VlppZVmue8iiyySXXfdNTfffHMOOeSQ2da7MGnUqFHOOeecPP300/nxj39ca6XS76qqqso666yTv/zlL7VWA/6uRRZZJI888kh+//vfp2XLljO83rhx4+y+++4ZPHjwfFl9uVWrVvnPf/6Tm2++OauvvvpM96uqqkqPHj1y2mmnzXSfv/zlL3nkkUdy4IEHZpVVVskiiywyz+4riy66aB588MFccMEF6dKly0z322yzzfLkk0/mhBNOmCfnbUg///nP8/777+evf/1rnSvP1tSoUaNsvvnmueqqq/LOO+/M8lrbfPPNM2TIkBx00EFp1qxZnfu0atUqvXv3ziuvvDLbcy9I2rVrl0cffbTOvwiQTL++fv/73+fhhx+u8/r6rjPPPDO777572rZtO8v9OnXqlD/84Q958cUX58l1ueqqq+bll1/OMccck9atW9e5T9OmTfPTn/40Q4YMyVZbbfW9z/lDtc0222TgwIFZa6216ny9VatW+dWvfpVnn302iy22WL3HXX/99TNkyJCcfPLJ2XjjjdOhQ4dZfgbMT0ceeWSGDh2aJGnfvn369Okz23vtHnvskZ///Oel5717957tSt0AAAAAwHRVhUKhUO4iAAAAYGH1+eef59FHH80HH3yQZPrqn927d7ey5AJg7Nixeemll/Lee+/l888/z9SpU7PIIotk2WWXzQYbbDDXK7R+/vnneeKJJzJ8+PCMHTs2zZo1S4cOHbLyyitn7bXXTps2beo91muvvZannnoqo0ePzqKLLpoll1wyW265ZTp06DBXtQ0dOjSvvvpqPvroo3zxxRepqqpK27Zts8oqq2SDDTaYo9pqev/99/PMM89k1KhRGT9+fFq3bp3OnTtn1VVXzVprrZWmTZvO1bgLm/Hjx+eJJ57I0KFDM2bMmDRu3Djt2rXLiiuumO7du6dTp05zPN5DDz2UDz74IIVCId26dcvmm2+eJZdccj69gxm99957eeaZZ/Lpp59mwoQJWXTRRbP88stn/fXXzxJLLNFgdcxKoVDIc889l1dffTWfffZZmjdvniWWWCI9e/ac7S8ULEw++eSTPP/88xk1alRGjx6dxo0bp3379llhhRWy/vrrZ9FFF53jMcePH5+BAwdm6NChGTduXNq3b5/lllsuW265Zb0ajxdkH3/8cR599NF88sknadmyZZZZZplsu+22WWSRReZ4rOrq6rz++ut566238vHHH2f8+PFp1qxZOnbsmLXWWivrrrvufLvPffPNN3n88cfz/vvvZ8yYMWnTpk2WXnrpbLXVVnN9z65EhUKhtLL92LFj0759+yy11FLZaqut5mpOAAAAAACVS2M1AAAAAAAAAAAAAFDxZv63awEAAAAAAAAAAAAAKoTGagAAAAAAAAAAAACg4mmsBgAAAAAAAAAAAAAqnsZqAAAAAAAAAAAAAKDiaawGAAAAAAAAAAAAACpek3IXsCCZPOzlcpewQGiz0q7lLqHsplZPK3cJLACqyl3AAqJQ7gIAAAAAAAAAACrA1MnDy10CFWLK6PfLXQIVoGmn5ctdwlyxYjUAAAAAAAAAAAAAUPE0VgMAAAAAAAAAAAAAFU9jNQAAAAAAAAAAAABQ8TRWAwAAAAAAAAAAAAAVT2M1AAAAAAAAAAAAAFDxNFYDAAAAAAAAAAAAABVPYzUAAAAAAAAAAAAAUPE0VgMAAAAAAAAAAAAAFU9jNQAAAAAAAAAAAABQ8TRWAwAAAAAAAAAAAAAVT2M1AAAAAAAAAAAAAFDxmpS7AAAAAAAAAAAAAAAaSPW0clcACywrVgMAAAAAAAAAAAAAFU9jNQAAAAAAAAAAAABQ8TRWAwAAAAAAAAAAAAAVT2M1AAAAAAAAAAAAAFDxNFYDAAAAAAAAAAAAABVPYzUAAAAAAAAAAAAAUPE0VgMAAAAAAAAAAAAAFU9jNQAAAAAAAAAAAABQ8TRWAwAAAAAAAAAAAAAVT2M1AAAAAAAAAAAAAFDxNFYDAAAAAAAAAAAAABWvSbkLAAAAAAAAAAAAAKCBFKrLXQEssKxYDQAAAAAAAAAAAABUPI3VAAAAAAAAAAAAAEDF01gNAAAAAAAAAAAAAFQ8jdUAAAAAAAAAAAAAQMXTWA0AAAAAAAAAAAAAVDyN1QAAAAAAAAAAAABAxdNYDQAAAAAAAAAAAABUPI3VAAAAAAAAAAAAAEDF01gNAAAAAAAAAAAAAFQ8jdUAAAAAAAAAAAAAQMXTWD0Hrr6pX9babp/8/dI+s9zvnocHZc9f/C4b7Hxgtt7nFznlnEvzxbjx87W2t98fmkOOOzXr//iAbLvvL3PZ9benUCiUXn9o0DM54sS/ZIs9D8vGvX6WA44+OU8+99J8rWlOLbJI65xzzql5++2nMnbs23n00TvTo0f3cpfVoHpuvlHu6tcnQz8cnKmTh6dXrx3LXVKDk0Hyy18cnBcGP5jPR7+Zz0e/mUGP98+OO25d7rLK4le//Fneeet/+erL9/LM0/dl8802LHdJDa7SM3BPkEFNlX49JDJIZFAkBxkkMkhk4OeEb5kL5kJiHpgH36r0uZDIIJFBkRxkkMggkUGRHGSQyKCoknPw3w7fquR5kJgLNVX6XEhkkMgAgG9prK6nIW++m9vvfSgrL7/MLPd74dU3c/LfL84eO22dflefl3/86bi89tZ7OfW8y+f63MNHjspa2+0z09e/+npCfvH7v2Txju1z8yVn5qRfH5q+t92d626/p7TP4FffyCY9uufSv52UWy49Kxuus0Z+/ae/5413Ppjruua1yy47O9tu2zOHHnpsevTYPg8/PCj33ntTunbtXO7SGkzr1q3yyiuv55hjTyl3KWUjg+Tj4SPyx5PPzMab/Dgbb/LjPDrwydx5x7+y+uorl7u0BrX33r1y3j9Oy5lnXZj1N9wxTzzxbO65+4YstVTXcpfWYGTgnpDIoMj1IINEBkVykEEig0QGiZ8TiswFcyExDxLzoMhckEEigyI5yCCRQSKDIjnIIJFBUaXn4L8dpqv0eZCYC0XmggwSGVChqqt9+Zr/XwupqkLNZY0r3ORhL9e5fcLEb7LPr36fk485LFfeeGdWXXHZ/L73IXXu2+fW/rnl7gdz3/UXlbbd2O++XHtr/zx082Wlbf3ufzTX3to/w0eMStclFssBu++U/Xar+7f/ho8clR8d+Ou8+tCtdb5+S/8HcsE1N2XgbVelWbOmSZKrb74rN991Xx769+Wpqqqq87jdDzsuO261aY48aK9a29ustGud+89PLVo0z+jRb2SvvQ7P/fc/Utr+zDP35b77Hs5pp53boPVMrZ7WoOers4bJw7PHXoemf/8B5S6lbMqdQd1XTnl8OnJI/vCHv+baPv9u8HOX60PiqSfuzgsvDsmvjz6ptO3VVwamf//7c/IpZ5WpqoYlg9rKfU9YEFRyBq4HGSQyKJKDDBIZJDL4Lj8nmAtFlToXzIPaKnUeJOZCIoNEBkVykEEig0QGRXKQQSKDIjl8y387mAdF5kJlzwUZLFgZTJ08vEHPR+WaMuKNcpdABWjaZbVylzBXFsoVqz/++OOcfPLJ2XrrrbPaaqtl9dVXz9Zbb52TTz45w4YNm+fn+9uFV6fnRutmkx7dZ7vvOmuskk9Hf57Hn3khhUIho8d+kQcHPZ0tNlq3tM/t/30oF1377xzz8/3yn3/9M7859Ke5uM8t+c8DA+eqvpdffzs9uq9eaqpOks3WXzujPh+b4SM/q/OY6urqfD1hYtouushcnXNea9KkSZo0aZJJkybV2j5x4jfZdNMNylQVlF+jRo2yzz690rp1qzz9zOByl9NgmjZtmvXW654HH3qs1vYHH3wsm2y8fpmqalgygG+5HmSQyKBIDjJIZJDIgG+ZCyTmAd8yF2SQyKBIDjJIZJDIoEgOMkhkUCQHEvOAb5kLMkhkAMCMmpS7gDn1xBNPZKeddspSSy2VHXbYITvssEMKhUJGjRqVu+66KxdddFHuu+++bLbZZrMcZ9KkSTM08VZNmpzmzZvV2nbfo0/m9Xc+yL8vPbNe9a2zxio566Rj8ru/np/Jk6dk6rRp2WqT9XPSrw8t7XPFDXfkhF8elO16bpQk6dZl8bz30ce57Z6HstsOW9XrPDWNHvtFunZerNa2ju3bll7r1mXxGY7pe9s9mfjNpOy45SZzfL754auvvs7//vd8TjrpmLz55rv59NPPsu++u2XDDdfNu+9+UO7yoMGtueaqGfR4/7Ro0TxfffV19tr78LzxxjvlLqvBdOrUIU2aNMmoT0fX2j5q1Oh0XmLGe9oPkQzgW64HGSQyKJKDDBIZJDLgW+YCiXnAt8wFGSQyKJKDDBIZJDIokoMMEhkUyYHEPOBb5oIMEhkAMKOFrrH6t7/9bQ4//PD885//nOnrxx57bJ577rlZjnPmmWfm9NNPr7XtlGN/mT8dd2Tp+chRo3PWJX1y5d9PTvNmzb47RJ3e++jjnHXJtfnVgXtl0w3WzujPx+YfV96Qv5x/Vf58wpEZ88WXGfnZ5zn1H5fntPOuKB03bVp1FmndqvR898OOyyef1l5tesNdDio97tp5sdx1zXml51VVVbX2LRS311HjvY88kcuuvy0XnP67UgP2guCww36bK644Jx988FymTp2aF18ckltuuSvrrLNWuUuDBvfWW+9l/Q12SLu2bfKTPX6cf11zfrbdbs+Kaq5OkkKhUOt5VVXVDNt+6GQA33I9yCCRQZEcZJDIIJEB3zIXSMwDvmUuyCCRQZEcZJDIIJFBkRxkkMigSA4k5gHfMhdkkMgAgG8tdI3VQ4YMyQ033DDT13/5y1/m8ssvn+04J510Uo477rha26pGvVXr+WvvvJ8xX4zLvkf+obRtWnV1Br/6Rm6+6/4Mvu+mNG7cqNYxV9/cL+ussUp+vm+vJMkqyy+Tli1a5Ge//b8c/fP9UtVoeqvzqcf9Mt1XXanWsY0afTvWpWeclKlTpyVJPh09Jocef1puv+Kc0utNmjQuPe7Uvl1Gj/mi1lhjxo5LknRs367W9vsffSqn/uPy/ONPx2WTHt3rDqdM3n//o2y//T5p1apl2rRZNCNHjsr111+SDz8cWu7SoMFNmTIl7733YZJk8AuvZP0e6+ToXx+e3kf9vryFNZDRo8dk6tSp6bxE7dX4F1usY0Z955dOfqhkAN9yPcggkUGRHGSQyCCRAd8yF0jMA75lLsggkUGRHGSQyCCRQZEcZJDIoEgOJOYB3zIXZJDIAIAZNZr9LguWLl265Kmnnprp6//73//SpUuX2Y7TvHnztGnTptZX8+a1V6XeeN21cudV5+a2K84ufa2x8grZedvNc9sVZ8/QVJ0k33wzKY2+s3p0o/+/X6FQSKf27bJ4pw75eMSnWXrJJWp9devy7Z+P6Np5sdL2rp07JUmtfbt2/vbDfO3VV87gV9/IlClTS9ueGvxyFu/YPkvW+NC/95Encso5l+SsPx6TLTZeb7YZlcuECRMzcuSotGvXNttvv0XuuefBcpcEZVdVVTXDPeqHbMqUKXnhhVey3bZb1Nq+3XZb5H9PP1+mqhqWDOBbrgcZJDIokoMMEhkkMuBb5gKJecC3zAUZJDIokoMMEhkkMiiSgwwSGRTJgcQ84FvmggwSGQAwo4VuxeoTTjghv/rVrzJ48OBsv/326dy5c6qqqjJy5Mg8+OCDufrqq3P++efPk3O1btUyKy23dK1tLVs0T7s2i5a2n3/1TRk1ekzO+MOvkyRbbrJ+Tj/vitzS/4Fsuv7aGT1mbP5+ad+steqKWbxThyRJ74P3zlmXXJtFWrXK5huuk8mTp+a1t9/Ll199nZ/ttcsc1/njbTbPZdfflpPPviRH7P+TDB0+Mlff1C+/OmivVP3/Ju97H3kiJ//9kvy+9yFZe7WVSytcN2/WLIsu0mpuI5qntttui1RVVeWdd97PCissmzPO+GPefvv99O17a7lLazCtW7fKiisuV3q+3LJLZ+2118iYMWMzbNgnZays4cgg+ctf/pD7738kH3/8SRZddJHss89u2XLLTbLzLgeUu7QG9c8Lrkrfay/I4MEv5+lnBueIww7M0kstmSuuvL7cpTUYGbgnJDIocj3IIJFBkRxkkMggkUHi54Qic8FcSMyDxDwoMhdkkMigSA4ySGSQyKBIDjJIZFBU6Tn4b4fpKn0eJOZCkbkgg0QGANS20DVW9+7dOx07dsw///nPXHHFFZk2bVqSpHHjxunRo0euu+667LPPPg1Wz2djxmbEqNGl57vvuFW+njAxN//n/px7xXVZdJHW2XCdNfLbIw4s7bPnj7dNi+bN0+fW/jnvqhvSskXzrLTc0jloj53nqoZFF2mVK//+p/ztomuyX++T0mbR1jl4r11ycI0m7dvueShTp03L3y66Jn+76JrS9l47bJm/nXjUXJ13Xmvbtk3+8pffZ8kll8iYMeNy11335tRTz8nUqVNnf/APxPo91s7DD91eev6Pc09LkvS97tYcdvhvy1RVw5JB0nnxTulz7YXp0mXxjBs3Pq+++kZ23uWAPPzwoHKX1qBuu61/OnZon1NO/m26dFk8Q157K7v2OihDhw4vd2kNRgbuCYkMilwPMkhkUCQHGSQySGSQ+DmhyFwwFxLzIDEPiswFGSQyKJKDDBIZJDIokoMMEhkUVXoO/tthukqfB4m5UGQuyCCRAQC1VRUKhUK5i5hbU6ZMyejR05uaO3XqlKZNm36v8SYPe3lelLXQa7PSruUuoeymVk8rdwksAKrKXcACYqH9kAAAAAAAAAAAWIhMnayZm4YxZcQb5S6BCtC0y2rlLmGuLHQrVtfUtGnTdOnSpdxlAAAAAAAAAAAAAAALuUblLgAAAAAAAAAAAAAAoNwW6hWrAQAAAAAAAAAAAKi/QqG63CXAAsuK1QAAAAAAAAAAAABAxdNYDQAAAAAAAAAAAABUPI3VAAAAAAAAAAAAAEDF01gNAAAAAAAAAAAAAFQ8jdUAAAAAAAAAAAAAQMXTWA0AAAAAAAAAAAAAVDyN1QAAAAAAAAAAAABAxdNYDQAAAAAAAAAAAABUPI3VAAAAAAAAAAAAAEDF01gNAAAAAAAAAAAAAFQ8jdUAAAAAAAAAAAAAQMVrUu4CAAAAAAAAAAAAAGgg1dXlrgAWWFasBgAAAAAAAAAAAAAqnsZqAAAAAAAAAAAAAKDiaawGAAAAAAAAAAAAACqexmoAAAAAAAAAAAAAoOJprAYAAAAAAAAAAAAAKp7GagAAAAAAAAAAAACg4mmsBgAAAAAAAAAAAAAqnsZqAAAAAAAAAAAAAKDiaawGAAAAAAAAAAAAACqexmoAAAAAAAAAAAAAoOJprAYAAAAAAAAAAAAAKl6TchcAAAAAAAAAAAAAQAMpVJe7AlhgWbEaAAAAAAAAAAAAAKh4GqsBAAAAAAAAAAAAgIqnsRoAAAAAAAAAAAAAqHgaqwEAAAAAAAAAAACAiqexGgAAAAAAAAAAAACoeBqrAQAAAAAAAAAAAICKp7EaAAAAAAAAAAAAAKh4GqsBAAAAAAAAAAAAgIrXpNwFLEharfDjcpewQJj48cByl1B2LbttVe4SWAAUyl0AAAAAAAAAAAAA0GCsWA0AAAAAAAAAAAAAVDyN1QAAAAAAAAAAAABAxWtS7gIAAAAAAAAAAAAAaCDV08pdASywrFgNAAAAAAAAAAAAAFQ8jdUAAAAAAAAAAAAAQMXTWA0AAAAAAAAAAAAAVDyN1QAAAAAAAAAAAABAxdNYDQAAAAAAAAAAAABUPI3VAAAAAAAAAAAAAEDF01gNAAAAAAAAAAAAAFQ8jdUAAAAAAAAAAAAAQMXTWA0AAAAAAAAAAAAAVDyN1QAAAAAAAAAAAABAxdNYDQAAAAAAAAAAAABUvCblLgAAAAAAAAAAAACABlKoLncFsMCyYjUAAAAAAAAAAAAAUPE0VgMAAAAAAAAAAAAAFU9jNQAAAAAAAAAAAABQ8TRWAwAAAAAAAAAAAAAVT2M1AAAAAAAAAAAAAFDxNFYDAAAAAAAAAAAAABVPYzUAAAAAAAAAAAAAUPE0VgMAAAAAAAAAAAAAFU9jNQAAAAAAAAAAAABQ8TRWAwAAAAAAAAAAAAAVT2M1AAAAAAAAAAAAAFDxmpS7AAAAAAAAAAAAAAAaSHV1uSuABZYVqwEAAAAAAAAAAACAiqexGgAAAAAAAAAAAACoeBqrAQAAAAAAAAAAAICKp7EaAAAAAAAAAAAAAKh4GqsBAAAAAAAAAAAAgIqnsRoAAAAAAAAAAAAAqHgaqwEAAAAAAAAAAACAiqexegHxq1/+LO+89b989eV7eebp+7L5ZhuWu6Q6XXX9rVmz5y4568IrZ7nfzXfek10P/FV6bLtHdtn/l/nP/Q/P99refu/DHPLrP6THtntkm58cnMuuvTmFQqH0+oOPPZXDf3tKeu6yfzbace8c8Kvj8+Qzg+d7XXOi5+Yb5a5+fTL0w8GZOnl4evXasdwllcXCcj3MTzKYTg4ySGSQyKBIDjJIZFAkBxkkMkhkUCQHGfj3BBnUVOnXQyKDRAaJDIrkIINEBokMiuQgg0QGRXKQQSKDRAZFcpBBIgMAvqWxegGw9969ct4/TsuZZ12Y9TfcMU888WzuufuGLLVU13KXVsurb7yd2+8ekJVXWHaW+/273705/4q+6f3z/XPX9Zem96H752/nXZ6BTz4z1+cePuLTrNlzl5m+/tXXE3LEcadksU4d8u+rzstJx/4qff59Z/re0q+0z+CXh2TT9dfJpeeclluvPj8brNs9R/3hL3nj7ffmuq55rXXrVnnllddzzLGnlLuUsllYrof5SQbTyUEGiQwSGRTJQQaJDIrkIINEBokMiuQgg8S/JyQyKHI9yCCRQSKDIjnIIJFBIoMiOcggkUGRHGSQyCCRQZEcZJDIAIDaqgo1l/StcE2aLVmW8z71xN154cUh+fXRJ5W2vfrKwPTvf39OPuWsBq9n4scDZ9g2YcLE7H3Yb3LK8b1zRd9/Z9WVls8fjvlFnccfcOQJWXfN1XPCUYeWtp114ZV57c13c/2lZ5e29fvvg/nXzXdk+IhPs+QSnXPAXrtmv5/sXOeYw0d8mh33OSxDBt1T5+v/7ndvLriybx77zw1p1qxpkuTqG27LTXfcnYfv7Juqqqo6j9vtoN750TY9c+TPf1pre8tuW9W5f0OaOnl49tjr0PTvP6DcpTSoBe16KAcZTCcHGSQySGRQJAcZJDIokoMMEhkkMiiSgwy+q1L/PaGmSs7A9SCDRAaJDIrkIINEBokMiuQgg0QGRXKQQSKDRAZFcpBBsmBlMHXy8AY9H5Vr8vvPlrsEKkCz5RfO1f+tWF1mTZs2zXrrdc+DDz1Wa/uDDz6WTTZev0xVzeiv/7wsW2yyQTZZf53Z7jtl8pQ0b9601rbmzZrl1TfezpSpU5Mkt/e/PxdedX2OOeLg9L/+shzzi4Nz0dU35D/3PTxX9b382htZf501S03VSbLZhutl1OgxGT7i0zqPqa6uztcTJqZtm0Xm6pzMewvL9TA/yWA6OcggkUEigyI5yCCRQZEcZJDIIJFBkRxkADW5HmSQyCCRQZEcZJDIIJFBkRxkkMigSA4ySGSQyKBIDjJIZADAjJqUu4D5YdiwYTn11FPzr3/9a6b7TJo0KZMmTaq1rVAozHRl4/mlU6cOadKkSUZ9OrrW9lGjRqfzEos3aC0zc+9Dj+WNt9/Lv6/8Z73233TD9XLH3Q9km56bZPWVV8hrb72bfvc+lKlTp+aLL77MYp065PK+t+R3vz4s22+5aZKkW9cl8v6HQ3Nr//uy207bznGNo8d8kSW/k1fHDu3+/2tj063rEjMc0+ff/TLxm2+y4zY95/h8zB8Lw/Uwv8lgOjnIIJFBIoMiOcggkUGRHGSQyCCRQZEcZAA1uR5kkMggkUGRHGSQyCCRQZEcZJDIoEgOMkhkkMigSA4ySGRA5SoUqstdAiywfpCN1WPGjEnfvn1n2Vh95pln5vTTT6+1rarRIqlq3GZ+l1enQqFQu5aqqhm2lcOITz/LWRdelSvP+3OaN29Wr2N+dch+GT1mbA745fEppJCO7dtl9522zb9uuiONGjfKmLHjMnLUZ/m/sy7MqWdfVDpu2rRpWaR169Lz3Q7qnU8+HTX9yf/PYoMd9iq93rXz4vnP9ZeWnn+3Kb6YX13N8vc+9Fguu/amXHjmn9Kxfbt6vS8azoJ6PTQkGUwnBxkkMkhkUCQHGSQyKJKDDBIZJDIokoMMoCbXgwwSGSQyKJKDDBIZJDIokoMMEhkUyUEGiQwSGRTJQQaJDAD41kLZWN2/f/9Zvv7+++/PdoyTTjopxx13XK1t7Tuu+r3qmhujR4/J1KlT03mJxWptX2yxjhn16WcNXs93vf7Wuxkz9ovse/ixpW3TplVn8Muv5eY778kLD/dL48aNax3Tonnz/PWkY3Pq736dz8d8kcU6ts9t/QekdauWad+2TcZ8MS5JctqJv0731VepdWyjRo1Kjy8757RMnTo1SfLpZ5/n58eclDv+dWHp9SZNvp2+nTq0y+gxY2uNNWbs9PN8t3H6vocfz/+ddWH+8ec/ZJP115mzQJivFvTroSHIYDo5yCCRQSKDIjnIIJFBkRxkkMggkUGRHGQANbkeZJDIIJFBkRxkkMggkUGRHGSQyKBIDjJIZJDIoEgOMkhkAMCMGs1+lwXP7rvvnp/85CfZfffd6/z6bsN0XZo3b542bdrU+qprZeP5bcqUKXnhhVey3bZb1Nq+3XZb5H9PP9/g9XzXxuuvnX59L87t/7qw9LXGqitl5+23yu3/unCGpuqamjZpkiUW75TGjRvn/ocfz5abbphGjRqlU4f26bxYx3z8ycgs3a1rra9uXZcoHd91icVL27v+/z+tUXPfrjX+3Mbaa6yWwS8NyZQpU0rbnnruxSzeqUOW7NK5tO3ehx7LKWecn7//3wnZctMN5mVUzAML+vXQEGQwnRxkkMggkUGRHGSQyKBIDjJIZJDIoEgOMoCaXA8ySGSQyKBIDjJIZJDIoEgOMkhkUCQHGSQySGRQJAcZJDIAYEYL5YrVXbp0ySWXXJLdd9+9ztdfeuml9OjRo2GL+h7+ecFV6XvtBRk8+OU8/czgHHHYgVl6qSVzxZXXl7u0tG7VKistv2ytbS1bNE+7touWtv/z8j4ZNfrznHnK8UmSD4cOz6tvvJ3uq6+cL8d/lb633JV3Pvgofzv5t6Uxjvz5/jnrgivTunWr9Nxo/UyeMiWvvflOvhz/VX6230/muM6dt98yl/W5KSefcX6OOGjvfPTxJ7nq+lvzq0P2KzXM3/vQY/njX8/LH37zi6y9xqoZ/fn0Fa6bN2+WRRdpPRfpzHutW7fKiisuV3q+3LJLZ+2118iYMWMzbNgnZays4SzI10NDkcF0cpBBIoNEBkVykEEigyI5yCCRQSKDIjnIIPHvCYkMilwPMkhkkMigSA4ySGSQyKBIDjJIZFAkBxkkMkhkUCQHGSQyAKC2hbKxukePHnnhhRdm2lhdVVWVQqHQsEV9D7fd1j8dO7TPKSf/Nl26LJ4hr72VXXsdlKFDh5e7tHoZ/fnYjKjxpy+mVVen7y398uHQ4WnSpHE2XLd7brjsnForR++1645p2aJ5rr35zpx32bVp2aJFVl5+2Ry4T6+5qmHRRVrnqvP+mr/987Lse8Rv02aRRXLwvrvnZ/t+26R963/uy9Rp0/LX8y7LX8+7rLR9tx9tW6vpu5zW77F2Hn7o9tLzf5x7WpKk73W35rDDF4wa57eF/XqYF2QwnRxkkMggkUGRHGSQyKBIDjJIZJDIoEgOMkj8e0IigyLXgwwSGSQyKJKDDBIZJDIokoMMEhkUyUEGiQwSGRTJQQaJDACoraqwMHUg/3+DBg3K119/nR/96Ed1vv7111/n+eefz5ZbbjlH4zZptuS8KG+hN/HjgeUuoexadtuq3CUAAAAAAAAAAAAVZOpkzdw0jEnvPV3uEqgAzVfYuNwlzJWFcsXqnj17zvL11q1bz3FTNQAAAAAAAAAAAABQuRqVuwAAAAAAAAAAAAAAgHLTWA0AAAAAAAAAAAAAVDyN1QAAAAAAAAAAAABAxdNYDQAAAAAAAAAAAABUvCblLgAAAAAAAAAAAACABlJdXe4KYIFlxWoAAAAAAAAAAAAAoOJprAYAAAAAAAAAAAAAKp7GagAAAAAAAAAAAACg4mmsBgAAAAAAAAAAAAAqnsZqAAAAAAAAAAAAAKDiaawGAAAAAAAAAAAAACqexmoAAAAAAAAAAAAAoOJprAYAAAAAAAAAAAAAKp7GagAAAAAAAAAAAACg4mmsBgAAAAAAAAAAAAAqnsZqAAAAAAAAAAAAAKDiNSl3AQAAAAAAAAAAAAA0kEJ1uSuABZYVqwEAAAAAAAAAAACAiqexGgAAAAAAAAAAAACoeBqrAQAAAAAAAAAAAICKp7EaAAAAAAAAAAAAAKh4GqsBAAAAAAAAAAAAgIqnsRoAAAAAAAAAAAAAqHgaqwEAAAAAAAAAAACAiqexGgAAAAAAAAAAAACoeBqrAQAAAAAAAAAAAICKp7EaAAAAAAAAAAAAAKh4GqsBAAAAAAAAAAAAgIrXpNwFAAAAAAAAAAAAANBAqqeVuwJYYFmxGgAAAAAAAAAAAACoeBqrAQAAAAAAAAAAAICKp7EaAAAAAAAAAAAAAKh4GqsBAAAAAAAAAAAAgIqnsRoAAAAAAAAAAAAAqHhNyl0AC56W3bYqdwllN/7uk8pdQtktuuuZ5S6h7BpVVZW7hAVCoVAodwllJwEAAAAAAAAAAIAfPitWAwAAAAAAAAAAAAAVT2M1AAAAAAAAAAAAAFDxNFYDAAAAAAAAAAAAABVPYzUAAAAAAAAAAAAAUPE0VgMAAAAAAAAAAAAAFa9JuQsAAAAAAAAAAAAAoIEUqstdASywrFgNAAAAAAAAAAAAAFQ8jdUAAAAAAAAAAAAAQMXTWA0AAAAAAAAAAAAAVDyN1QAAAAAAAAAAAABAxdNYDQAAAAAAAAAAAABUPI3VAAAAAAAAAAAAAEDF01gNAAAAAAAAAAAAAFQ8jdUAAAAAAAAAAAAAQMXTWA0AAAAAAAAAAAAAVDyN1QAAAAAAAAAAAABAxdNYDQAAAAAAAAAAAABUvCblLgAAAAAAAAAAAACABlJdXe4KYIFlxWoAAAAAAAAAAAAAoOJprAYAAAAAAAAAAAAAKp7GagAAAAAAAAAAAACg4mmsBgAAAAAAAAAAAAAqnsZqAAAAAAAAAAAAAKDiaawGAAAAAAAAAAAAACqexmoAAAAAAAAAAAAAoOJprAYAAAAAAAAAAAAAKp7GagAAAAAAAAAAAACg4mmsBgAAAAAAAAAAAAAqnsZqAAAAAAAAAAAAAKDiNSl3AQAAAAAAAAAAAAA0kEJ1uSuABZYVqwEAAAAAAAAAAACAiqexGgAAAAAAAAAAAACoeBqrAQAAAAAAAAAAAICKp7EaAAAAAAAAAAAAAKh4GqsXEL/65c/yzlv/y1dfvpdnnr4vm2+2YblLKouFIYdrHng+6xxzUc6+4/GZ7vPie5/kZ/+8PVv+4apsdPyl2f2v1+f6R1+c77W988noHHbBHdno+Euz/Z/+lSvuezaFQqH0+sMvv5tfXnJXtj7pqmz2u8tz8Hm35ak3Pprvdc2phWEeNJQTf3dUJk/6OOeee1q5S2lQJ5746/zvqf9mzOdvZfjHL+f226/JyiuvUO6yysL1IINEBkVykEEigyI5yCCRQSKDIjnIIJFBIoMiOcggkUHPzTfKXf36ZOiHgzN18vD06rVjuUsqm0qfC4kMEhkkMnBf/Falz4VEBkWVnIN7wrcqeR4UyWA6OcjAvRGAmjRWLwD23rtXzvvHaTnzrAuz/oY75oknns09d9+QpZbqWu7SGtTCkMOQjz7NHU+9lpW7dpzlfi2bNc1+W3TPNb/ZI3f+8cAcseMGueS/T+f2J4fM9bmHf/5l1jnmopm+/tXEyfnVJf/JYm1b58bj980f9toi1z3yQq2G7sHvfpKNV1kqF/2qV2763X5Zf6Ulc8yV9+TNYZ/NdV3z2sIwDxpKjx5r57DDD8grr7xe7lIa3BY9N85ll/XN5j13zU4//mmaNG6Se/97U1q1alnu0hqU60EGiQyK5CCDRAZFcpBBIoNEBkVykEEig0QGRXKQQSKDJGndulVeeeX1HHPsKeUupazMBRkkMkhkkLgvFpkLMiiq9BzcE6ar9HmQyKBIDjJI3BsBqK2qUHM52wrXpNmSZTnvU0/cnRdeHJJfH31SadurrwxM//735+RTzipLTeWwIOUw/u6TZtg2YdLk7Hf2LfnjPlvmqgHPZ5UlO+XEPbeo95jHXf3ftGzWNH87eIfStruefj19H34hwz//Ml07LJqfbrl29u3Zvc7jh3/+ZXY+vW9euvDoOl+/ddCrufCep/LIXw9Ps6aNkyT/evD53Pz4K3ngzz9PVVVVncftccaN2XHdlfLLnWr/tuGiu55Z7/c2Ly1I86DRTDJrCK1bt8qzz9yfo4/5Y076w2/y8iuv5YQTTitLLQvCx0SnTh0y4pNXs/U2e+SJJ55p8POXK4EF6XooFxnIoEgOMkhkUCQHGSQySGRQJAcZJDJIZFAkBxkkMviuqZOHZ4+9Dk3//gPKXUqDMxdkkMggkcF3uS9W9lyQwXRy+JZ7QmXPAxlMJwcZfFe5741TJw8vy3mpPJOGPFjuEqgAzdfcvtwlzBUrVpdZ06ZNs9563fPgQ4/V2v7gg49lk43XL1NVDW9hyOGM2x5LzzWWzcarLD3Hx7457LO8/MHI9Fjx2+b9O54akkvueTq/3mXj9Dv5gBy96ya59L/PpP8zb8xVfa98OCLrr7Bkqak6STZddZl8Nu7rfDLmyzqPqa4uZMKkyWnbuvlcnXNeWxjmQUO58IK/5d77Hs4jjzxR7lIWCG3btkmSjB37RXkLaUCuBxkkMiiSgwwSGRTJQQaJDBIZFMlBBokMEhkUyUEGiQz4lrkgg0QGiQz4lrkggyI5kJgHiQyK5CADAKhLk3IXMLcmTpyYwYMHp0OHDll99dVrvfbNN9/k1ltvzcEHHzzT4ydNmpRJkybV2lYoFGa6qu/80qlThzRp0iSjPh1da/uoUaPTeYnFG7SWclrQc7h/8Nt5c9hnufGEfebouB3+9K+M/WpiplUX8qudNswem65Reu2qAc/luJ9snm3XXjFJsmTHtnl/5Njc/uSQ9NpotTmucfSXE9K1Y5ta2zq0aVl6bcmObWc45rpHX8zESVOzw7orzfH55ocFfR40lH327pV1110rm2y6c7lLWWCcc86peeKJZ/Laa2+Vu5QG43qQQSKDIjnIIJFBkRxkkMggkUGRHGSQyCCRQZEcZJDIgG+ZCzJIZJDIgG+ZCzIokgOJeZDIoEgOMgCAuiyUjdVvv/12dthhhwwdOjRVVVXp2bNnbr755nTp0iVJMm7cuPz85z+fZWP1mWeemdNPP73WtqpGi6SqcZuZHDF/FQqF2rVUVc2wrRIsiDmMHDs+Z9/5eC7rvVuaN52zS+baY/fMhElT8sqHI3Nh//9lqcXaZaceK2fM+IkZOfarnH7Tw/nzzY+U9p9WXZ1FWjYrPd/jjBszYsz4JEkh03PY5ITLS6936bBo7vzjAaXn3/21gGJ0VTO8ktw3+O1cft8zOf+IndNh0VZz9L7mtwVxHjSUbt265B//OD0777z/DL/8UakuvOBvWWvN1bLV1j8pdyllUcnXQ5EMZFAkBxkkMiiSgwwSGSQyKJKDDBIZJDIokoMMEhnwLXNBBokMEhnwLXNBBkVyIDEPEhkUyUEGAFDTQtlY/fvf/z5rrbVWnn/++XzxxRc57rjjstlmm2XgwIFZeuml6zXGSSedlOOOO67WtvYdV50f5c7S6NFjMnXq1HReYrFa2xdbrGNGffpZg9dTLgtyDq8PG5Ux4ydm/3NuKW2bVl3IC+8Nzy2DXsmz5/VO40aN6jy2uEr0Sl07Zcz4ibn8vmeyU4+VSz98/mm/bbLWsp1rHdO40bdN0Bf/atdMnVadJBn1xdc5/KI7c8vv9yu93qTxt+ft1KZVPv9yQq2xxo6fmCTp+P9Xri4a8MLbOf2mh3P2oT/KxqvU75ppCAvyPGgo663XPZ07L5ann76vtK1Jkybp2XOj9D7ykCyy6PKprq4uY4UN6/x//iW77LJDttl2jwwfPqLc5TQo14MMEhkUyUEGiQyK5CCDRAaJDIrkIINEBokMiuQgg0QGfMtckEEig0QGfMtckEGRHEjMg0QGRXKQAQDUpe5u0AXcU089lTPOOCOdOnXKiiuumP79+2ennXZKz5498/7779drjObNm6dNmza1vqqqZlzVd36bMmVKXnjhlWy37Ra1tm+33Rb539PPN3g95bIg57DRykvl9j/sn1tO/Gnpa/WlF8+Pe6ySW0786Uybqr+rUChk8tRpSZKObVpl8batM/zzcVl6sXa1vorN2EnStUOb0vYuHRZNklr7du3w7Qrr3ZftksHvfZIp//8cSfK/N4dmsbata+133+C38383PpQzfrZDtlhjue+Vzby2IM+DhvLII09k3XW3zQYb7Fj6ev75l3Lzzf2ywQY7VlRT9QXn/zW7775Tdthxn3z44bByl9PgXA8ySGRQJAcZJDIokoMMEhkkMiiSgwwSGSQyKJKDDBIZ8C1zQQaJDBIZ8C1zQQZFciAxDxIZFMlBBlDRqqt9+Zr/XwuphXLF6okTJ6ZJk9qlX3LJJWnUqFG23HLL3HTTTWWqbO7884Kr0vfaCzJ48Mt5+pnBOeKwA7P0UkvmiiuvL3dpDWpBzaF1i2ZZsWvHWttaNmuatq1blLZf2P+pjBr3Vf560A5Jkn8//kq6tF80y3ZunyR58f1Pct0jL2a/LbqXxvjVThvl7DseT+sWzbL56stk8tRpeW3oqIyfMCkHbbPuHNe50/or54r7n82fbnwoh2+/foZ+9kWuefD5/OJHG5R+aeC+wW/nT9c/mN/t2TPdl10io7/8OknSvGmTLNqy+ZyHMx8sqPOgoXz11dd57fW3am37+uuJ+XzM2Bm2/5BddOEZ2W+/3bPHnodm/Piv0rnz9N+OHTdufL755psyV9dwKv16SGSQyKBIDjJIZFAkBxkkMkhkUCQHGSQySGRQJAcZJDJIktatW2XFFb9dVGK5ZZfO2muvkTFjxmbYsE/KWFnDMhdkkMggkUHivlhkLsigqNJzcE+YrtLnQSKDIjnIIHFvBKC2hbKxetVVV83zzz+f1VZbrdb2iy66KIVCIb169SpTZXPnttv6p2OH9jnl5N+mS5fFM+S1t7Jrr4MydOjwcpfWoBbmHD778uuMGPtV6XmhUMiF9zyV4Z9/mSaNGqVbp7Y5ZtdNs9dma5b22WPTNdKiWZP0ffiFnP+fJ9OyedOs1KVjDthqnbmqYdGWzXP5UbvlzNsey/7n3pI2rZrnwK3XyUFbf9ukffuTQzK1ujpn3vZYzrztsdL2XTdcNX85cPu5Ou+8tjDPA+adX/3qZ0mSRx6+o9b2ww77ba67/tZylFQWrgcZJDIokoMMEhkUyUEGiQwSGRTJQQaJDBIZFMlBBokMkmT9Hmvn4YduLz3/x7mnJUn6XndrDjv8t2WqquGZCzJIZJDIIHFfLDIXZFBU6Tm4J0xX6fMgkUGRHGSQuDcCUFtVoVAolLuIOXXmmWdm0KBBuffee+t8vXfv3rn88stTPYdLiTdptuS8KI8fgPF3n1TuEspu0V3PLHcJZdfo/6/0XekWwo+JeU4CAAAAAAAAAMD8NnVy5TS0U16TXhlQ7hKoAM2771juEubKQtlYPb9orKZIY7XG6kRjdZGPCY3VAAAAAAAAAMD8p7GahqKxmoawsDZWNyp3AQAAAAAAAAAAAAAA5aaxGgAAAAAAAAAAAACoeBqrAQAAAAAAAAAAAICKp7EaAAAAAAAAAAAAAKh4GqsBAAAAAAAAAAAAgIqnsRoAAAAAAAAAAAAAqHgaqwEAAAAAAAAAAACAitek3AUAAAAAAAAAAAAA0DAKhWnlLgEWWFasBgAAAAAAAAAAAAAqnsZqAAAAAAAAAAAAAKDiaawGAAAAAAAAAAAAACqexmoAAAAAAAAAAAAAoOJprAYAAAAAAAAAAAAAKp7GagAAAAAAAAAAAACg4mmsBgAAAAAAAAAAAAAqnsZqAAAAAAAAAAAAAKDiaawGAAAAAAAAAAAAACqexmoAAAAAAAAAAAAAoOJprAYAAAAAAAAAAAAAKl6TchcAAAAAAAAAAAAAQAMpVJe7AlhgWbEaAAAAAAAAAAAAAKh4GqsBAAAAAAAAAAAAgIqnsRoAAAAAAAAAAAAAqHgaqwEAAAAAAAAAAACAiqexGgAAAAAAAAAAAACoeBqrAQAAAAAAAAAAAICKp7EaAAAAAAAAAAAAAKh4GqsBAAAAAAAAAAAAgIqnsRoAAAAAAAAAAAAAqHgaqwEAAAAAAAAAAACAiqexGgAAAAAAAAAAAACoeE3KXQAAAAAAAAAAAAAADaS6utwVwALLitUAAAAAAAAAAAAAQMXTWA0AAAAAAAAAAAAAVLwm5S5gQVJV7gIWEIVyF7AAWHTXM8tdQtlNeOfucpdQdous3KvcJSwQ3BMAAID68O8q/vspSRo3so5DkkzzZzQBAAAAAGCh5P/pAAAAAAAAAAAAAAAqnsZqAAAAAAAAAAAAAKDiaawGAAAAAAAAAAAAACqexmoAAAAAAAAAAAAAoOJprAYAAAAAAAAAAAAAKp7GagAAAAAAAAAAAACg4mmsBgAAAAAAAAAAAAAqnsZqAAAAAAAAAAAAAKDiNSl3AQAAAAAAAAAAAAA0kEJ1uSuABZYVqwEAAAAAAAAAAACAiqexGgAAAAAAAAAAAACoeBqrAQAAAAAAAAAAAICKp7EaAAAAAAAAAAAAAKh4GqsBAAAAAAAAAAAAgIqnsRoAAAAAAAAAAAAAqHgaqwEAAAAAAAAAAACAiqexGgAAAAAAAAAAAACoeBqrAQAAAAAAAAAAAICKp7EaAAAAAAAAAAAAAKh4GqsBAAAAAAAAAAAAgIrXpNwFAAAAAAAAAAAAANBAqqeVuwJYYFmxGgAAAAAAAAAAAACoeBqrAQAAAAAAAAAAAICKp7EaAAAAAAAAAAAAAKh4GqsBAAAAAAAAAAAAgIqnsRoAAAAAAAAAAAAAqHgaqwEAAAAAAAAAAACAiqexGgAAAAAAAAAAAACoeBqrAQAAAAAAAAAAAICKp7EaAAAAAAAAAAAAAKh4GqsBAAAAAAAAAAAAgIqnsRrg/7F351FeFfT/x18DA8gqCoqgouZS5oK7uJeSflMj0yJzLZe01LRFy7Tcxdw1zT1Fzd003HdNUtTQxJXMNBRFRBBEkW3m98f87uAILhDMnek+HufMOc393M983j7PnQ8MvbkAAAAAAAAAAAAAlVdb9gAAAAAAAAAAAAAANJP6urIngBbLHasBAAAAAAAAAAAAgMqzWF2yww47MI8+clsmvDMqY15/OjfccElWWWXFssdqdpttumFuvumyjH51RGZOH5OBA7cpe6TS7L/fnnlp1KOZMvnlPDb8jmy6yQZljzSHi6++OWts/b387rwhn3rerfcNy077/zLrf2PPfHXnH+XIU8/Pu5PfW6iz/fOV0fn+z4/Jetvvka2+9+Ocd+WNqa+vb3z83mGPZ99fnpDNv/PD9N9hr+x68G/zt78/vVBn+m8cdugBmT7t9Zx66tFlj9KsvCc00KFBa3hfXNg0aKCDBokGBR00SDRINChUucN+P9wjT464J++MfzHvjH8xD/91aLbZ5qtlj1WKKl8HSdKnz1K59NKz8saYkZk44Z95/LE7s/baa5Q9Vimqfi0kGvjzhAZVvw4KOmiQaJBoUNBBA79PmK3q10KiQaJBokFBBw0SDQCYzWJ1yTbfrH/OO29INt3sG/n6tt9Lbdva3H7bVenUqWPZozWrzp07ZeTI5/OTQ44se5RSfec7A3P6aUdn8ElnZ70NtsmwYY/n1luuzLLL9il7tEbPjno5N9x+f1b5Qt9PPe/JZ1/MEaf8ITtu89XcdOEpOe3Ig/PcqJdz1OkXzvdrjxn7dtbY+nuf+PiU9z/ID391YpbssViu/v0JOfyA72fIDbfl8htvazxnxDMvZKN118gfjv9lrj33hGzQ78s58Len5IV/vTLfcy0s667bL3vvs2tGjny+7FGanfeEBjq0jvfFhU2DBjpokGhQ0EGDRINEg0LVO7w+5s38+ojB6b/Rtum/0bZ54MG/5c83/jFf/vIqZY/WrKp+HXTvvmgeeODPmTFjZgZ+c4+stfaW+eWvjsukSZPLHq3ZVf1aSDRI/HlC4joo6KBBokGiQUEHDRK/Tyi4FjRINEg0KOigQaIBAE3V1H/0Vq4V16790mWPkJ49F8+bbzyTr265Y4YNe6yUGcq+IGZOH5Mdv71Xhg69q+RJmt8jw27Jk089mwMPOrzx2DMjH8zQoXfmiCNPatZZPnjpljmPTf0wg358eI44aK9ceNVN+dKKy+WXP9pzrs+/7Ppbc+2t9+SOIWc1HvvTzXfm0utuyb1Xndt47Ka7Hsyl192SMWPfTp9eS2TXHbbJzgO3nuvXHDP27fzfHj/JM3dfPdfHr73lnpz1x2vy4LXnp337dkmSi6/5S67+y12596pzU1NTM9fn7bDvL7LNFhvlR7vt1OR4l1UGzvX85tC5c6c8/tidOegnv87hvzo4T498Lr/4xdGlzFJX8i8TVX5P+KiqdmhJ74tl0aCBDhokGhR00CDRINGg0JI6zP0nrub31thn86tfHZ9LL7um2V+7rJ+eWtJ10LZN89/H4fjjfpWNNl4/W22102ef3Exm1dWV8rot6VooiwZN+fOEal8HOmiQaJBoUNBBg4+r6u8TEtdCokGiQaJBQQcNkpbVYOb0Mc36elTXh49fX/YIVMAiG3yn7BHmiztWtzCLLtotSTJx4rvlDkKza9euXdZZZ83cc+9DTY7fc89D2aj/eiVN1dQJv/9jNttg7Wy0zmf/U7prfXmVvDV+Qv76+FOpr6/P+Inv5p6HH8vmG67deM4Nt9+X3196bX7yg+/mLxefmoP3+m7OGXJ9/nL3Q5/ylT/Z0y+8lHXXXLVxqTpJNllvzYx7Z2LGjH17rs+pq6vL+x98mEW7dpmv11xYzj7rhNx+x325//5hZY8CpWkN74sLmwYNdNAg0aCggwaJBokGBR2aatOmTQYNGpjOnTtl+GMjyh6n2bgOku23/1qeHDEyV/3pvLw2+qk8NvyO7LXXJ/+LV/+rXAsa0MB10EAHDRINEg0KOmjAbK4FDRINEg0KOmiQaADAnGrLHmB+vfDCCxk+fHg22mijfOlLX8qLL76Ys846K9OmTctuu+2WLbfc8lOfP23atEybNq3Jsfr6+k+8o21zOeWUozJs2GN57rlRpc5B8+vZc/HU1tZm3FvjmxwfN258ei21ZElTzXbHA4/k+X+9mmvOOf5znb/WaqvkpF8emENPODvTp8/IzFmz8pWN1s3hB3y/8ZwL/nRTfrHfbhmw6QZJkmV6L5mX//N6rr/9vnxz6y3mecbxE95Nn15LNDnWY7FFGx6b+G6W6T1nxyE33JapH07LNpv3n+fXW1gGfWdg1l57jWy08XZljwKlaunvi81BgwY6aJBoUNBBg0SDRIOCDg1WX/1LefivQ7PIIh0yZcr7+fZ39skLL7xU9ljNxnWQrLBC3/zwh7vlrLMvzu9OPifrr79WTj/t2EybNj1/+tONZY/XbFwLGtDAddBABw0SDRINCjpowGyuBQ0SDRINCjpokGgAwJxa5WL1nXfemW9+85vp0qVLPvjgg9x0003ZY4890q9fv9TX12ebbbbJXXfd9anL1YMHD84xxxzT5FhNmy5p27bbwh7/E5191glZY/VV85Wvfqu0GShffX3Tfzi4pqZmjmPNbey4d3LSeUNy4eBfp0P79p/rOS//5/Wc9IfLsv+uO2bj9dbM+Anv5rSL/pTjzrokx/58v0x4d3LGvv1Ojjr9whx9xkWNz5s1qy5dOnds/HyHfX+RN4rfvP7/DBsM/H7j43169czNF53a+PnH/3JEkW5uf2ni9gf+lvOuuDFnHfPzxgXssi2zTO+cdtox2W67Xeb4yx9QVS3xfbG5adBABw0SDQo6aJBokGhQqHqHUaNeznrrb53ui3bLt3bcNn+85MxsNWCnSi1XJ9W+Dtq0aZMRI0bmt7/9XZLk6aefy5dXXSU/3Hf3Si1WF6p8LRQ0IHEdFHTQINEg0aCggwbM5lrQINEg0aCggwaJBgDM1ioXq4899tgceuihOf7443PNNddkl112yY9+9KOccMIJSZIjjjgiJ5100qcuVh9++OH52c9+1uTY4j2+tFDn/jRnnnFctt9+62y51Y4ZM+bN0uagPOPHT8jMmTPTa6mmd1xeYokeGffW2yVN1eC5l/6dCe9OzncP+HXjsVl1dRnxzIu5+i93Z8RtV6Rt2zZNnnPxNX/JWqt9MT8Y9I0kyRe/sFw6LtIhe/7smBz0/UGpadOw6HzUIftmzS+t1OS5bdrM/lp/OP6XmTlzVpLkrXcmZK9fHJcbzjup8fHa2raN/7vn4t0zfuK7Tb7WhHcnJUl6dG+6OH3ng4/mqNMvzGlHHpyN1lljnnosTOuss2Z69Voiw4ff0XistrY2m222YX78o++nS9cvpK6ursQJofm05PfF5qJBAx00SDQo6KBBokGiQUGHBjNmzMjLL7+aJBnx5Mist+5aOejAffLjA35Z7mDNxHWQvDl2XF54seki/Ysv/is77LBtSROVw7WgAQ1cBw100CDRINGgoIMGzOZa0CDRINGgoIMGiQYAzKnNZ5/S8jz33HP5/ve/nyQZNGhQ3nvvvey0006Nj3/ve9/LyJEjP/VrdOjQId26dWvyMbc72jaHs848Pjvs8PVsvc2gvPrqa6XMQPlmzJiRJ58cmQFbbd7k+IABm+fR4X8vaaoG/ddePX++4ORcf95JjR+rrfKFbLflJrn+vJPmWKpOkg+nTU+bNk2/p4qF6frUp+di3bNkz8Xz+pvj0nfppZp8LNN79j+l0qfXEo3H+yzZ8JvYj57bp9fs39j2W3XljHjmxcyYMbPx2CMjnsmSPRbL0h/5DfDtD/wtR556Xk761YHZfMN1FkykBeT++4dl7bW3yvrrb9P48fe//yNXX31T1l9/G0vVVEpLfl9sLho00EGDRIOCDhokGiQaFHSYu5qamnTo8Pn+taX/Ba6D5NFH/55VVlmxybGVV/5CRo9+vaSJyuFa0IAGroMGOmiQaJBoUNBBA2ZzLWiQaJBoUNBBg0QDAObUKu9Y/VFt2rTJIossku7duzce69q1ayZNmlTeUPPg92efmJ133iE77rRX3ntvSnr9/yXRSZPey4cffljydM2nc+dOWWmlFRo/X2H5vunXb7VMmDAxr732RomTNa8zzrooQy49KyNGPJ3hj43Ivnvvlr7LLp0LLryi1Lk6d+qYlVdYtsmxjot0SPduXRqPn3nJ1Rn3zsSceNiPkyRb9F8nx5xxUa695Z5svN6aGT/h3fzuvMuzxhdXzJI9Fk+S/Hj3nXLSH4akS+eO2XT9tTJ9xow8989/Z/J772fPb283z3Nuu+UmOe/KG3PEqedl3513yOgxY3Px1Tdn/912bPyLE7c/8LcccfJ5+eWP9ki/VVfO+AnvJkk6dGifrp07zW+iBWbKlPfz3POjmhx7//2peWfCxDmO/y/zntBAh5b7vticNGiggwaJBgUdNEg0SDQoVL3Dccf9KnfeeX9ef/2NdO3aJYMGfTNbbLFRttt+17JHa1ZVvw7OPvviPPTgTTnssANz4w23Zr3118ree+9SmbuWf1TVr4VEg8SfJySug4IOGiQaJBoUdNAg8fuEgmtBg0SDRIOCDhokGgDQVKtcrF5++eXzr3/9KyuttFKS5NFHH03fvn0bH3/ttdfSu3fvssabJ/vvv2eS5P77bmxyfO+9f5rLr7iujJFKsd66/XLfvTc0fn7aqUcnSYZcfl323uenJU3V/K6/fmh6LL5Yjjzip+nde8k8+9yofGPg7hk9ekzZo32mtye8mzfHjW/8fIett8j7H0zN1UPvyqkXXpmunTtlg7VWy0/32aXxnJ2+vmUW6dAhl11/S06/+Kp0XKRDVl5+2ez+rfn7p3q7du6UC0/6dU74/aXZ+cAj0q1r5+yx07bZY6fZS9rX33ZfZs6alRPOuTQnnHNp4/GBX9s8Jxz6o/l6XRY87wkNdGjd74sLigYNdNAg0aCggwaJBokGhap36LVkz1x26dnp3XvJTJr0Xp555oVst/2uue++h8serVlV/ToYMeLpDBq0b4477lc54tcH59VXX8svDj0611xzc9mjNbuqXwuJBok/T0hcBwUdNEg0SDQo6KBB4vcJBdeCBokGiQYFHTRINACgqZr6+vr6soeYV+eff36WXXbZbLfd3O9oe8QRR+Stt97KxRdfPE9ft137pRfEeK1eq7sgWCg+eOmWskcoXZdVBpY9QotQ1/p+mQAAAEpQU/YALYCfnpK2bdqUPUKLMKuuruwRAAAAAGiFZk63zE3z+HD4tWWPQAUs0v+7ZY8wX1rlYvXCYrG6gQuCxGJ1YrG6YLEaAAD4PCxW+zOVxGJ1wWI1AAAAAPPDYjXNxWI1zaG1Llb7fzoAAAAAAAAAAAAAgMqzWA0AAAAAAAAAAAAAVJ7FagAAAAAAAAAAAACg8ixWAwAAAAAAAAAAAACVZ7EaAAAAAAAAAAAAAKg8i9UAAAAAAAAAAAAAQOVZrAYAAAAAAAAAAAAAKs9iNQAAAAAAAAAAAABQeRarAQAAAAAAAAAAAIDKs1gNAAAAAAAAAAAAAFSexWoAAAAAAAAAAAAAoPJqyx4AAAAAAAAAAAAAgGZSX1f2BNBiuWM1AAAAAAAAAAAAAFB5FqsBAAAAAAAAAAAAgMqzWA0AAAAAAAAAAAAAVJ7FagAAAAAAAAAAAACg8ixWAwAAAAAAAAAAAACVZ7EaAAAAAAAAAAAAAKg8i9UAAAAAAAAAAAAAQOVZrAYAAAAAAAAAAAAAKs9iNQAAAAAAAAAAAABQeRarAQAAAAAAAAAAAIDKs1gNAAAAAAAAAAAAAFRebdkDAAAAAAAAAAAAANBM6urKngBaLHesBgAAAAAAAAAAAAAqz2I1AAAAAAAAAAAAAFB5FqsBAAAAAAAAAAAAgMqzWA0AAAAAAAAAAAAAVJ7FagAAAAAAAAAAAACg8ixWAwAAAAAAAAAAAACVZ7EaAAAAAAAAAAAAAKg8i9UAAAAAAAAAAAAAQOVZrAYAAAAAAAAAAAAAKs9iNQAAAAAAAAAAAABQebVlD9CS1Jc9AC1GTdkDtACdVv5G2SOUbspDp5Y9QovQdYtflD1C6fz6AAAAn83vm0mSWXV1ZY8AAAAAAAAw3yxWAwAAAAAAAAAAAFSFm2TAJ2pT9gAAAAAAAAAAAAAAAGWzWA0AAAAAAAAAAAAAVJ7FagAAAAAAAAAAAACg8ixWAwAAAAAAAAAAAACVZ7EaAAAAAAAAAAAAAKg8i9UAAAAAAAAAAAAAQOVZrAYAAAAAAAAAAAAAKs9iNQAAAAAAAAAAAABQeRarAQAAAAAAAAAAAIDKs1gNAAAAAAAAAAAAAFSexWoAAAAAAAAAAAAAoPJqyx4AAAAAAAAAAAAAgOZRXz+r7BGgxXLHagAAAAAAAAAAAACg8ixWAwAAAAAAAAAAAACVZ7EaAAAAAAAAAAAAAKg8i9UAAAAAAAAAAAAAQOVZrAYAAAAAAAAAAAAAKs9iNQAAAAAAAAAAAABQeRarAQAAAAAAAAAAAIDKs1gNAAAAAAAAAAAAAFSexWoAAAAAAAAAAAAAoPIsVgMAAAAAAAAAAAAAlWexGgAAAAAAAAAAAACovNqyBwAAAAAAAAAAAACgmdTVlT0BtFjuWA0AAAAAAAAAAAAAVJ7FagAAAAAAAAAAAACg8ixWAwAAAAAAAAAAAACVZ7EaAAAAAAAAAAAAAKg8i9UAAAAAAAAAAAAAQOVZrAYAAAAAAAAAAAAAKs9iNQAAAAAAAAAAAABQeRarAQAAAAAAAAAAAIDKs1gNAAAAAAAAAAAAAFSexeoWYv/99sxLox7NlMkv57Hhd2TTTTYoe6RSVLnDYYcdmEcfuS0T3hmVMa8/nRtuuCSrrLJi2WM1u8023TA333RZRr86IjOnj8nAgduUPdInuuTWh9Pv+0fn5D/d8YnnPPHCK+n3/aPn+HjljbcX6mwvvfZW9hp8aTbY9/gMOOS0nP+XB1NfX9/4+L1/fz77nXJ5vnLQydl4/xOz+3EX52/P/GuhzjQvfD/MVuX3xYIGGhR00CDRoKCDBokGiQaFqndoTT9HLkyuA9dBoerXQqJBokGiQUEHDRINEg0KOmiQaFDQQYNEg0SDgg4aJBoAMJvF6hbgO98ZmNNPOzqDTzo7622wTYYNezy33nJlll22T9mjNauqd9h8s/4577wh2XSzb+Tr234vtW1rc/ttV6VTp45lj9asOnfulJEjn89PDjmy7FE+1bP/HpMbHhyRVZbt9bnO/8tJB+a+M3/e+NF3qR7z/dpj3p6Yft8/+hMfnzL1w+x3yuVZonvX/OmoffOr3b6ey+94JJff+WjjOU+O+k/6r/aFnPPTXXP10ftl/VWXz0/OvCov/OfN+Z5rQfL90KDq74uJBokGBR00SDQo6KBBokGiQUGH1vNz5MLkOnAdFFwLGiQaJBoUdNAg0SDRoKCDBokGBR00SDRINCjooEGiAQBN1dR/9BamFVfbfulSXveRYbfkyaeezYEHHd547JmRD2bo0DtzxJEnlTJTGVpSh5pmfbW569lz8bz5xjP56pY7Ztiwx5r99VvCG8PM6WOy47f3ytChd5Xy+lMeOnWuxz/4cFq+e9QFOWKP7XLR0L/mi32XymG7fn2u5z7xwivZ53dD8vC5v0y3zp+8FHzzw0/lstv/ljFvT0yfnt2zy9c2zHe3mvvffhzz9sRse+hZefqyo+f6+HX3P5Gzr7839599aNq3q03ScHftq+99PPec8bPU1Mz9Cv/Wr8/NNhuulv2/+ZUmx7tu8YtPnLu5VPX7oSW9L5ZFAw0KOmiQaFDQQYNEg0SDgg5Nlf1zZFlcB01V9TpIXAuJBokGiQYFHTRINEg0KOigQaJBQQcNEg0SDQo6aJC0rAYzp49p1tejuqY+cHHZI1ABHb+6T9kjzJf/mTtWt9b98Hbt2mWdddbMPfc+1OT4Pfc8lI36r1fSVM1Phzktumi3JMnEie+WOwhzOPGK27N5v1XSf7UVP/dzvnvUBdnq4FOz7++G5PEXXmny2I0Pjsg5N96XA3faMjcNPjAHfXurnPvnBzJ02D/ma76n//Va1v3S8o1L1Umy8Ror5e1338uY8e/O9Tl1dXX54MNpWfRTlr/LVMXvB++LGiQaFHTQINGgoIMGiQaJBgUdSFwHzOZa0CDRINGgoIMGiQaJBgUdNEg0KOigQaJBokFBBw0SDQCYU+1nn9I6dOjQIU8//XRWXXXVz3X+tGnTMm3atCbH6uvrP/FOrgtLz56Lp7a2NuPeGt/k+Lhx49NrqSWbdZYy6TCnU045KsOGPZbnnhtV9ih8xB3Dn8kL/3kzV/123891/hLdu+a33/9Gvrx870yfOSu3PvJ0fnjykFzyq+9n3S8unyS5cOhD+fnO22TAel9OkiyzxGL59xtv54YH/56Bm641zzOOnzQlS/fs3uRYj26dkyTvTJqSZZZYbI7nXH7no5k6bUa23mC1eX695lDF7wfvixokGhR00CDRoKCDBokGiQYFHUhcB8zmWtAg0SDRoKCDBokGiQYFHTRINCjooEGiQaJBQQcNEg0AmFOrW6z+2c9+Ntfjs2bNykknnZQePXokSU4//fRP/TqDBw/OMccc0+RYTZsuqWnbbcEMOo8+fsftmpqaVnsX7v+GDg3OPuuErLH6qvnKV79V9ih8xNh3JuXkq+7M+b/YPR3at/tcz1m+d88s37tn4+f9Vlo2Y9+ZnCF3PJJ1v7h8Jkx+P2MnTM7Rf/xLjrl0aON5s2bVpUunRRo//9avz82b77ybJCm+Jfrvd0Lj4717dM9NJx4w+4U/9pdEiu+iuf3VkTuGP5Pzbn4wZx28c3p06/K5/ruaU9W/H7wvapBoUNBBg0SDgg4aJBokGhR0IHEdMJtrQYNEg0SDgg4aJBokGhR00CDRoKCDBokGiQYFHTRINABgtla3WH3mmWemX79+6d69e5Pj9fX1eeGFF9K5c+fPddfpww8/fI4l7cV6fGlBjvq5jB8/ITNnzkyvpZZocnyJJXpk3FtvN/s8ZdFhtjPPOC7bb791ttxqx4wZ82bZ4/ARz7/6RiZMfj/fO/qCxmOz6uoz4p//yTX3PZ4nLv5N2rZp85lfZ80Vl8ltj45MMvs35r/9/sCsseLSTc5r85Gvde7Pds3MWbOSJOMmvpe9T7os1x27f+PjtW3bNv7vnot2yTuTpjT5WhMmv58kWXzRpovTdz72bI7+419yyo8Hpf9qK37m7M2tyt8P3hc1SDQo6KBBokFBBw0SDRINCjqQuA6YzbWgQaJBokFBBw0SDRINCjpokGhQ0EGDRINEg4IOGiQaADCnz94AbGFOOOGETJo0Kb/5zW/ywAMPNH60bds2l112WR544IHcf//9n/l1OnTokG7dujX5+DwL2QvajBkz8uSTIzNgq82bHB8wYPM8OvzvzT5PWXRocNaZx2eHHb6erbcZlFdffa3scfiYDb/8hdxw/I9y7bH7N36stkKfbNt/zVx77P6fa6k6SV4c/WZ6dm9YcO6xaJcsuVjXvP72xPTt1aPJxzJLLNb4nD49uzce791j0SRpcm6fnt0bz+230rIZMeo/mTFzZuOxR599OUt075qlP3LeHcOfyW8vvjmD99spm6+1yn9RZuGo+veD90UNEg0KOmiQaFDQQYNEg0SDgg4krgNmcy1okGiQaFDQQYNEg0SDgg4aJBoUdNAg0SDRoKCDBokGAMyp1d2x+vDDD8+AAQOy22675Rvf+EYGDx6cdu3alT3Wf+WMsy7KkEvPyogRT2f4YyOy7967pe+yS+eCC68oe7RmVfUOvz/7xOy88w7Zcae98t57U9KrV8PfhJs06b18+OGHJU/XfDp37pSVVlqh8fMVlu+bfv1Wy4QJE/Paa2+UOFnSuWOHrLxMrybHOrZvl+5dOjYeP+v6ezNu4uSc8MMdkyRX3vVo+vTsnhWXXjIzZs3KbY+MzL1/fyGnHTio8Wv8aIev5Hd/uiNdOnbIJmuulBkzZuW5V9/I5PenZo//23ie5/x6/zVy/s0P5jcX35y9t98so9+akEtufTg/HLhF418guWP4Mznyopty2C7/lzVXXCbj330vSdKhfbt07bTIfPVZkHw/NKj6+2KiQaJBQQcNEg0KOmiQaJBoUNChZf8c2VxcB66DgmtBg0SDRIOCDhokGiQaFHTQINGgoIMGiQaJBgUdNEg0AKCpVrdYnSTrr79+RowYkQMOOCDrrbderrzyylLuNr2gXH/90PRYfLEcecRP07v3knn2uVH5xsDdM3r0mLJHa1ZV77D//nsmSe6/78Ymx/fe+6e5/IrryhipFOut2y/33XtD4+ennXp0kmTI5ddl731+WtJUn9/4d9/L2HcmNX4+Y9asnH7t3Rk38b10aF+bFZdeMuf8dJds1m/2HaJ33GLdLNK+XS6745Gccd096dihXVZepld23br/fM3QtdMiueDQPXLiFbdll6MvTLfOHbP7Nhtlj//bqPGcGx74e2bOqsuJV9yeE6+4vfH4wE365bh9vzVfr7sg+X5oUPX3xUSDRIOCDhokGhR00CDRINGgoEPr/zlyQXAduA4KrgUNEg0SDQo6aJBokGhQ0EGDRIOCDhokGiQaFHTQINEAgKZq6uvr68se4r9xzTXX5JBDDsnbb7+dZ555Jl/+8pfn+2vVtl96AU5Ga9Z61/QXnFb9xrCATHno1LJHaBG6bvGLskcone8HAAAAAAAAAGBhmzndMjfNY+oDF5c9AhXQ8av7lD3CfGmVd6z+qJ133jmbbrppRowYkeWWW67scQAAAAAAAAAAAACAVqjVL1YnyTLLLJNlllmm7DEAAAAAAAAAAAAAgFaqTdkDAAAAAAAAAAAAAACU7X/ijtUAAAAAAAAAAAAAfA51dWVPAC2WO1YDAAAAAAAAAAAAAJVnsRoAAAAAAAAAAAAAqDyL1QAAAAAAAAAAAABA5VmsBgAAAAAAAAAAAAAqz2I1AAAAAAAAAAAAAFB5FqsBAAAAAAAAAAAAgMqzWA0AAAAAAAAAAAAAVJ7FagAAAAAAAAAAAACg8ixWAwAAAAAAAAAAAACVZ7EaAAAAAAAAAAAAAKg8i9UAAAAAAAAAAAAAQOXVlj0AAAAAAAAAAAAAAM2kvq7sCaDFcsdqAAAAAAAAAAAAAKDyLFYDAAAAAAAAAAAAAJVnsRoAAAAAAAAAAAAAqDyL1QAAAAAAAAAAAABA5VmsBgAAAAAAAAAAAAAqz2I1AAAAAAAAAAAAAFB5FqsBAAAAAAAAAAAAgMqzWA0AAAAAAAAAAAAAVJ7FagAAAAAAAAAAAACg8ixWAwAAAAAAAAAAAACVZ7EaAAAAAAAAAAAAAKi82rIHAAAAAAAAAAAAAKCZ1NWVPQG0WO5YDQAAAAAAAAAAAABUnsVqAAAAAAAAAAAAAKDyLFYDAAAAAAAAAAAAAJVnsRoAAAAAAAAAAAAAqDyL1QAAAAAAAAAAAABA5VmsBgAAAAAAAAAAAAAqz2I1AAAAAAAAAAAAAFB5tWUPAC1RfdkD0CJ02eIXZY/QIrx31Y/KHqF0XXc5r+wRAACAVqCm7AFoMfzZEgAAAAAAtE7uWA0AAAAAAAAAAAAAVJ7FagAAAAAAAAAAAACg8ixWAwAAAAAAAAAAAACVV1v2AAAAAAAAAAAAAAA0k/q6sieAFssdqwEAAAAAAAAAAACAyrNYDQAAAAAAAAAAAABUnsVqAAAAAAAAAAAAAKDyLFYDAAAAAAAAAAAAAJVnsRoAAAAAAAAAAAAAqDyL1QAAAAAAAAAAAABA5VmsBgAAAAAAAAAAAAAqz2I1AAAAAAAAAAAAAFB5FqsBAAAAAAAAAAAAgMqzWA0AAAAAAAAAAAAAVJ7FagAAAAAAAAAAAACg8mrLHgAAAAAAAAAAAACAZlJXV/YE0GK5YzUAAAAAAAAAAAAAUHkWqwEAAAAAAAAAAACAyrNYDQAAAAAAAAAAAABUnsVqAAAAAAAAAAAAAKDyLFYDAAAAAAAAAAAAAJVnsRoAAAAAAAAAAAAAqDyL1QAAAAAAAAAAAABA5VmsBgAAAAAAAAAAAAAqz2I1AAAAAAAAAAAAAFB5FqsBAAAAAAAAAAAAgMqzWA0AAAAAAAAAAAAAVF5t2QMAAAAAAAAAAAAA0Ezq6sqeAFosd6wGAAAAAAAAAAAAACrPYjUAAAAAAAAAAAAAUHkWqwEAAAAAAAAAAACAyrNYDQAAAAAAAAAAAABUnsVqAAAAAAAAAAAAAKDyLFYDAAAAAAAAAAAAAJVnsboF2GzTDXPzTZdl9KsjMnP6mAwcuE3ZI5Vm//32zEujHs2UyS/nseF3ZNNNNih7pGZX9Qa+Hxq0luvgkoeeyVpHXJGTb3viE895e/IH+dW1D+ebZ/wlax/56ecuSC+NnZi9L7orGx51Vb520g254P6Rqa+vb3z8vudGZ78/3pOvnnBdNjn2muxx/h155KU3mmW2edFaroWFSQMNCjpokGhQ0EGDRINEAz8/zVbla+Gwww7Mo4/clgnvjMqY15/ODTdcklVWWbHssZqVBk1V+fuhoIEGiQYFHTRINEg0KOigQaJBQQcNEg0SDQo6aJBoAMBsFqtbgM6dO2XkyOfzk0OOLHuUUn3nOwNz+mlHZ/BJZ2e9DbbJsGGP59Zbrsyyy/Ype7Rmo4Hvh6T1XAfPvj4+Nz7xUlZZarFPPW/6rLos1nmR7POV1T/z3M9rzMQpWeuIKz7x8SkfTs/+l96bJbp1yp9+/PX86hsb5PJhz+eKv73QeM6IV99K/5X65Pd7bpmrfrxt1vvCUvnJFQ/kxTcmLJAZF4TWci0sTBpoUNBBg0SDgg4aJBokGiR+fipU/VrYfLP+Oe+8Idl0s2/k69t+L7Vta3P7bVelU6eOZY/WbDSYrerfD4kGiQaJBgUdNEg0SDQo6KBBokFBBw0SDRINCjpokGgAQFM19R+9fWfF1bZfuuwRMnP6mOz47b0ydOhdZY/S7B4ZdkuefOrZHHjQ4Y3Hnhn5YIYOvTNHHHlSiZM1Hw2aqur3Q0u7Dt676kdzHPtg2ozsfO5t+fXADXPRg8/ki70Xy2Hbrf+ZX2vvi+/+xHNvHvGvDHn4uYyZOCV9unfJ9zb6Ur7b/4tz/TpjJk7JdqfelH+csPtcH7/usVE5++6ncv/h30n72rZJkj8+9GyufvTF3P3LnVJTUzPX5+141tBss8by2W/LNZsc77rLeZ/537YwtLRroQwaaFDQQYNEg4IOGiQaJBp8XFV/fkpa1rUw9580mlfPnovnzTeeyVe33DHDhj1W9jilaAkNyvoD15b0/VAWDTRINCjooEGiQaJBQQcNEg0KOmiQaJBoUNBBg6RlNZg5fUyzvh7VNfW2M8segQrouN0hZY8wX9yxmhahXbt2WWedNXPPvQ81OX7PPQ9lo/7rlTRV89KApPVcByfe8ng2++LS6b9S7wXy9W584qWce88/cuDX1s5NBw/MQVuvnT/c+48MffLl+fp6I0ePz3rL92pcqk6SjVfuk7ffm5o3Jk6Z63Pq6urzwbQZWbRj+/l6zQWttVwLC5MGGhR00CDRoKCDBokGiQbM5lqY06KLdkuSTJz4brmDlKiqDXw/aJBokGhQ0EGDRINEg4IOGiQaFHTQINEg0aCggwaJBgDMyWI1LULPnountrY2494a3+T4uHHj02upJUuaqnlpQNI6roM7R76SF9+YkJ9svc4C+5oXPTAyP/v6utlqtb5ZevGu2Wq1vtltk1VzwxMvzdfXGz9lahbvskiTY8Xn46d8ONfnXP635zN1+sxsvcZy8/WaC1pruBYWNg00KOigQaJBQQcNEg0SDZjNtTCnU045KsOGPZbnnhtV9iilqWoD3w8aJBokGhR00CDRINGgoIMGiQYFHTRINEg0KOigQaIBAHOqLXuABWHixIkZMmRIXnrppfTu3Tt77rlnll122U99zrRp0zJt2rQmx+rr61NT0xL+0dbqqq9v+g+l1tTUzHHsf50GJC33Ohj77vs5+da/57wfbJUO7dp+9hM+hwnvf5ixkz7IMTc9mmNvHt54fFZdXbp0mH336B3PGpo3330/yew+Gx1zdePjvbt3zp8PHtj4+cffz4t8c3uXv+PpV3L+fU/nzN2+msW7dPxv/5MWqJZ6LTQnDTQo6KBBokFBBw0SDRINmM210ODss07IGquvmq989Vtlj1IaDXw/JBokGiQaFHTQINEg0aCggwaJBgUdNEg0SDQo6KBBogEVVF9X9gTQYrXKxeo+ffrkmWeeSY8ePfLKK69k4403TpKsscYaGTp0aE499dQMHz48X/rSlz7xawwePDjHHHNMk2M1bbqkpm23hTo7czd+/ITMnDkzvZZaosnxJZbokXFvvV3SVM1LA5KWfx08/8Y7mfD+h9nlD7c3HptVV58nX30r1w4flceP2SVt28zbP4ZQ/CDymx36Z41lezZ5rO1HlqPP2WPLzKxr+E3duMlTs8/Fd+faA7drfLz2I6/bs0vHvPPe1CZfa+L7DXeq7vGxO1nfNfLVHHPTozl5583Tf6Xe8zT7wtTSr4XmoIEGBR00SDQo6KBBokGiAbO5FmY784zjsv32W2fLrXbMmDFvlj1OKarewPeDBokGiQYFHTRINEg0KOigQaJBQQcNEg0SDQo6aJBoAMCc5m37rYUYO3ZsZs2alST59a9/nS996Ut5+eWXc/fdd+df//pXNttss/zmN7/51K9x+OGHZ9KkSU0+atp0bY7xmYsZM2bkySdHZsBWmzc5PmDA5nl0+N9Lmqp5aUDS8q+DDVfsnRt+sn2uPXC7xo8vL90j2/ZbIdceuN08L1UnSY8uHbNkt04ZM2FK+vbo1uRj6cVnvy/3WaxL4/He3TsnSZNz+yzWpfHcNfv2zIhXx2XGzFmNxx791xtZomvHJufd8fQr+e2Nj+TEQZtm8y8tMz9JFpqWfi00Bw00KOigQaJBQQcNEg0SDZjNtdDgrDOPzw47fD1bbzMor776WtnjlEID3w+JBokGiQYFHTRINEg0KOigQaJBQQcNEg0SDQo6aJBoAMCcWuUdqz/qsccey8UXX5xOnTolSTp06JAjjzwy3/72tz/1eR06dEiHDh2aHKv5yJ1Rm1Pnzp2y0korNH6+wvJ906/fapkwYWJee+2NUmYqwxlnXZQhl56VESOezvDHRmTfvXdL32WXzgUXXlH2aM1GA98PScu+Djp3aJeVei3W5FjH9rVZtFOHxuNn3/Vkxk2emuO/s0njOS++MSFJMnXajEx8/8O8+MaEtKttkxWX7J4k2X/LNXPybU+k8yLtsukqS2f6zFl5bsw7eW/q9Oy+6Zfnec6v91shF9w/Mr+58ZHs85XVM3r8e7nkwWfzwy3XbHyvv+PpV/KbG/6WQ7dbP2suu0TG//87XHdo1zZdF2k/z6+5MLTka6G5aKBBQQcNEg0KOmiQaJBokPj5qVD1a+H3Z5+YnXfeITvutFfee29KevVquLPOpEnv5cMPPyx5uuahwWxV/35INEg0SDQo6KBBokGiQUEHDRINCjpokGiQaFDQQYNEAwCaarWL1cVi3LRp09KrV68mj/Xq1Stvv916/imG9dbtl/vuvaHx89NOPTpJMuTy67L3Pj8taarmd/31Q9Nj8cVy5BE/Te/eS+bZ50blGwN3z+jRY8oerdlo4Pshaf3XwdvvTc2bk95vcmznc29r/N/PvzEhdzz9anp375w7Dt0xSbLj+itnkfa1GfLwcznzzifTsX1tVu7VPbtuvOp8zdB1kfY5/wcDMviWx7PLH25Pt0U6ZLdNVs3um8z+ejc88VJm1tVn8C2PZ/Atjzce/8baX8hx395kbl+22bX2a2FB0ECDgg4aJBoUdNAg0SDRIPHzU6Hq18L++++ZJLn/vhubHN9775/m8iuuK2OkZqfBbFX/fkg0SDRINCjooEGiQaJBQQcNEg0KOmiQaJBoUNBBg0QDAJqqqa+vry97iHnVpk2brL766qmtrc1LL72Uyy+/PN/61rcaH//rX/+aXXbZJa+//vo8fd3a9ksv6FEBWr33rvpR2SOUrusu55U9AgAA0AqU82+h0RK1uj9wBQAAAKBFmDndMjfNY+qtp5c9AhXQcfuflT3CfGmVd6w+6qijmnzeqVOnJp/fcsst2WyzzZpzJAAAAAAAAAAAAACgFfufWKz+uFNOOaWZJgEAAAAAAAAAAAAA/he0KXsAAAAAAAAAAAAAAICyWawGAAAAAAAAAAAAACrPYjUAAAAAAAAAAAAAUHkWqwEAAAAAAAAAAACAyqstewAAAAAAAAAAAAAAmkldXdkTQIvljtUAAAAAAAAAAAAAQOVZrAYAAAAAAAAAAAAAKs9iNQAAAAAAAAAAAABQeRarAQAAAAAAAAAAAIDKs1gNAAAAAAAAAAAAAFSexWoAAAAAAAAAAAAAoPIsVgMAAAAAAAAAAAAAlWexGgAAAAAAAAAAAACoPIvVAAAAAAAAAAAAAEDlWawGAAAAAAAAAAAAACrPYjUAAAAAAAAAAAAAUHm1ZQ8AAAAAAAAAAAAAQDOpryt7Amix3LEaAAAAAAAAAAAAAKg8i9UAAAAAAAAAAAAAQOVZrAYAAAAAAAAAAAAAKs9iNQAAAAAAAAAAAABQeRarAQAAAAAAAAAAAIDKs1gNAAAAAAAAAAAAAFSexWoAAAAAAAAAAAAAoPIsVgMAAAAAAAAAAAAAlWexGgAAAAAAAAAAAACoPIvVAAAAAAAAAAAAAEDlWawGAAAAAAAAAAAAACqvtuwBAAAAAAAAAAAAAGgmdXVlTwAtljtWAwAAAAAAAAAAAACVZ7EaAAAAAAAAAAAAAKg8i9UAAAAAAAAAAAAAQOVZrAYAAAAAAAAAAAAAKq+27AEAaNm67nJe2SOUbsqj55Y9Qum6bHRA2SMAAECLV1/2AAAAAAAAAPxX3LEaAAAAAAAAAAAAAKg8i9UAAAAAAAAAAAAAQOVZrAYAAAAAAAAAAAAAKs9iNQAAAAAAAAAAAABQeRarAQAAAAAAAAAAAIDKs1gNAAAAAAAAAAAAAFRebdkDAAAAAAAAAAAAANBM6uvKngBaLHesBgAAAAAAAAAAAAAqz2I1AAAAAAAAAAAAAFB5FqsBAAAAAAAAAAAAgMqzWA0AAAAAAAAAAAAAVJ7FagAAAAAAAAAAAACg8ixWAwAAAAAAAAAAAACVZ7EaAAAAAAAAAAAAAKg8i9UAAAAAAAAAAAAAQOVZrAYAAAAAAAAAAAAAKs9iNQAAAAAAAAAAAABQeRarAQAAAAAAAAAAAIDKqy17AAAAAAAAAAAAAACaSV1d2RNAi+WO1QAAAAAAAAAAAABA5VmsBgAAAAAAAAAAAAAqz2I1AAAAAAAAAAAAAFB5FqsBAAAAAAAAAAAAgMqzWA0AAAAAAAAAAAAAVJ7FagAAAAAAAAAAAACg8ixWAwAAAAAAAAAAAACVZ7EaAAAAAAAAAAAAAKg8i9UAAAAAAAAAAAAAQOVZrAYAAAAAAAAAAAAAKs9iNQAAAAAAAAAAAABQebVlDwAAAAAAAAAAAABAM6mrK3sCaLHcsRoAAAAAAAAAAAAAqDyL1QAAAAAAAAAAAABA5VmsBgAAAAAAAAAAAAAqz2J1C7H/fnvmpVGPZsrkl/PY8Duy6SYblD1SKXTQINEg0aDQGjpc8pcH0m+XX+bky4d+4jlPPP9y+u3yyzk+XhkzbqHO9tLoN7PXsedngz2PyIADTsj5f7439fX1jY/f+/iz2e/Ei/KV/Y7Nxnv/Nrv/9tz87elRC3Wm+dEaroOFTYMGOmiQaFDQQYNEg0SDgg4aJBokGhR00GCzTTfMzTddltGvjsjM6WMycOA2ZY9UiqpfBwUdNEg0SDTwa8NsVb8WEg0KOmiQaJBoUNBBg0QDAGazWN0CfOc7A3P6aUdn8ElnZ70NtsmwYY/n1luuzLLL9il7tGalgwaJBokGhdbQ4dmXX8sN9z+WVfr2/lzn/+W0X+S+PxzZ+NG3d8/5fu0xb09Iv11++YmPT/ngw+w3+OIssVi3/On4g/KrPb+Zy2/7ay6//eHGc5588d/pv8bKOeewH+Tq43+S9b+8Yn5y6pC88OqY+Z5rQWsN18HCpkEDHTRINCjooEGiQaJBQQcNEg0SDQo6aJAknTt3ysiRz+cnhxxZ9iilcR000EGDRINEg8SvDQXXggYFHTRINEg0KOigQaIBAE3V1H/01pUVV9t+6VJe95Fht+TJp57NgQcd3njsmZEPZujQO3PEkSeVMlMZdNAg0SDRoNCSOkx59Nw5jn3w4bR899dn54gf7JCLbr4/X1yudw7bY+Bcn//E8y9nn+MvzMMXHZ1unTt+4uvc/OATuezWhzLm7Ynp03Ox7PJ/m+S7X9torueOeXtCtj34d3n6qt/N9fHr7nk0Z197Z+4/7zdp3642SXLJ0Ady9V2P5J5zfp2ampq5Pu9bh56WbTbql/13HNDkeJeNDvjEuRemlnQdlEWDBjpokGhQ0EGDRINEg4IOGiQaJBoUdNDg42ZOH5Mdv71Xhg69q+xRmpXroIEOGiQaJBp8XFV/bUhcC4kGBR00SDRINCjooEHSshrMnN5yboTG/7ap1x1b9ghUQMdBvy17hPnijtUla9euXdZZZ83cc+9DTY7fc89D2aj/eiVN1fx00CDRINGg0Bo6nHjpzdl87S+l/xorf+7nfPfXZ2WrHx+ffU+4MI8/93KTx268/7Gcc91dOXDQ/+WmU36eg777fzn3+rsz9K8j5mu+p18anXVX/ULjUnWSbLzmKnl74uSMeXviXJ9TV1eXDz6clkU7d5qv11zQWsN1sLBp0EAHDRINCjpokGiQaFDQQYNEg0SDgg4a0MB10EAHDRINEg2YzbWgQUEHDRINEg0KOmiQaADAnGo/+xQWpp49F09tbW3GvTW+yfFx48an11JLljRV89NBg0SDRINCS+9wxyP/yAuvvpGrjjvwc52/RPdu+e0+O+bLKyyT6TNm5tZhT+aHJ16US478YdZd9QtJkgtvui8/3237DNhg9STJMksunn+PeSs33Dc8Azdfd55nHD/pvSzdc7Emx3os2jVJ8s6772WZJRef4zmX3/Zwpk6bka37rznPr7cwtPTroDlo0EAHDRINCjpokGiQaFDQQYNEg0SDgg4a0MB10EAHDRINEg2YzbWgQUEHDRINEg0KOmiQaADAnFrlYvVTTz2V7t27Z4UVVkiSXHnllTnvvPMyevToLLfccjnwwAOz8847f+rXmDZtWqZNm9bkWH19fWpqahba3J+mvr6+yec1NTVzHKsCHTRINEg0KLTEDmPfeTcnX35Lzj9873Ro3+5zPWf5Pktk+T5LNH7eb5XlMvadSRly21+z7qpfyITJUzL2nUk5+sIbcsxFNzaeN6uuLl06LtL4+bcOPS1vjn83SVKfhg79f/Cbxsd79+yem075+ewX/tgvaUW7uf1Sd8cj/8h5f74nZ/1sz/RYtMvn+u9qLi3xOmhuGjTQQYNEg4IOGiQaJBoUdNAg0SDRoKCDBjRwHTTQQYNEg0QDZnMtaFDQQYNEg0SDgg4aJBoAMFurXKzee++9c9ppp2WFFVbIxRdfnJ/85CfZd999s/vuu2fUqFHZd99988EHH2Svvfb6xK8xePDgHHPMMU2O1bTpkpq23Rb2+E2MHz8hM2fOTK+llmhyfIklemTcW2836yxl0kGDRINEg0JL7vD8v8dkwuQp+d4Rv288NquuLiNefCXX3P1onrj8hLRt0+Yzv86aK/fNbcOeTDL7B7Tf7rNT1lhp2SbntfnI1zr3sL0yc9asJMm4iZOz93EX5LrBBzc+Xtu2beP/7rlo17wzaUqTrzVhcsPni///O1cX7nz06Rx94Q055eBd03+NlT9z9ubSkq+D5qJBAx00SDQo6KBBokGiQUEHDRINEg0KOmhAA9dBAx00SDRINGA214IGBR00SDRINCjooEGiAQBz+uzNrxZo1KhRWXHFFZMkf/jDH3LmmWfmrLPOyv77758zzjgjF1xwQU477bRP/RqHH354Jk2a1OSjpk3XT33OwjBjxow8+eTIDNhq8ybHBwzYPI8O/3uzz1MWHTRINEg0KLTkDhuuvlJu+N1Pc+3ggxs/VvvCMtl2k7Vy7eCDP9dSdZK8+OqY9Oze8Jd5eizaNUsu3i2vj3snfZfq2eRjmSUXb3xOnyUWazzeu2f3JGlybp8lFms8t9/KfTPihVcyY+bMxmOPjnwpSyzWLUt/5Lw7HvlHfnv+dRl8wPey+dqr/jdpFriWfB00Fw0a6KBBokFBBw0SDRINCjpokGiQaFDQQQMauA4a6KBBokGiAbO5FjQo6KBBokGiQUEHDRINAJhTq7xjdceOHfP222+nb9++GTNmTDbccMMmj2+44YZ55ZVXPvVrdOjQIR06dGhyrKamZoHP+nmccdZFGXLpWRkx4ukMf2xE9t17t/RddulccOEVpcxTFh00SDRINCi01A6dO3bIyssu1eRYxw7t071Lp8bjZ11zR8ZNmJwTfvzdJMmVdzycPj0Xz4rL9MqMWTNz27Cncu/jz+a0Q3Zv/Bo/2ulr+d2QoenScZFsstYXM2PGzDz379cz+f2p2WO7pj/AfR5f32StnP/ne/Ob86/P3t/8akaPHZ9L/nJ/frjjgMZf7+545B858rxrc9geA7Pmyn0z/t33kiQd2tema6eO89VnQWup10Fz0qCBDhokGhR00CDRINGgoIMGiQaJBgUdNEiSzp07ZaWVVmj8fIXl+6Zfv9UyYcLEvPbaGyVO1nxcBw100CDRINEg8WtDwbWgQUEHDRINEg0KOmiQaEBF/f9/XR2YU6tcrP7617+e8847LxdffHG22GKL3HDDDenXr1/j49ddd11WWmmlEiecN9dfPzQ9Fl8sRx7x0/TuvWSefW5UvjFw94wePabs0ZqVDhokGiQaFFpzh/Hvvpex77zb+PmMmbNy+lW3ZdyESenQvl1WXKZXzjn0B9ls7S81nrPjVzfIIu3b5bJb/5ozrr49HTu0z8rLLpVdv77pfM3QtVPHXHD4Pjnxsr9klyN/n26dO2b3bTfLHttu1njODfc9lpmz6nLipTfnxEtvbjw+cPN1c9z+g+brdRe01nwdLCgaNNBBg0SDgg4aJBokGhR00CDRINGgoIMGSbLeuv1y3703NH5+2qlHJ0mGXH5d9t7npyVN1bxcBw100CDRINEg8WtDwbWgQUEHDRINEg0KOmiQaABAUzX19a3vrx688cYb2WSTTdK3b9+st956Oe+887Luuutm1VVXzahRozJ8+PDcdNNN2Xbbbefp69a2X3ohTQxAazbl0XPLHqF0XTY6oOwRAAAAAAAAAOB/2szplrlpHlOvPabsEaiAjt89quwR5kubsgeYH3369MlTTz2VjTbaKHfeeWfq6+vz+OOP5+67784yyyyTv/3tb/O8VA0AAAAAAAAAAAAAVFdt2QPMr+7du+ekk07KSSedVPYoAAAAAAAAAAAAAEAr1yrvWA0AAAAAAAAAAAAAsCBZrAYAAAAAAAAAAAAAKs9iNQAAAAAAAAAAAABQeRarAQAAAAAAAAAAAIDKs1gNAAAAAAAAAAAAAFSexWoAAAAAAAAAAAAAoPIsVgMAAAAAAAAAAAAAlVdb9gAAAAAAAAAAAAAANJO6urIngBbLHasBAAAAAAAAAAAAgMqzWA0AAAAAAAAAAAAAVJ7FagAAAAAAAAAAAACg8ixWAwAAAAAAAAAAAACVZ7EaAAAAAAAAAAAAAKg8i9UAAAAAAAAAAAAAQOVZrAYAAAAAAAAAAAAAKs9iNQAAAAAAAAAAAABQeRarAQAAAAAAAAAAAIDKs1gNAAAAAAAAAAAAAFSexWoAAAAAAAAAAAAAoPJqyx4AAAAAAAAAAAAAgGZSV1f2BNBiuWM1AAAAAAAAAAAAAFB5FqsBAAAAAAAAAAAAgMqzWA0AAAAAAAAAAAAAVJ7FagAAAAAAAAAAAACg8ixWAwAAAAAAAAAAAACVZ7EaAAAAAAAAAAAAAKg8i9UAAAAAAAAAAAAAQOVZrAYAAAAAAAAAAAAAKs9iNQAAAAAAAAAAAABQeRarAQAAAAAAAAAAAIDKs1gNAAAAAAAAAAAAAFRebdkDAAAAAAAAAAAAANBM6uvKngBaLHesBgAAAAAAAAAAAAAqzx2rAeAzdNnogLJHKN3k075Z9gilW+zQW8oeoUVYpLZ92SOU7v3pH5Y9AgAAAAAAAAAAC4E7VgMAAAAAAAAAAAAAlWexGgAAAAAAAAAAAACoPIvVAAAAAAAAAAAAAEDlWawGAAAAAAAAAAAAACrPYjUAAAAAAAAAAAAAUHkWqwEAAAAAAAAAAACAyrNYDQAAAAAAAAAAAABUnsVqAAAAAAAAAAAAAKDyLFYDAAAAAAAAAAAAAJVXW/YAAAAAAAAAAAAAADSTurqyJ4AWyx2rAQAAAAAAAAAAAIDKs1gNAAAAAAAAAAAAAFSexWoAAAAAAAAAAAAAoPIsVgMAAAAAAAAAAAAAlWexGgAAAAAAAAAAAACoPIvVAAAAAAAAAAAAAEDlWawGAAAAAAAAAAAAACrPYjUAAAAAAAAAAAAAUHkWqwEAAAAAAAAAAACAyrNYDQAAAAAAAAAAAABUnsVqAAAAAAAAAAAAAKDyasseAAAAAAAAAAAAAIBmUl9f9gTQYrljNQAAAAAAAAAAAABQeRarAQAAAAAAAAAAAIDKs1gNAAAAAAAAAAAAALQIgwcPTk1NTQ455JDGY/X19Tn66KPTp0+fdOzYMV/5ylfy3HPPNXnetGnTctBBB6Vnz57p3LlzBg4cmNdff32eXttiNQAAAAAAAAAAAABQuieeeCIXXnhh1lxzzSbHTz755Jx++uk555xz8sQTT2SppZbK1772tbz33nuN5xxyyCG56aabcs0112TYsGGZMmVKtt9++8yaNetzv77FagAAAAAAAAAAAACgVFOmTMmuu+6aiy66KIsttljj8fr6+px55pk54ogjsuOOO2b11VfPkCFD8sEHH+Sqq65KkkyaNCmXXHJJTjvttAwYMCBrr712rrzyyjzzzDO59957P/cMFqsBAAAAAAAAAAAAgAVm2rRpmTx5cpOPadOmfepzDjjggGy33XYZMGBAk+OvvPJKxo4dm6233rrxWIcOHbLFFlvkkUceSZKMGDEiM2bMaHJOnz59svrqqzee83lYrAYAAAAAAAAAAAAAFpjBgwdn0UUXbfIxePDgTzz/mmuuyZNPPjnXc8aOHZsk6dWrV5PjvXr1anxs7Nixad++fZM7XX/8nM+j9nOfCQAAAAAAAAAAAADwGQ4//PD87Gc/a3KsQ4cOcz33tddey8EHH5y77747iyyyyCd+zZqamiaf19fXz3Hs4z7POR/ljtUAAAAAAAAAAAAAwALToUOHdOvWrcnHJy1WjxgxIuPGjcu6666b2tra1NbW5qGHHsrZZ5+d2traxjtVf/zO0+PGjWt8bKmllsr06dMzceLETzzn87BYDQAAAAAAAAAAAACUYquttsozzzyTf/zjH40f6623Xnbdddf84x//yBe+8IUstdRSueeeexqfM3369Dz00EPZeOONkyTrrrtu2rVr1+ScN998M88++2zjOZ9H7YL7zwIAAAAAAAAAAAAA+Py6du2a1Vdfvcmxzp07p0ePHo3HDznkkJx44olZeeWVs/LKK+fEE09Mp06dsssuuyRJFl100ey99975+c9/nh49emTxxRfPL37xi6yxxhoZMGDA557FYjUAAAAAAAAAAABAVdTVlT0BzLPDDjssU6dOzY9//ONMnDgxG264Ye6+++507dq18ZwzzjgjtbW1GTRoUKZOnZqtttoql112Wdq2bfu5X6fNwhieebf/fnvmpVGPZsrkl/PY8Duy6SYblD1SKXTQINEg0WCzTTfMzTddltGvjsjM6WMycOA2ZY9UmpZ6LVz3zOsZdPVj2fSCB7PpBQ9mj+ufyLD/jP/U59w+amwGXf1YNjr/gXztjw/nqHufz7tTZyzUOV8aPyV7/3lE+p/3QLa+dFguePzfqa+vb3z8vpfHZf+/PJWvXvzXxv+OR/7zzkKdaV6NGvVIpn342hwfZ515fNmjLTQbb7J+rrnuwrz40iOZNOXlbLf915o83rlzp5xy2lF5ftSwjH37uTw+4q7svc8uJU3bvFrqe0Jz0qCBDhokGiQaFHTQINEg0aCggwaJBokGBR00SDRINCjooEGiQUEHDRINEg0KOmiQaADQEj344IM588wzGz+vqanJ0UcfnTfffDMffvhhHnrooTnucr3IIovk97//fd5555188MEHueWWW7LsssvO0+tarG4BvvOdgTn9tKMz+KSzs94G22TYsMdz6y1XZtll+5Q9WrPSQYNEg0SDpGFpcuTI5/OTQ44se5RSteRroVeXDjlooxXzp0Eb5E+DNsgGyyyen942Mi+/M2Wu5z/1xrv5zb3PZYcv98kNu/TPyf+3Rp4bNznHPvDCfM/wxuSpWfuc+z7x8SnTZ+ZHQ5/KEp075MpB6+eXm6+SK54anSv+MbrxnCffeDf9l10853xjrfzpuxtk/WUWy8G3PZ0X335vvuda0DbZZPv0XW6dxo+vb/u9JMmNf7615MkWnk6dOuXZZ1/MoT8/eq6PDz7pyAwYsEV+uM/Ps8G6W+cP51yak089Kttu9/n/2ZbWqCW/JzQXDRrooEGiQaJBQQcNEg0SDQo6aJBokGhQ0EGDRINEg4IOGiQaFHTQINEg0aCggwaJBgA0VVP/0ds2Vlxt+6VLed1Hht2SJ596NgcedHjjsWdGPpihQ+/MEUeeVMpMZdBBg0SDRIOPmzl9THb89l4ZOvSuskdpdi3pWph82jc/85wtLnooh2yycr715Tl/uLz8yf/k+mfH5JY9Nm48dvXTr2XIU//Jnd/ftPHYX55/I0Oe+k/GTP4wfbouku/1WzaD1lhmrq/3xuSp2e7yR/LUgVvN9fHrnnk9v3/05dy392Zp37bh75L9ccSruWbk67nr+5ukpqZmrs/b6arh2XqlJbPfBl9ocnyxQ2/59ADN5NRTjsq22w7Il1fbrJTXX6S2fbO+3qQpL2eXnffPbbfe03js0cfvyJ9vvC2n/O6cxmMPPfyX3H33gznhuDMW+kzvT/9wob/G3LSk94SyaNBABw0SDRINCjpokGiQaFDQQYNEg0SDgg4aJBokGhR00CDRoKCDBokGiQYFHTRIWlaDmdPHNOvrUV1TLz2s7BGogI4/OLnsEeaLO1aXrF27dllnnTVzz70PNTl+zz0PZaP+65U0VfPTQYNEg0QDZmtN18Ksuvrc+c+xmTpjVtZcqttcz1mz96J5a8qHefjV8amvr887H0zLvS+Py6bL9Ww858/Pjck5w1/OAf1XzJ937Z8DN1oxfxj+coa+8OZ8zTVy7KSsu3T3xqXqJNm4b4+8/f60vPHe3Bdj6+rr88H0mVl0kXbz9ZoLW7t27fK97+2Yy4ZcW/YopRr+6N+z7bZbpXfvXkmSzTbvnxVXWj733fvXkidbeFrTe8LCokEDHTRINEg0KOigQaJBokFBBw0SDRINCjpokGiQaFDQQYNEg4IOGiQaJBoUdNAg0QCAOdWWPUDV9ey5eGprazPurfFNjo8bNz69llqypKmanw4aJBokGjBba7gWXho/JXve+PdMn1mXju3a5rRt18yKi3eZ67lr9e6eE7ZeLb+669lMn1WXmXX12WKFnvnl5qs0nnPRE6/kZ5uunK1WbPjvW7pbx/x7wvu58bkxGbhq73me750PpqdP10WaHFu8Y8Pdlse/Pz1Ld+s4x3OueGp0ps6Yla1X6jXPr9ccBg7cJt27d8sVV1xf9iilOuwXx+bsc07Miy89khkzZqSuri4HHfDrDH90RNmjLTSt4T1hYdOggQ4aJBokGhR00CDRINGgoIMGiQaJBgUdNEg0SDQo6KBBokFBBw0SDRINCjpokGgAwJxa5WL1QQcdlEGDBmWzzTab768xbdq0TJs2rcmx+vr61NTU/LfjzZf6+vomn9fU1MxxrAp00CDRINGA2VrytbD8Yp1yzXc3yHvTZua+l8flt/c+n4t3XGeuy9UvT5iSk//6z/xw/RWyUd/FM/796TnzkX/lhAdfzNFbfTkTpk7P2CnTcuz9L+S4B15sfN6suvp0ad+28fOdrhqeN///3aaLDhtf8GDj4727LpIbd+nf+Pmcv6zXf8Lx5I5/js35j/87Z2zXL4t3aj+PNZrHD76/c+6664G8+eZbZY9Sqv1/tGfWX3+tfPc7++a10WOy8aYb5LQzjslbY8flwQcfKXu8haolvyc0Fw0a6KBBokGiQUEHDRINEg0KOmiQaJBoUNBBg0SDRIOCDhokGhR00CDRINGgoIMGiQYAzNYqF6vPPffc/OEPf8iKK66YvffeO3vuuWeWWmqpefoagwcPzjHHHNPkWE2bLqlp221BjvqZxo+fkJkzZ6bXUks0Ob7EEj0y7q23m3WWMumgQaJBogGztYZroV3bNunbvVOSZLVe3fLcuMm5+unXcuRXV53j3EtH/Cdr9e6ePddZLkmySs+kY7u22evPI3JA/xXT5v8vOv/mq6tm9V5Nfy1u22b2FvTvt++XmXUNP7yOe39a9r3pyVzz3Q0aH6/9yLk9OrXP+A+mN/laE6bOaHzso+566a0ce/8LOfn/1kj/ZRefpw7NpW/fpbPllpvmu9/9YdmjlGqRRTrkt0f/PLt+70e5+64HkyTPPTcqa66xag46eN//2cXq1vCesLBp0EAHDRINEg0KOmiQaJBoUNBBg0SDRIOCDhokGiQaFHTQINGgoIMGiQaJBgUdNEg0AGBObcoeYH7dfffd2XbbbXPqqaemb9+++eY3v5lbb701dXV1n+v5hx9+eCZNmtTko6ZN14U89ZxmzJiRJ58cmQFbbd7k+IABm+fR4X9v9nnKooMGiQaJBszWWq+F6bPm/jd2p86YlTYfu0t0m/9/2+j6+qRHpw5ZsnOHvD55avp279TkY+luHRuf06dbx8bjfboukiRNzu3zkXPXXGrRPPnGu5kxa/bvDR4d/U6W6Nyh8blJw52qj7r3+Zy49erZbPme/3WDhWWPPQZl3Ljxuf2O+8oepVTt2rVL+/btU1fX9FqbVVeXNh+/yP6HtNb3hAVJgwY6aJBokGhQ0EGDRINEg4IOGiQaJBoUdNAg0SDRoKCDBokGBR00SDRINCjooEGiAQBzapV3rE6SNdZYI1tttVVOOeWU3HTTTfnjH/+YHXbYIb169cr3v//9/OAHP8hKK630ic/v0KFDOnTo0ORYTU05yzhnnHVRhlx6VkaMeDrDHxuRfffeLX2XXToXXHhFKfOURQcNEg0SDZKkc+dOWWmlFRo/X2H5vunXb7VMmDAxr732RomTNa+WfC38/tF/ZZPlemSpLovk/emzctdLb+XvYybm3G+slSQ5+5F/Zdz703L811ZLkmyxQs8c98CLue6Z17Nx3x4Z/8G0nPLwP7N6r25ZskvDr8f7bbBCTnn4n+nSvm026dsz02fV5flxkzN52szsvnbfeZ7x66sslQufeCW/vff57L3e8hn97gf544hXs+/6KzT+mn/HP8fmt/c+n0M3WyVr9OqW8e9PS5J0qG2brh1azm+Tampqssceg3LllTdk1qxZZY+z0HXu3Clf+MJyjZ8vt9wyWWONVTNx4rt5/fU38/DDw3PcCb/Khx9+mNdGj8kmm26Ynb/3rRxx+AklTr3wteT3hOaiQQMdNEg0SDQo6KBBokGiQUEHDRINEg0KOmiQaJBoUNBBg0SDgg4aJBokGhR00CDRAICmWs7G0Hxq165dBg0alEGDBmX06NH54x//mMsuuywnnXRSq1k8uv76oemx+GI58oifpnfvJfPsc6PyjYG7Z/ToMWWP1qx00CDRINEgSdZbt1/uu/eGxs9PO/XoJMmQy6/L3vv8tKSpml9Lvhbe+WB6jrzn+Yx/f1q6dKjNyj265NxvrJX+fXskScZ/MD1j3/uw8fyBq/bJ+9Nn5dpnXs8Zf3spXdrXZoNlFs/BG6/YeM6Oqy2djrVtM+Sp/+TMv/0rHdu1zUo9umTXfsvO14xdO9TmvIFrZ/BfR2XX655Itw612W2tvtl9rdlL2jc+OyYz6+oz+KFRGfzQqMbj3/hS7xw74Mvz9boLw1ZbbZbl+i6TIUOuLXuUZrH2Omvktjuuavx88O+OTJL86cob8+P9D8teex6co445NBddcnoWW6x7XnttTI475rRccvFVn/Ql/ye05PeE5qJBAx00SDRINCjooEGiQaJBQQcNEg0SDQo6aJBokGhQ0EGDRIOCDhokGiQaFHTQINEAgKZq6uvr6z/7tJalTZs2GTt2bJZccsm5Pl5fX5977703X/va1+bp69a2X3pBjAcA/3Mmn/bNskco3WKH3lL2CC3CIrXtyx6hdO9P//CzTwIAAAAAAACYRzOnW+ameUy99LCyR6ACOv7g5LJHmC+t8o7Vyy23XNq2bfuJj9fU1MzzUjUAAAAAAAAAAADA/7y6urIngBarVS5Wv/LKK2WPAAAAAAAAAAAAAAD8D2lT9gAAAAAAAAAAAAAAAGWzWA0AAAAAAAAAAAAAVJ7FagAAAAAAAAAAAACg8ixWAwAAAAAAAAAAAACVZ7EaAAAAAAAAAAAAAKg8i9UAAAAAAAAAAAAAQOVZrAYAAAAAAAAAAAAAKs9iNQAAAAAAAAAAAABQeRarAQAAAAAAAAAAAIDKs1gNAAAAAAAAAAAAAFRebdkDAAAAAAAAAAAAANBM6uvKngBaLHesBgAAAAAAAAAAAAAqz2I1AAAAAAAAAAAAAFB5FqsBAAAAAAAAAAAAgMqzWA0AAAAAAAAAAAAAVJ7FagAAAAAAAAAAAACg8ixWAwAAAAAAAAAAAACVZ7EaAAAAAAAAAAAAAKg8i9UAAAAAAAAAAAAAQOVZrAYAAAAAAAAAAAAAKs9iNQAAAAAAAAAAAABQeRarAQAAAAAAAAAAAIDKqy17AAAAAAAAAAAAAACaR31dfdkjQIvljtUAAAAAAAAAAAAAQOVZrAYAAAAAAAAAAAAAKs9iNQAAAAAAAAAAAABQeRarAQAAAAAAAAAAAIDKs1gNAAAAAAAAAAAAAFSexWoAAAAAAAAAAAAAoPIsVgMAAAAAAAAAAAAAlWexGgAAAAAAAAAAAACoPIvVAAAAAAAAAAAAAEDlWawGAAAAAAAAAAAAACqvtuwBAICWr9vP/1L2CKV7/4Ubyx6hRei86k5ljwAAAAAAAAAAAAuFxWoAAAAAAAAAAACAqqirK3sCaLHalD0AAAAAAAAAAAAAAEDZLFYDAAAAAAAAAAAAAJVnsRoAAAAAAAAAAAAAqDyL1QAAAAAAAAAAAABA5VmsBgAAAAAAAAAAAAAqz2I1AAAAAAAAAAAAAFB5FqsBAAAAAAAAAAAAgMqzWA0AAAAAAAAAAAAAVJ7FagAAAAAAAAAAAACg8ixWAwAAAAAAAAAAAACVZ7EaAAAAAAAAAAAAAKi82rIHAAAAAAAAAAAAAKCZ1NeVPQG0WO5YDQAAAAAAAAAAAABUnsVqAAAAAAAAAAAAAKDyLFYDAAAAAAAAAAAAAJVnsRoAAAAAAAAAAAAAqDyL1QAAAAAAAAAAAABA5VmsBgAAAAAAAAAAAAAqz2I1AAAAAAAAAAAAAFB5FqsBAAAAAAAAAAAAgMqzWA0AAAAAAAAAAAAAVJ7FagAAAAAAAAAAAACg8ixWAwAAAAAAAAAAAACVV1v2AAAAAAAAAAAAAAA0k7r6sieAFssdqwEAAAAAAAAAAACAyrNYDQAAAAAAAAAAAABUnsVqAAAAAAAAAAAAAKDyLFYDAAAAAAAAAAAAAJVnsRoAAAAAAAAAAAAAqDyL1QAAAAAAAAAAAABA5VmsBgAAAAAAAAAAAAAqz2I1AAAAAAAAAAAAAFB5FqsBAAAAAAAAAAAAgMqzWN1C7L/fnnlp1KOZMvnlPDb8jmy6yQZlj1QKHTRINEg0KOigwWabbpibb7oso18dkZnTx2TgwG3KHukTXXztLVlz2z3zuwv+9Knn3fbAI/n2AUdmg2/tmy13/Ul+c/pFeXfylIU62z9feS0/OOzErL/DPhmw+8E5/6qbU19f3/j4vX/7e37465Ozxc4HZqOd9stuPzs2fxvxzEKdaX5U/fsh0SDRoKCDBokGiQYFHTRINEg0KOigQaJBokFBBw0SDRINCjpo0Jr+zH1hq/q1kGiQaJBoUNBBg0QDAGazWN0CfOc7A3P6aUdn8ElnZ70NtsmwYY/n1luuzLLL9il7tGalgwaJBokGBR00SJLOnTtl5Mjn85NDjix7lE/17D//nRvufDCrrLDsp5735HP/zBGnXZhvbb15/nzeiTn11wfm2ZdeydFnXTLfrz3mrbez5rZ7fuLjUz6Ymv2OPCVL9Oieq848Or/af/cMufGOXH7TnY3njHh2VPqvvVrOPfZnuebsY7L+mqvmoGPOyAsv/2e+51rQfD9okGhQ0EGDRINEg4IOGiQaJBoUdNAg0SDRoKCDBokGiQYFHTRIWs+fuS9srgUNEg0SDQo6aJBoAEBTNfUfvV1hxdW2X7qU131k2C158qlnc+BBhzcee2bkgxk69M4cceRJpcxUBh00SDRINCjooMHHzZw+Jjt+e68MHXpXKa///gs3zvX4B1M/zHcP+m2OOGDPXHjN0HzxC33zy/12neu5l914e6677f7c/sdTG49dNfSeXHrD7bnn8jMaj918919z6Y23Z8zY8enTq2d2Gfi17Lz9VnP9mmPeejtf/8EvMvL2IXN9/Nrb7svZl92QB646O+3btUuSXHLdrbn6lntyz+VnpqamZq7P+9b+h2ebzTfM/rvs0OR451V3muv5C5vvBw0SDQo6aJBokGhQ0EGDRINEg4IOGiQaJBoUdNAg0SDRoKCDBh9X9p+5l8m1oEGiQaJBQQcNkpbVYOb0Mc36elTXB+ceWPYIVECnA84pe4T54o7VJWvXrl3WWWfN3HPvQ02O33PPQ9mo/3olTdX8dNAg0SDRoKCDBq3JCX+4PJtt0C/9117tM89da9WV89b4iXn4iadTX1+fdyZOyj3Dnsjm6/drPOeGOx/M7y+/MQft8e3cfMHg/GTPb+fcK27MX+4dNl/zPf3Cv7LuGl9sXKpOko3XXSPj3nk3Y94aP9fn1NXV5f2pH2bRrp3n6zUXNN8PGiQaFHTQINEg0aCggwaJBokGBR00SDRINCjooEGiQaJBQQcNmM21oEGiQaJBQQcNEg2osLo6Hz4W/kcrVVv2AFXXs+fiqa2tzbiPLTaNGzc+vZZasqSpmp8OGiQaJBoUdNCgtbjjoeF54V//ydVnHfW5zl/ryytn8GH759CT/pDp02dk5qxZ+Ur/tfOrH+3WeM6FV/8lP99n5wzYpOGH9GWWWiL/Hj0mN9zxQL45YNN5nvGdiZPSp1fPJsd6dO/W+NgySy0xx3OG/PnOTP1wWrbebMN5fr2FwfeDBokGBR00SDRINCjooEGiQaJBQQcNEg0SDQo6aJBokGhQ0EEDZnMtaJBokGhQ0EGDRAMA5tRqF6t///vf5+9//3u22267DBo0KFdccUUGDx6curq67Ljjjjn22GNTW/vJ/3nTpk3LtGnTmhyrr69PTU3Nwh59rurr65t8XlNTM8exKtBBg0SDRIOCDhq0ZGPffie/u+BPueD4Q9OhffvP9ZyXR4/J786/Mvt975vZZN3V8/aESTn9kmty/DlDcswhe2fCpMkZ+/aEHH3WH3PM2Zc2Pm/WrLp06dyx8fNv7X943hj3TpLZ18iGO/6w8fE+S/bITecPbvz847+/abyG5vLbntsffDTn/emmnP3bQxoXsFsK3w8aJBoUdNAg0SDRoKCDBokGiQYFHTRINEg0KOigQaJBokFBBw2YzbWgQaJBokFBBw0SDfh/7N13vJYF/f/x94HDHgoICO5ylH5FAzPNWaKmucsk08qcfR05ciA4yFyZA8sS98ocuHCvHOFM8Ks5MotKRWWLCso65/cHXUePDIUf3Pc5Xs/n43E/Hp7ruu77/vB63JzEPlwH4CPNcrH6lFNOyVlnnZVtttkmP/vZz/Kvf/0rZ511Vo444oi0aNEi5557blq1apUhQ4Ys8DVOP/30ec7XtOiYmpaVXSCaOHFyZs+enZ6fuFtk9+7dMn7chIrOUk06aJBokGhQ0EGD5uClV/+dye+8mwGHfXS36jl1dRn1wiu57vYH8sxtl6ZlyxaNnnPp9Xdk/bXXyD7f3T5JsuZqSbu2bfLjo0/NIT/8Tlr8dwH6pMP2ybprfbHRc1u0+Oi1LhhyVGbPmZMkGT9pSn5y7Om58benNJyvbdmy4Z+7dVkmE6dMbfRak6e+N/fcsss0On7PI0/l5KGX5dcDD85GX1ln0YIsRX4/aJBoUNBBg0SDRIOCDhokGiQaFHTQINEg0aCggwaJBokGBR004CM+CxokGiQaFHTQINEAgHm1+PRLmp4rrrgiV1xxRYYPH5577rkngwYNytChQzNo0KAMHDgww4YNy7XXXrvQ1xg4cGCmTp3a6FHTolOFfgUfmTVrVkaPfj79t9q80fH+/TfPE08+U/F5qkUHDRINEg0KOmjQHHxt/bVz0+9OzQ2/PaXhsc4aq+XbW26cG357yjxL1UnywYyZDcvThZb/XZiur69Pty7LpEe3LnnjrQlZuXfPRo8VP/YH+d49l2s43qtHtyRpdG3vnss1XLvel1fPqBdeyaxZsxuOPTH6hfTotmxW+Nh1dz38RE449+KccfRB2XzD9ZdIoyXF7wcNEg0KOmiQaJBoUNBBg0SDRIOCDhokGiQaFHTQINEg0aCggwZ8xGdBg0SDRIOCDhokGgAwr2Z5x+q33norG2ywQZJkvfXWS4sWLbL++us3nO/bt2/efPPNhb5GmzZt0qZNm0bHaj6x6FQp5w69OFdePjSjRj2XJ58alf333Ssrr7RChl10dVXmqRYdNEg0SDQo6KBBknTo0D6rr75aw9errbpy1ltvnUyePCWvv77w/61f2jq0b5c1Vl2x0bF2bdtkmc4dG44PvfyGjJs0Jaf9/MAkyZZfWz9Dzr8819/5YDbpu24mTH4nv7ro2vzPml9Ij25dkiQ//cEuOXPYH9KhfbtsukGfzJw1Ky+9+q+8+/70/HC3by3ynNtvuXEuvPa2DD7n4uy3x4557c23c8n1t+fAPXdu+Hefux5+IoPPvjjHHPiD9PnSFzNx8jtJkjZtWqdTh/aLm2iJ8vtBg0SDgg4aJBokGhR00CDRINGgoIMGiQaJBgUdNEg0SDQo6KBB0rT/m3sl+SxokGiQaFDQQYNEAwAaa5aL1csvv3xeeumlrLzyynn11VczZ86cvPTSS1lnnbk/sv7FF19Mjx49qjzlZ3fjjSPSrWuXDB50RHr16pEXXnwlO+60d157bWy1R6soHTRINEg0KOigQZJs0G+9PPjA8Iavz/71yUmSK6+6Ifvud0SVpvrsJkyZmrcnTG74euetN8u0Dz7Mdbc/kLMvuS6dOrTPhut9OYfv872Ga77zrS3Ttk2bXHnTXTn3suvTrm2brLHqitlrl20Wa4ZOHdpn2C+Pzmm/uyrf/9nJ6dyxffbeddv8cNePlrSH3/1wZs+Zk9N+d1VO+91VDcd36r9pfnnk/ov1vkua3w8aJBoUdNAg0SDRoKCDBokGiQYFHTRINEg0KOigQaJBokFBBw2S5v/f3JcUnwUNEg0SDQo6aJBoAEBjNfX19fXVHmJRDR48OBdddFF23nnnPPjggxkwYED+8Ic/ZODAgampqcmpp56a7373uznnnHMW6XVrW6+wlCYGAJq7aS/fVO0RmoQOX/5OtUcAAAAAAAAA+FyaPdMyN5Ux/Tf/W+0RKIH2h/6u2iMslmZ5x+ohQ4akXbt2efLJJ3PggQfm2GOPTZ8+fXLMMcdk+vTp2XHHHXPKKadUe0wAAAAAAAAAAAAAoJlolnesXlrcsRoAWBB3rJ7LHasBAAAAAAAAlg53rKZS3LGaSmiud6xuUe0BAAAAAAAAAAAAAACqzWI1AAAAAAAAAAAAAFB6tdUeAAAAAAAAAAAAAIAKqaur9gTQZLljNQAAAAAAAAAAAABQeharAQAAAAAAAAAAAIDSs1gNAAAAAAAAAAAAAJSexWoAAAAAAAAAAAAAoPQsVgMAAAAAAAAAAAAApWexGgAAAAAAAAAAAAAoPYvVAAAAAAAAAAAAAEDpWawGAAAAAAAAAAAAAErPYjUAAAAAAAAAAAAAUHoWqwEAAAAAAAAAAACA0rNYDQAAAAAAAAAAAACUXm21BwAAAAAAAAAAAACgQurrqz0BNFnuWA0AAAAAAAAAAAAAlJ7FagAAAAAAAAAAAACg9CxWAwAAAAAAAAAAAAClZ7EaAAAAAAAAAAAAACg9i9UAAAAAAAAAAAAAQOlZrAYAAAAAAAAAAAAASs9iNQAAAAAAAAAAAABQeharAQAAAAAAAAAAAIDSs1gNAAAAAAAAAAAAAJSexWoAAAAAAAAAAAAAoPQsVgMAAAAAAAAAAAAApVdb7QEAAAAAAAAAAAAAqJC6umpPAE2WO1YDAAAAAAAAAAAAAKVnsRoAAAAAAAAAAAAAKD2L1QAAAAAAAAAAAABA6VmsBgAAAAAAAAAAAABKz2I1AAAAAAAAAAAAAFB6FqsBAAAAAAAAAAAAgNKrrfYAAEDT17a2dbVHqLqOX/5OtUdoEt5/eli1R6i6ThseWO0Rqq6+2gMAAAAAAAAAACwF7lgNAAAAAAAAAAAAAJSexWoAAAAAAAAAAAAAoPQsVgMAAAAAAAAAAAAApWexGgAAAAAAAAAAAAAovdpqDwAAAAAAAAAAAABAhdTVV3sCaLLcsRoAAAAAAAAAAAAAKD2L1QAAAAAAAAAAAABA6VmsBgAAAAAAAAAAAABKz2I1AAAAAAAAAAAAAFB6FqsBAAAAAAAAAAAAgNKzWA0AAAAAAAAAAAAAlJ7FagAAAAAAAAAAAACg9CxWAwAAAAAAAAAAAAClZ7EaAAAAAAAAAAAAACg9i9UAAAAAAAAAAAAAQOlZrAYAAAAAAAAAAAAASq+22gMAAAAAAAAAAAAAUCH1ddWeAJosd6wGAAAAAAAAAAAAAErPYjUAAAAAAAAAAAAAUHoWqwEAAAAAAAAAAACA0rNYDQAAAAAAAAAAAACUnsVqAAAAAAAAAAAAAKD0LFYDAAAAAAAAAAAAAKVnsRoAAAAAAAAAAAAAKD2L1QAAAAAAAAAAAABA6VmsBgAAAAAAAAAAAABKz2I1AAAAAAAAAAAAAFB6FqsBAAAAAAAAAAAAgNKrrfYAAAAAAAAAAAAAAFRIXX21J4Amyx2rAQAAAAAAAAAAAIDSs1gNAAAAAAAAAAAAAJSexWoAAAAAAAAAAAAAoPQsVgMAAAAAAAAAAAAApWexGgAAAAAAAAAAAAAoPYvVTcRBB/4or77yRN5/95956sm7s+kmG1Z7pKrQQYNEg0SDgg7larDJJhvmhuGX5NV/Ppn3p/8rO+y4daPzFw47K+9P/1ejx58evrlK01bOMccckicevzOTJ72SsW88l+HDL82aa36x2mPN16W3PJj19jgqv7ri1oVeN3PW7PzmurvyrYN/mQ1+cEy+fdhpueWhp5bqbK++9lZ+cvIF2XCvY9P/oCG5cPh9qa+vbzj/wFPP58BfXpgt9zsxX//x8dl78Pl57P/+tlRnWhTN6XOwtJXp++LC6KBBokGiQUEHDRINEg0KOmiQaJBoUNBBg0SDRIOCDhokGhR00CDRINGgoIMGiQYAfMRidROw++475ZyzT87pZ5yfDTbcNiNHPp07br8mK63Uu9qjVZQOGiQaJBoUdChfg/Yd2uWFv76co448aYHX3Hffw/nCal9teHxn130qOGF1bL7ZRvn976/MppvtmO22/35qW9bmrjuvTfv27ao9WiMv/OO1DH/wyay5cq9Pvfbo867KU399NScf+L3cdu5xOeOwvbJa7x6L/d5jx0/OensctcDz70//MAf+cli6d+mcP5x2eI7bZ9dcdcfDueqORxquGf3ymGy07pr57XH75Y+nH5GvrrN6DvvVZXn5X28s9lxLUnP5HCxtZfu+uCA6aJBokGhQ0EGDRINEg4IOGiQaJBoUdNAg0SDRoKCDBokGBR00SDRINCjooEGiAQCN1dR//FZ9JVfbeoWqvO/jI2/P6GdfyCGHDmw49tfnH86IEfdk0OAzqjJTNeigQaJBokFBh6bVoG1t64q+3/vT/5UBexyQO26/v+HYhcPOyjLLds739ziworMUZsyeWZX3/aTlluuat978a77xzd0ycuTSvcvz/Lz39LB5jk3/cEb2OO6cDPrJd3LxLQ9krVV655gf7zLf5z/2f3/LsUOvzp2/GZRlOrZf4Pvc+tDTuWLEQxk7YXJ6d++SPb+1WfbYdpP5Xjt2/ORsf+ipee76s+d7/ob7Hs/5f7wzf7poSFq3qk2SXHrrg/njPSNz/+9PTE1NzXyft+tRv8q2G6+fg767TaPjnTaszmfw46r9OajWHyCa0vfFatJBg0SDRIOCDhokGiQaFHTQINEg0aCggwaJBokGBR00SDQo6KBBokGiQUEHDZKm1WD2zLEVfT/Ka/qZn/8b2VF97Y+9vNojLBZ3rK6yVq1apW/fPrn/gUcaHb///key8UYbVGmqytNBg0SDRIOCDhosyGabbZR//fsvefa5P+U3F5ye7t27VXukiltmmc5JkilT3qnuIB9z2qU3Z/OvrJ2N+qz5qdc+/MyLWfsLK+XyEX9K/4OGZMfDT8/ZV4/IhzNnNVxz04NP5rfX351DBmyXW845JocO2D4X3HBPRjzyl8Wa77m//zv91v5iw1J1knx9vbUyYcq7GTth8nyfU1dXl+kfzFjo8nc1NcXPwdLm++JcOmiQaJBoUNBBg0SDRIOCDhokGiQaFHTQINEg0aCggwaJBgUdNEg0SDQo6KBBogEA86r99Euanrfeeiu///3vM3LkyLz11ltp2bJlVlttteyyyy758Y9/nJYtW1Z7xM9sueW6pra2NuPHTWx0fPz4iem5fI8qTVV5OmiQaJBoUNBBg/m5/76Hc8std+X118ZmlVVXygknHpk77/pDNt1kp8yc2TTuJl0JZ511UkaOfCovvvhKtUdJktz92LN5+V9v5NrTDv9M178xflKefeVfad26Nuf+fJ+88960nHbpTZn6/vT84qcDkiQX3XR/jtp7x/T/Wp8kyYo9umXMG+My/IEnstMWX13kGSdOfS8rdO/a6Fi3ZTolSSa9815W7DHvgv5VdzySD2bMzDYbr7fI71cJTe1zUAm+L86lgwaJBokGBR00SDRINCjooEGiQaJBQQcNEg0SDQo6aJBoUNBBg0SDRIOCDhokGgAwr2a3WP3MM8+kf//+WW211dKuXbv8/e9/zw9+8IPMnDkzP//5z3PppZfm3nvvTadOnRb6OjNmzMiMGTMaHauvr1/gj4Jf2urrG/9A9ZqamnmOlYEOGiQaJBoUdNDg42666c6Gf37ppb9n9Ojn8/LfRuZb230jI267t4qTVc75Q0/Nuv/z5Wz5jV2rPUqS5O2JU/KrK2/NhccfmDatW32m59TV16cmyemH/iCd2rdLkhy19075+blX5fh9v5PpH87I25PeyckX3pAhw25seN6curp0bN+24etdj/pV3powJUlS/I7Y6Icf/WiuXt275Jazj1ngHMVzajLvv/vd/djo/H74fRn6830aFrCbkqb2Oag03xfn0kGDRINEg4IOGiQaJBoUdNAg0SDRoKCDBokGiQYFHTRINCjooEGiQaJBQQcNEg0A+EizW6w+/PDDc8QRR+Skk05KklxzzTX57W9/myeffDJTpkzJN7/5zQwePDhDhw5d6OucfvrpGTJkSKNjNS06pqZl56U2+/xMnDg5s2fPTs/luzc63r17t4wfN6Gis1STDhokGiQaFHTQ4LMY9/aEvPba2Hzxi6tWe5SKOO/cU7LDDtvkm1vtlrFj36r2OEmSl/71RiZPfT/fH3huw7E5dXUZ9fKYXHfvY/nLH85MyxYtGj2n+7Kd06PrMg1L1UnyhRV6pr6+PuMmvZOO7eYuT594wO5Zd41VGj23RYuPlqAvOG6/zJ5TlyQZP3lq9h3yu9zwq6Mazte2/Oh9l1umUyZNfa/Ra03+79ddl+3Y6Pg9jz+bky+8IWcd8cNs1GfNzx6jQpri56BSfF+cSwcNEg0SDQo6aJBokGhQ0EGDRINEg4IOGiQaJBoUdNAg0aCggwaJBokGBR00SDSgvOrr6qo9AjRZLT79kqZl9OjR2XvvvRu+3nPPPTN69OiMGzcuXbp0ya9+9asMHz78U19n4MCBmTp1aqNHTYvK35Fw1qxZGT36+fTfavNGx/v33zxPPPlMxeepFh00SDRINCjooMFn0bXrsllxxd55++3P/x9mh573y+yyy3bZZtvv5d//fr3a4zT42v+skeFn/TzXn3lkw2OdL6yU7Tftm+vPPHKepeokWX+tVTNhyruZ/uFHPznkP29NSIuamvTstmy6LdspPboukzfGT87Kyy/X6LFij24Nz+ndvWvD8V7LdUmSRtf27t614dr11lw1o14ek1mzZzcce+L5v6d7l85Z4WPX3f3Y6Jz4u+ty+mE/yOZ9116irZaEpvo5qBTfF+fSQYNEg0SDgg4aJBokGhR00CDRINGgoIMGiQaJBgUdNEg0KOigQaJBokFBBw0SDQCYV7O7Y3WPHj3y1ltv5Qtf+EKSZNy4cZk9e3Y6d557p+k11lgjkydP/tTXadOmTdq0adPoWE3NvD8KvhLOHXpxrrx8aEaNei5PPjUq+++7V1ZeaYUMu+jqqsxTLTpokGiQaFDQoXwNOnRony988aM7FK+yykpZt8+XM2Xy1EyZ8k6OH3R4brv17rz99visssqKOWnI0Zk0aXJuH3FvFade+n5z/mkZMGCX7Padn+S9995Pz55z/6b01Knv5cMPP6zqbB3atc0aK/dqdKxd29ZZtmP7huNDr70z4ydPzamH7Jkk2X7Tvrno5vtz4u+uy0+/t23eeXdazvnD7dnlGxumbetWSZKffnebnHnFrenYrk02Wf/LmTV7dl785+t5d9oH+eEOWyzynNtt+pVcOPy+nPC767LvLlvltbcn5tJbHswB39m64d//7n5sdAZf8Mcc86Nd0meNVTLxnXeTJG1at2p0d+1qacqfg0oq2/fFBdFBg0SDRIOCDhokGiQaFHTQINEg0aCggwaJBokGBR00SDQo6KBBokGiQUEHDRINAGis2S1W77LLLjnooINy1llnpU2bNjnllFOyxRZbpF27uQsvr7zySlZYYYUqT7lobrxxRLp17ZLBg45Ir1498sKLr2THnfbOa6+NrfZoFaWDBokGiQYFHcrXoG/fdXP3vdc1fH3mr05Iklxz9fAc/rPBWWedtbLnnrtmmWU75+23J+TRR57Ij/Y+NO+/P61aI1fEQQf9KEnypwdvanR8332PyFVX31CNkRbJxHfezduT3mn4un3bNhk26MCccfkt2XPgeVmmU/tss9H6OWTAdg3X7LbVRmnbpnWuuP2hnPuHO9KuTeussXKv/GD7zefzDp+uU/t2GTb4wJx26c3Z8/jz0rlDu+z97c0bLWkPf+DJzJ5Tl9MuuzmnXXZzw/Gdttggp/zv9xfrfZek5v45WFLK9n1xQXTQINEg0aCggwaJBokGBR00SDRINCjooEGiQaJBQQcNEg0KOmiQaJBoUNBBg0QDABqrqa+vr6/2EIvi/fffz7777pubb745c+bMycYbb5xrrrkmq622WpLkvvvuy9SpU7P77rsv8mvXtm5eC9kAUClta1tXe4SqmzF7ZrVHaBLee3pYtUeouk4bHljtEaquWf0BAgAAAAAAAJqJ2TMtc1MZ007/UbVHoAQ6DLyy2iMslmZ3x+qOHTvm+uuvz4cffpjZs2enY8eOjc5vs802VZoMAAAAAAAAAAAAAGiumt1idaFt27bVHgEAAAAAAAAAAAAA+JxoUe0BAAAAAAAAAAAAAACqzWI1AAAAAAAAAAAAAFB6FqsBAAAAAAAAAAAAgNKzWA0AAAAAAAAAAAAAlJ7FagAAAAAAAAAAAACg9GqrPQAAAAAAAAAAAAAAFVJXX+0JoMlyx2oAAAAAAAAAAAAAoPQsVgMAAAAAAAAAAAAApWexGgAAAAAAAAAAAAAoPYvVAAAAAAAAAAAAAEDpWawGAAAAAAAAAAAAAErPYjUAAAAAAAAAAAAAUHoWqwEAAAAAAAAAAACA0rNYDQAAAAAAAAAAAACUnsVqAAAAAAAAAAAAAKD0LFYDAAAAAAAAAAAAAKVnsRoAAAAAAAAAAAAAKL3aag8AAAAAAAAAAAAAQIXU11V7Amiy3LEaAAAAAAAAAAAAACg9i9UAAAAAAAAAAAAAQOlZrAYAAAAAAAAAAAAASs9iNQAAAAAAAAAAAABQeharAQAAAAAAAAAAAIDSs1gNAAAAAAAAAAAAAJSexWoAAAAAAAAAAAAAoPQsVgMAAAAAAAAAAAAApWexGgAAAAAAAAAAAAAoPYvVAAAAAAAAAAAAAEDpWawGAAAAAAAAAAAAAEqvttoDAAAAAAAAAAAAAFAhdfXVngCaLHesBgAAAAAAAAAAAABKz2I1AAAAAAAAAAAAAFB6FqsBAAAAAAAAAAAAgNKrrfYAAEDT9+HsmdUegSai44YHVnuEqpv27FXVHqHqOnzlh9UeAQAAAAAAAABgiXPHagAAAAAAAAAAAACg9CxWAwAAAAAAAAAAAAClZ7EaAAAAAAAAAAAAACg9i9UAAAAAAAAAAAAAQOlZrAYAAAAAAAAAAAAASs9iNQAAAAAAAAAAAABQeharAQAAAAAAAAAAAIDSq632AAAAAAAAAAAAAABUSF1dtSeAJssdqwEAAAAAAAAAAACA0rNYDQAAAAAAAAAAAACUnsVqAAAAAAAAAAAAAKD0LFYDAAAAAAAAAAAAAKVnsRoAAAAAAAAAAAAAKD2L1QAAAAAAAAAAAABA6VmsBgAAAAAAAAAAAABKz2I1AAAAAAAAAAAAAFB6FqsBAAAAAAAAAAAAgNKzWA0AAAAAAAAAAAAAlJ7FagAAAAAAAAAAAACg9GqrPQAAAAAAAAAAAAAAFVJXX+0JoMlyx2oAAAAAAAAAAAAAoPQsVgMAAAAAAAAAAAAApWexGgAAAAAAAAAAAAAoPYvVAAAAAAAAAAAAAEDpWawGAAAAAAAAAAAAAErPYjUAAAAAAAAAAAAAUHoWqwEAAAAAAAAAAACA0rNYDQAAAAAAAAAAAACUnsVqAAAAAAAAAAAAAKD0LFYDAAAAAAAAAAAAAKVnsRoAAAAAAAAAAAAAKL3aag8AAAAAAAAAAAAAQIXU11V7Amiy3LEaAAAAAAAAAAAAACg9i9UAAAAAAAAAAAAAQOlZrG4iDjrwR3n1lSfy/rv/zFNP3p1NN9mw2iNVhQ4aJBokGhR00CDRINGg0Bw6XHLTPemz2//mzEtvXOh1M2fNyvl/uC3bHjA4/b53WLb/6Ym55cHHl+psf//P2Owz+Jx8dcDP0n+/gbnwhrtSX1/fcP6BJ5/NASefny1+fEw2/sGR2eu4s/LYsy8t1ZkWR3P4HFSCDhokGiQaFHTQINEg0aCggwaJBokGBR00SDRINCjooEGiQUEHDRINEg0KOmiQaADAR5rtYvW0adNy8cUXZ5999sl2222X7bffPvvss08uueSSTJs2rdrjLZLdd98p55x9ck4/4/xssOG2GTny6dxx+zVZaaXe1R6tonTQINEg0aCggwaJBokGhebQ4YVX/53h9z+WNVdZ4VOv/fmvL81Tz7+SIQfvlRG/PSlnHvmTrLZCz8V+77HjJ6XPbv+7wPPvT/8gBw75Tbp3XTbXnnlsjtvve7nytgdy1YgHG64Z9eI/stF6X8oFg/431511XL76P2vm0NN/n5fHvL7Ycy1pzeFzUAk6aJBokGhQ0EGDRINEg4IOGiQaJBoUdNAg0SDRoKCDBokGBR00SDRINCjooEGiAQCN1dR//DZ1zcRLL72UrbfeOtOnT88WW2yRnj17pr6+PuPHj88jjzySDh065L777svaa6+9SK9b2/rTl2CWhsdH3p7Rz76QQw4d2HDsr88/nBEj7smgwWdUZaZq0EGDRINEg4IOGiQaJBoUmlKHac9eNc+x6R98mD1+fkYGHTAgFw2/O2utumKO3Xf3+T5/5OgXc+w5l+Wu3/8iy3TqsMD3ufXBJ3L5rfdl7PhJ6d2jW/bcfssM2G6L+V47dvykbHfQCXn+5t/N9/z19zya86+5LQ9dfkZat2qVJLn05nvzx7sezv0Xn5aampr5Pm/Xn52SbTfpl4O+t32j4x2+8sMFzr00NaXPQTXpoEGiQaJBQQcNEg0SDQo6aJBokGhQ0EGDRINEg4IOGiQaFHTQINEg0aCggwZJ02owe+bYir4f5TXthO9VewRKoMMpN1R7hMXSLO9YffDBB2fzzTfPuHHjcuutt2bYsGG56KKLcuutt2bcuHHZfPPNc/DBB1d7zM+kVatW6du3T+5/4JFGx++//5FsvNEGVZqq8nTQINEg0aCggwaJBokGhebQ4dSLr89m/f4nG633pU+99uG/PJ+1V185l996f/rvNzA7Hnxyfn3FTflwxsyGa4bfPzK/uXZEDv3BTrn1/BNz2A92ygV/vCO3PfTkYs333Ctj0m+dNRqWqpPk6+uvnfGTp2bs+EnzfU5dXV2mffBhlunYfrHec0lrDp+DStBBg0SDRIOCDhokGiQaFHTQINEg0aCggwaJBokGBR00SDQo6KBBokGiQUEHDRINAJhXbbUHWBxPPfVUnnnmmbRu3Xqec61bt87xxx+fDTfcsAqTLbrlluua2trajB83sdHx8eMnpufyPao0VeXpoEGiQaJBQQcNEg0SDQpNvcPdI5/Jy2Nezx9/dexnuv6NcZPy7Mv/TJtWrXLusQfmnXffz6kXXZd335+eXxyyd5LkohvvzlE/3i39N/pKkmTFnstlzOtvZ/h9f87O39hokWec9M676d2jW6Nj3Zbt1HBuxZ7LzfOcK0c8mA8+nJltvt5vkd9vaWjqn4NK0UGDRINEg4IOGiQaJBoUdNAg0SDRoKCDBokGiQYFHTRINCjooEGiQaJBQQcNEg0AmFezXKzu0qVLXn311ay99trzPf+Pf/wjXbp0WehrzJgxIzNmzGh0rL6+foE/Bn1pq6+vb/R1TU3NPMfKQAcNEg0SDQo6aJBokGhQaIod3p44OWdeemOGnXho2rRu9elPSFJfX5eampqcfvg+6dShXZLk5/t8J0eddUmO33+PTP9wRt6eOCUnX3BNhvz+2obnzZkzJx3bt2v4etefnZI3J0z+72vO7fC1PY9oON+7e9fcMvSEhq9r0vjfcz9KN++//97157/k99ffmfOPO6hhAbupaIqfg2rQQYNEg0SDgg4aJBokGhR00CDRINGgoIMGiQaJBgUdNEg0KOigQaJBokFBBw0SDQD4SLNcrN5///3zox/9KIMHD87WW2+dnj17pqamJm+//Xbuv//+nHbaaTn88MMX+hqnn356hgwZ0uhYTYuOqWnZeSlOPq+JEydn9uzZ6bl890bHu3fvlvHjJlR0lmrSQYNEg0SDgg4aJBokGhSacoeX/vlaJk99LwOOPqPh2Jy6uox66R+57u5H8sz156dlyxaNnrNcl2XSo+uyDUvVSfKFFZdPfX19xk16Jx3bt02SnPTTH2TdNVdt9NwWLT56rQsG/W9mz5mTJBk/+Z385ITzcuPZAxvO17Zs2fDP3ZbtnInvvNvotSZPfe+/5xovTt8z8pmcfME1+fXP98tG633pM7dY2pry56CSdNAg0SDRoKCDBokGiQYFHTRINEg0KOigQaJBokFBBw0SDQo6aJBokGhQ0EGDRAMA5tXi0y9pek4++eQMHDgw55xzTr7yla9khRVWSO/evfOVr3wl55xzTo477riceOKJC32NgQMHZurUqY0eNS0qfze+WbNmZfTo59N/q80bHe/ff/M88eQzFZ+nWnTQINEg0aCggwaJBokGhabc4Wt9vpSbzh2cG84+vuGxzhdXzrc3/2puOPv4eZaqk+QrX/piJkx+J9M/+LDh2H/eHJ8WLWrSs9uy6bZs5/ToumzeGDcxK/fq0eixYs/lGp7Tu0e3huO9undLkkbX9u7RreHa9db6Qka99GpmzZrdcOyJ/3s5PboukxU+dt1df/5LTvjt1TnjiH2y+QbrLtFW/7+a8uegknTQINEg0aCggwaJBokGBR00SDRINCjooEGiQaJBQQcNEg0KOmiQaJBoUNBBg0QDAObVLO9YnSTHHntsjj322PzrX//K22+/nSRZfvnls9pqq32m57dp0yZt2rRpdKymZt4fg14J5w69OFdePjSjRj2XJ58alf333Ssrr7RChl10dVXmqRYdNEg0SDQo6KBBokGiQaGpdujQrm3WWKV3o2Pt2rbJMh07NBwfes2tGTfpnZz2sx8nSbbfbIMMu/GunPDbq/O/A3bIlHffzzlX3pJdvvn1tG3TOkny0z2+nTMvvSEd2rfNpn3XycxZs/PSP17Lu9Om54c7bbXIc26/2Vdz4Q13ZfBvr8p+u30rr701PpfcfE8O3H37hn8HvuvPf8ng86/MMT/ZPX3WXC0Tp0xNkrRp3brR3bWrqal+DipNBw0SDRINCjpokGiQaFDQQYNEg0SDgg4aJBokGhR00CDRoKCDBokGiQYFHTRINACgsWa7WF1YbbXV5lmmfv3113PSSSflsssuq9JUi+bGG0ekW9cuGTzoiPTq1SMvvPhKdtxp77z22thqj1ZROmiQaJBoUNBBg0SDRINCc+4wYcq7eXvilIav27drm4tOOiynX3JDvn/0GVmmU4ds+/V+OWTPHRuu+c7Wm6Rtm9a58rb7c+5Vt6Zd29ZZY+Xe2WuHby7WDJ06tMuwkw7NaRdfn+8fc0Y6d2ifvXfcqtGS9vD7Rmb2nLqcdvH1Oe3i6xuO7/SNjfLLQ3+4WO+7pDXnz8GSpIMGiQaJBgUdNEg0SDQo6KBBokGiQUEHDRINEg0KOmiQaFDQQYNEg0SDgg4aJBpQUnX11Z4Amqya+vr6z93vkOeeey59+/bNnDlzFul5ta1XWEoTAQDweTHt2auqPULVdfhK01i0BgAAAAAAgM+T2TMtc1MZ0wbtXu0RKIEOp95Y7REWS7O8Y/WIESMWen7MmDEVmgQAAAAAAAAAAAAA+DxolovVu+yyS2pqarKwm23X1NRUcCIAAAAAAAAAAAAAoDlrUe0BFkevXr1y0003pa6ubr6P0aNHV3tEAAAAAAAAAAAAAKAZaZaL1f369Vvo8vSn3c0aAAAAAAAAAAAAAODjaqs9wOI4+uijM23atAWeX3311fPQQw9VcCIAAAAAAAAAAAAAoDlrlovVm2222ULPd+jQIVtssUWFpgEAAAAAAAAAAAAAmrsW1R4AAAAAAAAAAAAAAKDaLFYDAAAAAAAAAAAAAKVnsRoAAAAAAAAAAAAAKD2L1QAAAAAAAAAAAABA6dVWewAAAAAAAAAAAAAAKqO+rq7aI0CT5Y7VAAAAAAAAAAAAAEDpWawGAAAAAAAAAAAAAErPYjUAAAAAAAAAAAAAUHoWqwEAAAAAAAAAAACA0rNYDQAAAAAAAAAAAACUnsVqAAAAAAAAAAAAAKD0LFYDAAAAAAAAAAAAAKVnsRoAAAAAAAAAAAAAKD2L1QAAAAAAAAAAAABA6VmsBgAAAAAAAAAAAABKz2I1AAAAAAAAAAAAAFB6tdUeAAAAAAAAAAAAAIAKqauv9gTQZLljNQAAAAAAAAAAAABQeharAQAAAAAAAAAAAIDSs1gNAAAAAAAAAAAAAJSexWoAAAAAAAAAAAAAoPQsVgMAAAAAAAAAAAAApWexGgAAAAAAAAAAAAAoPYvVAAAAAAAAAAAAAEDpWawGAAAAAAAAAAAAAErPYjUAAAAAAAAAAAAAUHoWqwEAAAAAAAAAAACA0rNYDQAAAAAAAAAAAACUXm21BwAAAAAAAAAAAACgQurqqz0BNFkWqwEAYBF0+MoPqz1C1U17/tpqj1B1HfrsWe0RAAAAAAAAAIAlrEW1BwAAAAAAAAAAAAAAqDaL1QAAAAAAAAAAAABA6VmsBgAAAAAAAAAAAABKz2I1AAAAAAAAAAAAAFB6FqsBAAAAAAAAAAAAgNKzWA0AAAAAAAAAAAAAlJ7FagAAAAAAAAAAAACg9CxWAwAAAAAAAAAAAAClZ7EaAAAAAAAAAAAAACg9i9UAAAAAAAAAAAAAQOnVVnsAAAAAAAAAAAAAACqkvq7aE0CT5Y7VAAAAAAAAAAAAAEDpWawGAAAAAAAAAAAAAErPYjUAAAAAAAAAAAAAUHoWqwEAAAAAAAAAAACA0rNYDQAAAAAAAAAAAACUnsVqAAAAAAAAAAAAAKD0LFYDAAAAAAAAAAAAAKVnsRoAAAAAAAAAAAAAKD2L1QAAAAAAAAAAAABA6VmsBgAAAAAAAAAAAABKz2I1AAAAAAAAAAAAAFB6tdUeAAAAAAAAAAAAAIAKqauv9gTQZLljNQAAAAAAAAAAAABQeharAQAAAAAAAAAAAIDSs1gNAAAAAAAAAAAAAJSexWoAAAAAAAAAAAAAoPQsVgMAAAAAAAAAAAAApWexGgAAAAAAAAAAAAAoPYvVAAAAAAAAAAAAAEDpWawGAAAAAAAAAAAAAErPYjUAAAAAAAAAAAAAUHoWqwEAAAAAAAAAAACA0rNYDQAAAAAAAAAAAACUnsXqJuKgA3+UV195Iu+/+8889eTd2XSTDas9UlXooEGiQaJBQQcNEg0SDQo6NI8Glwy/O312PiBnXnL9Aq8ZPPTy9Nn5gHkeux5y0lKd7e//fiP7HH9Wvrr7wem/zzG58Lo7Ul9f33D+gSdG54ATz80Wex+ZjQcclr2OOSOPjX5xqc60qDbb9Gu59ZYr8tq/R2X2zLHZaadtqz1SxWnwkebwPWFp02AuHTRINEg0KOigQaJBokFBBw0SDRIN/Fn6I2X/LCQaFHTQINEg0aCggwaJBpRPfV29h8dSfzRXn8vF6nHjxuUXv/hFtcf4zHbffaecc/bJOf2M87PBhttm5Minc8ft12SllXpXe7SK0kGDRINEg4IOGiQaJBoUdGgeDV549d8Zfu+jWXPVFRd63bH77ZE/XXFWw+O+S8/MMp06ZOtN+i32e48dNzF9dj5ggeffn/5BDjzpvHTvumyu/fXxOe6AAbny1vty1W33N1wz6sVXs9H6X84FJx6W684ZlK+uu1YOPfW3eXnMa4s915LWoUP7PP/8Szns8MHVHqVqNJirOXxPWNo0mEsHDRINEg0KOmiQaJBoUNBBg0SDRIPEn6ULPgsaFHTQINEg0aCggwaJBgA0VlP/8Vu0fU4899xz6du3b+bMmbNIz6ttvcJSmmjhHh95e0Y/+0IOOXRgw7G/Pv9wRoy4J4MGn1GVmapBBw0SDRINCjpokGiQaFDQoWk1mPb8tfMcm/7Bh9njyF9m0IF75qIb78paq62UY/fb4zO93p+efDZHnHFh7r7otPTu0a3h+K0PPJbLb7k3Y8dNTO8e3bLnDltlwPZbzvc1xo6bmO0OOD7P33bRfM9ff/fDOf/qW/LQlb9O61atkiSXDr87f7zzodx/2ZmpqamZ7/N2PeSkbLvpV3PQgB0aHe/QZ8/P9GtbmmbPHJvdvvuTjBhxb7VHqZoyN2hK3xOqRYO5dNAg0SDRoKCDBokGiQYFHTRINEg0+CR/li73Z0GDuXTQINEg0aCggwZJ02owe+bYir4f5fXe4TtWewRKoNN5t1d7hMXSLO9Y/fzzzy/08corr1R7xM+sVatW6du3T+5/4JFGx++//5FsvNEGVZqq8nTQINEg0aCggwaJBokGBR2aR4NTh/0xm/VbNxutv/YiP/fmBx7LRut9qdFS9fD7/pzfXHNrDt1rl9x6wS9y2N675oJrb8ttf3p8seZ77m9j0m+dNRuWqpPk633XyfjJ72Ts+EnzfU5dXV2mffBhlunUfrHeE5aW5vA9YWnTYC4dNEg0SDQo6KBBokGiQUEHDRINEg34iM+CBgUdNEg0SDQo6KBBogEA86qt9gCLY/31109NTU3md7Pt4viC7jjX1Cy3XNfU1tZm/LiJjY6PHz8xPZfvUaWpKk8HDRINEg0KOmiQaJBoUNCh6Te4+9Gn8/KY/+SPvx60yM+dMPmdPDbqhZxx1H6Njl90/R056ie7p//GfZMkK/ZcLmNefyvD73k0O3/z64v8PpPemZrePZZrdKzbMp3nnpsyNSv2XG6e51x56/35YMbMbLOJ/2hG09LUvydUggZz6aBBokGiQUEHDRINEg0KOmiQaJBowEd8FjQo6KBBokGiQUEHDRINAJhXs1ys7tatW84888xstdVW8z3/4osvZscdF36r+hkzZmTGjBmNjlVzIfuTS+ILWhz/vNNBg0SDRIOCDhokGiQaFHRomg3enjA5Z15yfYYNOTxtWrf69Cd8wm1/eiKdOrTLN7+2fsOxyVPfy9sTp+Tk31yZIRdc3XB8zpw56di+XcPXux5yUt6cMDnJR22+tsehDed7d++aW347pOHrT/6rfn3q538iyV2PPp3fX3d7zj/+f9Nt2c6L/OuCSmiK3xMqTYO5dNAg0SDRoKCDBokGiQYFHTRINEg04CM+CxoUdNAg0SDRoKCDBokGAHykWS5W9+vXL2+++WZWWWWV+Z5/5513PvV/2E4//fQMGTKk0bGaFh1T07KySxMTJ07O7Nmz03P57o2Od+/eLePHTajoLNWkgwaJBokGBR00SDRINCjo0LQbvPTP/2Ty1Pcy4MhTG47NqavLqBdfzXV3PpRnhv8uLVu2mO9z6+vrc+sDj2WHLTdKq1a1jY4nyUkH/zDrrrVao+e0aPHRa11w4mGZPWdOkmT8pCn5yaCzc+N5JzScr23ZsuGfuy27TCZOebfRa02e+t5/zzX+M8A9f/5LTv7Nlfn1sQdmo/XX/vQIUGFN+XtCpWgwlw4aJBokGhR00CDRINGgoIMGiQaJBnzEZ0GDgg4aJBokGhR00CDRAIB5zX/DoYk78MADs+qqqy7w/Morr5zLL798oa8xcODATJ06tdGjpkWnJTzpp5s1a1ZGj34+4zomEQABAABJREFU/bfavNHx/v03zxNPPlPxeapFBw0SDRINCjpokGiQaFDQoWk3+FqfL+em80/KDeed0PBYZ/VV8u0tNswN552wwKXqJHnmhb/ntbfGZ9etN210vNuyndOj27J5Y9yErNyrR6PHij2Xa7iud49uDcd7de+WJI2u7d2jW8O1633pCxn14quZNWt2w7Ennn0pPboumxU+dt1djz6dE86/ImcctV8236DP/3cfWBqa8veEStFgLh00SDRINCjooEGiQaJBQQcNEg0SDfiIz4IGBR00SDRINCjooEGiAQDzapZ3rN51110Xer5Lly750Y9+tNBr2rRpkzZt2jQ6VjOfHwFeCecOvThXXj40o0Y9lyefGpX9990rK6+0QoZddPWnP/lzRAcNEg0SDQo6aJBokGhQ0KHpNujQvm3WWGWFRsfatW2TZTp1bDg+9KqbM27SOzntiJ80uu6WB0Zm3TVXm+f5SfLTATvmzIuvS4f27bJp3//JzFmz8tI//pN3p03PD3feepHn3H7zDXPhdXdk8PlXZL/vbpfX3hyfS4bflQP32KHhzwF3Pfp0Bp93WY7Zb0D6rPWFTJwyNUnSpnWrdOrQfpHfc2no0KF9Vl/9o7t4r7bqyllvvXUyefKUvP76m1WcrHI0mKupfk+oJA3m0kGDRINEg4IOGiQaJBoUdNAg0SDRIPFn6YLPggYFHTRINEg0KOigQaIBAI01y8XqT/P666/npJNOymWXXVbtUT6TG28ckW5du2TwoCPSq1ePvPDiK9lxp73z2mtjqz1aRemgQaJBokFBBw0SDRINCjo07wYTpkzN2xMnNzr23rTpeeDx0Tlm/wHzfc53ttksbdu0zpW33Jdzr7gp7dq2zhqrrJC9duy/WDN06tA+w4YcntOG/THfP+rUdO7YPnvvvHWjJe3h9z6a2XPqctqwa3PasGsbju/0zY3zy5/ts1jvu6Rt0G+9PPjA8Iavz/71yUmSK6+6Ifvud0SVpqosDeZqzt8TlhQN5tJBg0SDRIOCDhokGiQaFHTQINEg0SDxZ+mCz4IGBR00SDRINCjooEGiAQCN1dTX19dXe4gl7bnnnkvfvn0zZ86cRXpebet575QHAAA0Nu35az/9os+5Dn32rPYIAAAAAAAAfM7MnmmZm8p47/Adqz0CJdDpvNurPcJiaZZ3rB4xYsRCz48ZM6ZCkwAAAAAAAAAAAAAAnwfNcrF6l112SU1NTRZ2s+2ampoKTgQAAAAAAAAAAADQDNQtePcSyq5FtQdYHL169cpNN92Uurq6+T5Gjx5d7REBAAAAAAAAAAAAgGakWS5W9+vXb6HL0592N2sAAAAAAAAAAAAAgI+rrfYAi+Poo4/OtGnTFnh+9dVXz0MPPVTBiQAAAAAAAAAAAACA5qxZLlZvttlmCz3foUOHbLHFFhWaBgAAAAAAAAAAAABo7lpUewAAAAAAAAAAAAAAgGqzWA0AAAAAAAAAAAAAlJ7FagAAAAAAAAAAAACg9CxWAwAAAAAAAAAAAAClZ7EaAAAAAAAAAAAAACg9i9UAAAAAAAAAAAAAQOlZrAYAAAAAAAAAAAAASq+22gMAAAAAAAAAAAAAUCF1ddWeAJosd6wGAAAAAAAAAAAAAErPYjUAAAAAAAAAAAAAUHoWqwEAAAAAAAAAAACA0rNYDQAAAAAAAAAAAACUnsVqAAAAAAAAAAAAAKD0LFYDAAAAAAAAAAAAAKVnsRoAAAAAAAAAAAAAKD2L1QAAAAAAAAAAAABA6VmsBgAAAAAAAAAAAABKz2I1AAAAAAAAAAAAAFB6FqsBAAAAAAAAAAAAgNKrrfYAAAAAAAAAAAAAAFRIXX21J4Amyx2rAQAAAAAAAAAAAIDSs1gNAAAAAAAAAAAAAJSexWoAAAAAAAAAAAAAoPQsVgMAAAAAAAAAAAAApWexGgAAAAAAAAAAAAAoPYvVAAAAAAAAAAAAAEDpWawGAAAAAAAAAAAAAErPYjUAAAAAAAAAAAAAUHoWqwEAAAAAAAAAAACA0qut9gAAAEDzsuxXfljtEapu2vPXVnuEJqFDnz2rPQIAAAAAAAAALDHuWA0AAAAAAAAAAAAAlJ47VgMAAAAAAAAAAACURV19tSeAJssdqwEAAAAAAAAAAACA0rNYDQAAAAAAAAAAAACUnsVqAAAAAAAAAAAAAKD0LFYDAAAAAAAAAAAAAKVnsRoAAAAAAAAAAAAAKD2L1QAAAAAAAAAAAABA6VmsBgAAAAAAAAAAAABKz2I1AAAAAAAAAAAAAFB6FqsBAAAAAAAAAAAAgNKzWA0AAAAAAAAAAAAAlJ7FagAAAAAAAAAAAACg9GqrPQAAAAAAAAAAAAAAlVFfX1/tEaDJcsdqAAAAAAAAAAAAAKD0LFYDAAAAAAAAAAAAAKVnsRoAAAAAAAAAAAAAKD2L1QAAAAAAAAAAAABA6VmsBgAAAAAAAAAAAABKz2I1AAAAAAAAAAAAAFB6FqsBAAAAAAAAAAAAgNKzWA0AAAAAAAAAAAAAlJ7FagAAAAAAAAAAAACg9CxWAwAAAAAAAAAAAAClZ7EaAAAAAAAAAAAAACi92moPAAAAAAAAAAAAAECF1NVXewJostyxGgAAAAAAAAAAAAAoPYvVAAAAAAAAAAAAAEDpWawGAAAAAAAAAAAAAErPYjUAAAAAAAAAAAAAUHoWqwEAAAAAAAAAAACA0rNYDQAAAAAAAAAAAACUnsVqAAAAAAAAAAAAAKD0LFYDAAAAAAAAAAAAAKVnsbqJOOjAH+XVV57I++/+M089eXc23WTDao9UFTpokGiQaFDQQYNEg0SDgg7larDJJhtm+PBLM2bM0/ngg/9kxx23meeaQYMOz5gxT2fy5Fdy773X5ctfXqMKk87fJcPvTp+dD8iZl1y/wGsGD708fXY+YJ7HroectFRn+/u/38g+x5+Vr+5+cPrvc0wuvO6O1NfXN5x/4InROeDEc7PF3kdm4wGHZa9jzshjo19cqjMtjjL9flgQDTQo6KBBokGiQUEHDRINEg0KOmiQaJBoUNBBg0SDgg4aJBokGhR00CDRAICPNOvF6jfeeCPvv//+PMdnzZqVRx99tAoTLZ7dd98p55x9ck4/4/xssOG2GTny6dxx+zVZaaXe1R6tonTQINEg0aCggwaJBokGBR3K16BDh/b5619fzhFHnDjf80cddVAOO2y/HHHEidl00x0zbtyE3HnnH9KxY4cKTzqvF179d4bf+2jWXHXFhV537H575E9XnNXwuO/SM7NMpw7ZepN+i/3eY8dNTJ+dD1jg+fenf5ADTzov3bsum2t/fXyOO2BArrz1vlx12/0N14x68dVstP6Xc8GJh+W6cwblq+uulUNP/W1eHvPaYs+1pJXt98P8aKBBQQcNEg0SDQo6aJBokGhQ0EGDRINEg4IOGiQaFHTQINEg0aCggwaJBgA0VlP/8VuTNRNvvfVWdt5554waNSo1NTX5wQ9+kAsuuCAdO3ZMkowbNy69e/fOnDlzFul1a1uvsDTG/VSPj7w9o599IYccOrDh2F+ffzgjRtyTQYPPqMpM1aCDBokGiQYFHTRINEg0KOjQtBq0allb0ff74IP/5Hvf2z+3335fw7ExY/6SCy64NGeffWGSpHXr1vnPf57J4MFn5NJLr13qM73z7FXzPT79gw+zx5G/zKAD98xFN96VtVZbKcfut8dnes0/Pflsjjjjwtx90Wnp3aNbw/FbH3gsl99yb8aOm5jePbplzx22yoDtt5zva4wdNzHbHXB8nr/tovmev/7uh3P+1bfkoSt/ndatWiVJLh1+d/5450O5/7IzU1NTM9/n7XrISdl206/moAE7NDreoc+en+nXtqQ1pd8P1aKBBgUdNEg0SDQo6KBBokGiQUEHDRINEg0KOmiQaFDQQYNEg0SDgg4aJE2rweyZYyv6fpTXu/vP+xODYUnrfPF9n35RE9Qs71h93HHHpWXLlnnqqadyzz335KWXXsqWW26ZKVOmNFzTXPbFW7Vqlb59++T+Bx5pdPz++x/JxhttUKWpKk8HDRINEg0KOmiQaJBoUNBBg09addWV0qtXjzzwwJ8bjs2cOTN//vNT2Wijxb/b85Jw6rA/ZrN+62aj9dde5Ofe/MBj2Wi9LzVaqh5+35/zm2tuzaF77ZJbL/hFDtt711xw7W257U+PL9Z8z/1tTPqts2bDUnWSfL3vOhk/+Z2MHT9pvs+pq6vLtA8+zDKd2i/Wey5pfj9okGhQ0EGDRINEg4IOGiQaJBoUdNAg0SDRoKCDBokGBR00SDRINCjooEGiASVWV+/hsfQfzVSzXKx+4IEHMnTo0GywwQbp379/Ro4cmRVXXDHf/OY3M3ny5CRZ4J3Wmprlluua2trajB83sdHx8eMnpufyPao0VeXpoEGiQaJBQQcNEg0SDQo6aPBJy//31zx+/IRGx8ePn5iePbtXY6Qkyd2PPp2Xx/wnP/vhbov83AmT38ljo17Ibltv1uj4RdffkaN+snv6b9w3K/ZcLv037pu9d+qf4fc8ulgzTnpnarot27nRsW7LzP160pSp833Olbfenw9mzMw2mzSN/3jo94MGiQYFHTRINEg0KOigQaJBokFBBw0SDRINCjpokGhQ0EGDRINEg4IOGiQaADCvyv4M7yVk6tSp6dKlS8PXbdq0yfDhw7P77rvnG9/4Rq655ppPfY0ZM2ZkxowZjY7V19dXbSH7k3fYrqmpaTZ33V6SdNAg0SDRoKCDBokGiQYFHTT4pE/+0qvZ4+0Jk3PmJddn2JDD06Z1q09/wifc9qcn0qlDu3zza+s3HJs89b28PXFKTv7NlRlywdUNx+fMmZOO7ds1fL3rISflzQlz/4Jp8ev/2h6HNpzv3b1rbvntkIavP/lHnvrUz/9EkrsefTq/v+72nH/8/86zkF1tfj9okGhQ0EGDRINEg4IOGiQaJBoUdNAg0SDRoKCDBokGBR00SDRINCjooEGiAQAfaZaL1V/4whfy/PPPZ4011mg4VltbmxtvvDG77757dthhh099jdNPPz1DhgxpdKymRcfUtKzsssDEiZMze/bs9Fy+8Z31unfvlvHjJizgWZ8/OmiQaJBoUNBBg0SDRIOCDhp80ttvj0+S9OzZveGfk//2GD9xQU9bql76538yeep7GXDkqQ3H5tTVZdSLr+a6Ox/KM8N/l5Yt5/8Dg+rr63PrA49lhy03SqtWtY2OJ8lJB/8w6661WqPntGjx0WtdcOJhmT1nTpJk/KQp+cmgs3PjeSc0nK9t2bLhn7stu0wmTnm30WtNnvref881/rPQPX/+S07+zZX59bEHZqP11/70CBXi94MGiQYFHTRINEg0KOigQaJBokFBBw0SDRINCjpokGhQ0EGDRINEg4IOGiQaADCv+f8/+03cdtttl4suumie48Vy9frrr/+pf2No4MCBmTp1aqNHTYtOS2vkBZo1a1ZGj34+/bfavNHx/v03zxNPPlPxeapFBw0SDRINCjpokGiQaFDQQYNP+ve/X89bb43PVltt2nCsVatW2Wyzr+XJJ0dVZaav9flybjr/pNxw3gkNj3VWXyXf3mLD3HDeCQtcqk6SZ174e157a3x23XrTRse7Lds5PbotmzfGTcjKvXo0eqzYc7mG63r36NZwvFf3bknS6NrePbo1XLvel76QUS++mlmzZjcce+LZl9Kj67JZ4WPX3fXo0znh/CtyxlH7ZfMN+vx/91mS/H7QINGgoIMGiQaJBgUdNEg0SDQo6KBBokGiQUEHDRINCjpokGiQaFDQQYNEAwDm1SzvWH3qqadm+vTp8z1XW1ubm2++OW+88cZCX6NNmzZp06ZNo2M18/nR15Vw7tCLc+XlQzNq1HN58qlR2X/fvbLySitk2EVXf/qTP0d00CDRINGgoIMGiQaJBgUdytegQ4f2+eIXV234etVVV0qfPmtnypR38vrrb+aCCy7N0UcfnH/849/5xz/+lWOOOSQffPBhrr/+turM275t1lhlhUbH2rVtk2U6dWw4PvSqmzNu0js57YifNLrulgdGZt01V5vn+Uny0wE75syLr0uH9u2yad//ycxZs/LSP/6Td6dNzw933nqR59x+8w1z4XV3ZPD5V2S/726X194cn0uG35UD99ih4c9Ddz36dAafd1mO2W9A+qz1hUycMjVJ0qZ1q3Tq0H6R33NpKNvvh/nRQIOCDhokGiQaFHTQINEg0aCggwaJBokGBR00SDQo6KBBokGiQUEHDRINAGisWS5W19bWpnPnzgs8/+abb2bIkCG57LLLKjjV4rvxxhHp1rVLBg86Ir169cgLL76SHXfaO6+9Nrbao1WUDhokGiQaFHTQINEg0aCgQ/ka9O3bJ/fdd33D17/61YlJkquvvjEHHPDznH32hWnbtm3OO++X6dKlc/7yl//LDjvslfffn1atkT/VhClT8/bEyY2OvTdteh54fHSO2X/AfJ/znW02S9s2rXPlLffl3CtuSru2rbPGKitkrx37L9YMnTq0z7Ahh+e0YX/M9486NZ07ts/eO2/daEl7+L2PZvacupw27NqcNuzahuM7fXPj/PJn+yzW+y5pZfv9MD8aaFDQQYNEg0SDgg4aJBokGhR00CDRINGgoIMGiQYFHTRINEg0KOigQaIBAI3V1NfX11d7iCXtueeeS9++fTNnzpxFel5t63nvEAcAADTWqmWz/PuZS9Q7z15V7RGahA599qz2CAAAAAAAAJ8bs2da5qYy3t130X86LiyqzpfeX+0RFkuz3IgYMWLEQs+PGTOmQpMAAAAAAAAAAAAAAJ8HzXKxepdddklNTU0WdrPtmpqaCk4EAAAAAAAAAAAAADRnLao9wOLo1atXbrrpptTV1c33MXr06GqPCAAAAAAAAAAAAAA0I81ysbpfv34LXZ7+tLtZAwAAAAAAAAAAAAB8XG21B1gcRx99dKZNm7bA86uvvnoeeuihCk4EAAAAAAAAAAAA0PTV17lxLSxIs1ys3myzzRZ6vkOHDtliiy0qNA0AAAAAAAAAAAAA0Ny1qPYAAAAAAAAAAAAAAADVZrEaAAAAAAAAAAAAACg9i9UAAAAAAAAAAAAAQOlZrAYAAAAAAAAAAAAASs9iNQAAAAAAAAAAAABQeharAQAAAAAAAAAAAIDSs1gNAAAAAAAAAAAAAJSexWoAAAAAAAAAAAAAoPQsVgMAAAAAAAAAAAAApWexGgAAAAAAAAAAAAAovdpqDwAAAAAAAAAAAABAhdTVV3sCaLLcsRoAAAAAAAAAAAAAKD2L1QAAAAAAAAAAAABA6VmsBgAAAAAAAAAAAABKz2I1AAAAAAAAAAAAAFB6FqsBAAAAAAAAAAAAgNKzWA0AAAAAAAAAAAAAlJ7FagAAAAAAAAAAAACg9CxWAwAAAAAAAAAAAAClZ7EaAAAAAAAAAAAAACg9i9UAAAAAAAAAAAAAQOlZrAYAAAAAAAAAAAAASq+22gMAAAAAAAAAAAAAUCF11R4Ami53rAYAAAAAAAAAAAAASs9iNQAAAAAAAAAAAABQeharAQAAAAAAAAAAAIDSs1gNAAAAAAAAAAAAAJSexWoAAAAAAAAAAAAAoPQsVgMAAAAAAAAAAAAApVdb7QEAAIDmZfac2dUeoeo69Nmz2iM0Ce/ddmy1R6i6TjufWe0RAAAAAAAAAFhC3LEaAAAAAAAAAAAAACg9i9UAAAAAAAAAAAAAQOlZrAYAAAAAAAAAAAAASs9iNQAAAAAAAAAAAABQerXVHgAAAAAAAAAAAACAyqivq6/2CNBkuWM1AAAAAAAAAAAAAFB6FqsBAAAAAAAAAAAAgNKzWA0AAAAAAAAAAAAAlJ7FagAAAAAAAAAAAACg9CxWAwAAAAAAAAAAAAClZ7EaAAAAAAAAAAAAACg9i9UAAAAAAAAAAAAAQOlZrAYAAAAAAAAAAAAASs9iNQAAAAAAAAAAAABQeharAQAAAAAAAAAAAIDSs1gNAAAAAAAAAAAAAJSexWoAAAAAAAAAAAAAoPRqqz0AAAAAAAAAAAAAABVSV1/tCaDJcsdqAAAAAAAAAAAAAKD0LFYDAAAAAAAAAAAAAKVnsRoAAAAAAAAAAAAAKD2L1QAAAAAAAAAAAABA6VmsBgAAAAAAAAAAAABKz2I1AAAAAAAAAAAAAFB6FqsBAAAAAAAAAAAAgNKzWA0AAAAAAAAAAAAAlJ7FagAAAAAAAAAAAACg9CxWAwAAAAAAAAAAAAClZ7EaAAAAAAAAAAAAACi92moPAAAAAAAAAAAAAECF1FV7AGi63LEaAAAAAAAAAAAAACg9i9UAAAAAAAAAAAAAQOlZrAYAAAAAAAAAAAAASs9iNQAAAAAAAAAAAABQeharAQAAAAAAAAAAAIDSa7aL1ZMmTcpDDz2UyZMnJ0kmTpyYM888M7/4xS/y8ssvV3m6RXfQgT/Kq688kfff/WeeevLubLrJhtUeqSp00CDRINGgoIMGiQaJBgUdyt3gmGMOyROP35nJk17J2Deey/Dhl2bNNb9Y7bGqpjl8Fi69f1TWP/yC/OrmPy/wmmfHvJkfDb0pWxx/Sb529IXZ5bQ/5OqH/2+pz/bqm5Oy729uydeOvjBbn3RFht3zl9TX1zecf/C5f+bA392Wbwy6NJsce1F+eO7wPP7ya0t9rkXVHD4HS5sGc+mgQaJBokFBBw0SDRINCjpokGiQaFDQQYNEg4IOGiQaJBoUdNAg0QCAjzTLxeqnn346X/ziF7PVVltl9dVXz6hRo7Lhhhvm0ksvzdVXX51+/fpl9OjR1R7zM9t9951yztkn5/Qzzs8GG26bkSOfzh23X5OVVupd7dEqSgcNEg0SDQo6aJBokGhQ0EGDzTfbKL///ZXZdLMds932309ty9rcdee1ad++XbVHq7jm8Fl44bVxuemJF7Nm724Lva5d61YZsOm6ufTQXXPzcXtm/202yAV3PZXhj7+42O89dtK7Wf/wCxZ4/v0PZ+ag39+W7p075A9H7p7jdtssVz30bKOF7lH/fDMbrbVSfnPgDrn259/LBmuskMMuuTN/e2PCYs+1pDWHz8HSpsFcOmiQaJBoUNBBg0SDRIOCDhokGiQaFHTQINGgoIMGiQaJBgUdNEg0AKCxmvqP35armdh6662z6qqr5pxzzsmwYcMydOjQfOtb38rFF1+cJNlvv/0yadKk3HLLLYv0urWtV1ga436qx0fentHPvpBDDh3YcOyvzz+cESPuyaDBZ1RlpmrQQYNEg0SDgg4aJBokGhR0aFoNair6bvO33HJd89abf803vrlbRo58quLvX80/RDWlz8J7tx07z7HpM2ZmwK9vyPHf3SIX3/dM1lphuRyz22af+TWPvOzutGtdm1P32rrh2K1PvZwrH3w2Yye/m95dO+X7m/fJHpuuO9/nj530br59ytX5v/MOnu/5G0a+kPPveCJ/+uVP0rq2ZZLksgdG5Y9//mvuO/lHqamZ/yd8tzOuzbbrr5EDv/XVRsc77XzmZ/61LUlN6XNQLRrMpYMGiQaJBgUdNEg0SDQo6KBBokGiQUEHDRINCjpokGiQaFDQQYOkaTWYPXNsRd+P8npnj29UewRKYNnrH6r2CIulWd6xetSoUTnyyCPTqVOn/OxnP8ubb76Z/fffv+H8wQcfnL/85S9VnPCza9WqVfr27ZP7H3ik0fH7738kG2+0QZWmqjwdNEg0SDQo6KBBokGiQUEHDeZnmWU6J0mmTHmnuoNUWHP4LJw2/NFstvaq2WitlRb5uX97Y0Ke+9db6ffFj/7S601PvJgL7nwyh3z7a7ll4J459Nsb5Xd3PZURT/9tseZ7/t9vZ4PVezcsVSfJ17+0ciZMnZY3J7833+fU1dVn+oezskyHNov1nktac/gcLG0azKWDBokGiQYFHTRINEg0KOigQaJBokFBBw0SDQo6aJBokGhQ0EGDRAMA5lVb7QEWx8yZM9Ou3dwf+d2qVau0b98+yy23XMP5bt26ZdKkSQt9jRkzZmTGjBmNjtXX1y/w7mRLy3LLdU1tbW3Gj5vY6Pj48RPTc/keFZ2lmnTQINEg0aCggwaJBokGBR00mJ+zzjopI0c+lRdffKXao1RUU/8s3DP61fztjQn5w5G7L9Lztjnpikx5/4PMqavPQd/6anbbeO2Gcxff+0yO3HmTbLXeF5MkK3TrnDHjpmT44y9mpw2/tMgzTnxvenp37dToWNdO7eeee3d6VujWeZ7nXPXws/lg5qxss/7qi/x+S0NT/xxUggZz6aBBokGiQUEHDRINEg0KOmiQaJBoUNBBg0SDgg4aJBokGhR00CDRAIB5NcvF6pVWWiljxozJqquumiS57rrr0qtXr4bzb731VqNF6/k5/fTTM2TIkEbHalp0TE3Lef9P9Eqor2/8w8RramrmOVYGOmiQaJBoUNBBg0SDRIOCDhoUzh96atb9ny9ny2/sWu1RqqYpfhbenvJefnXzn/P7n+6UNq0W7Y+alx+2W6bPmJXn//N2zr/9iay03DLZrt+amfz+B3n7nfcz5LqH8ouP/ZioOXX16di2dcPXu51xbd76792miwobHzOs4Xyvrp1y83F7Nnz9yb9OW7Sb39+zvXvU33PhPX/Jeftu37CA3VQ0xc9BpWkwlw4aJBokGhR00CDRINGgoIMGiQaJBgUdNEg0KOigQaJBokFBBw0SDQD4SLNcrB4wYEDGjx/f8PW3v/3tRudHjBiRDTfccKGvMXDgwBx55JGNjnXptuh3O/v/NXHi5MyePTs9l+/e6Hj37t0yftyEis9TLTpokGiQaFDQQYNEg0SDgg4afNx5556SHXbYJt/careMHftWtcepuKb8WXjp9QmZ/P4H2fPsGxqOzamrz+gxb+b6kX/N078+KC1btJjvc4u7RK/Ru1smv/dBLrznL9mu35oN/8HyhD22zLqr9Gz0nI+/1m8P2CGz59QlScZPnZb9fntrrj96j4bztS0/una5Tu0z6b3pjV5ryvsfJEm6fWJx+t7Rr2bIdQ/lVz/eNhuttdJnC1EBTflzUCkazKWDBokGiQYFHTRINEg0KOigQaJBokFBBw0SDQo6aJBokGhQ0EGDRAPKq77OXxyABZn//6vdxJ100kkZMGDAAs8PGjQo11577UJfo02bNuncuXOjR838bk+2lM2aNSujRz+f/ltt3uh4//6b54knn6n4PNWigwaJBokGBR00SDRINCjooEFh6Hm/zC67bJdttv1e/v3v16s9TlU05c/C19ZcMcOPHZDrj96j4bH2Sj2yfb81c/3ReyxwqfqT6uvrM3P2nCRzF517LNMhYye9m5W7L9voUSxjJ0nvrp0bjvfq0ilJGl3bu+tH1/ZZdfmM+udbmfXf90iSJ/72erov0yG9u3ZqOHb3qL/nxD8+mNP23jqbr7Pq/0+aJa4pfw4qRYO5dNAg0SDRoKCDBokGiQYFHTRINEg0KOigQaJBQQcNEg0SDQo6aJBoAMC8muUdqz/NpEmTctJJJ+Wyyy6r9iifyblDL86Vlw/NqFHP5cmnRmX/fffKyiutkGEXXV3t0SpKBw0SDRINCjpokGiQaFDQQYPfnH9aBgzYJbt95yd5773307Pn3LsGTJ36Xj788MMqT1dZTfWz0KFt66zeq1ujY+1a12aZ9m0bjp9/+xMZP3VafrlX/yTJdX/+a3p16ZhVe3ZJkjw75q1c9dD/ZcBm6za8xkHf2jC/uvnP6dC2dTb98iqZOXtOXnx9fN6bPiN7f2P9RZ5zu35rZNi9T+eEax/Mflv3y2sTpubSB0blgG03aPjLtneP+ntO+MODOXq3TdNn1Z6Z+O60JEmbVrXp1K7NIr/n0tBUPweVpMFcOmiQaJBoUNBBg0SDRIOCDhokGiQaFHTQINGgoIMGiQaJBgUdNEg0AKCxz+Vi9eTJk3PllVc2m8XqG28ckW5du2TwoCPSq1ePvPDiK9lxp73z2mtjqz1aRemgQaJBokFBBw0SDRINCjpocNBBP0qS/OnBmxod33ffI3LV1TdUY6Sqac6fhQnvTs9bU95r+Lq+vj7n3/Fkxk5+N7UtWmTF5TrnsB02zne/vk7DNbttvHbatq7NlX96NueNeDzt2rTKGr265QdbrLdYM3Rq1yYX/nTnnD78kex59o3p3L5N9tpyvey95foN1wx//MXMrqvL6cMfzenDH204vuNXv5RTfrDVYr3vktacPwdLigZz6aBBokGiQUEHDRINEg0KOmiQaJBoUNBBg0SDgg4aJBokGhR00CDRAIDGaurr6+urPcSiGjFixELPjxkzJkcddVTmzJmz0Os+qbb1Cv8/YwEAQCnUVHuAJqDZ/SFqKXnvtmOrPULVddr5zGqPAAAAAAAAfE7MnmmZm8qYsvuW1R6BEuhy48PVHmGxNMs7Vu+yyy6pqanJwnbCix/hDAAAAAAAAAAAAADwaVpUe4DF0atXr9x0002pq6ub72P06NHVHhEAAAAAAAAAAAAAaEaa5WJ1v379Fro8/Wl3swYAAAAAAAAAAAAA+Ljaag+wOI4++uhMmzZtgedXX331PPTQQxWcCAAAAAAAAAAAAABozprlYvVmm2220PMdOnTIFltsUaFpAAAAAAAAAAAAAIDmrkW1BwAAAAAAAAAAAAAAqDaL1QAAAAAAAAAAAABA6dVWewAAAAAAAAAAAAAAKqSu2gNA0+WO1QAAAAAAAAAAAABA6VmsBgAAAAAAAAAAAABKz2I1AAAAAAAAAAAAAFB6FqsBAAAAAAAAAAAAgNKzWA0AAAAAAAAAAAAAlJ7FagAAAAAAAAAAAACg9CxWAwAAAAAAAAAAAAClZ7EaAAAAAAAAAAAAACg9i9UAAAAAAAAAAAAAQOlZrAYAAAAAAAAAAAAASs9iNQAAAAAAAAAAAABQerXVHgAAAAAAAAAAAACAyqivq6/2CNBkuWM1AAAAAAAAAAAAAFB6FqsBAAAAAAAAAAAAgNKzWA0AAAAAAAAAAAAAlJ7FagAAAAAAAAAAAACg9CxWAwAAAAAAAAAAAAClZ7EaAAAAAAAAAAAAACg9i9UAAAAAAAAAAAAAQOlZrAYAAAAAAAAAAAAASs9iNQAAAAAAAAAAAAD8P/buPEyrgu7/+GdgBAFBZRXcMpcyFxTU1EAyXMJcUVu1RS2tXNLUMvdMMc1MKpdMTW1xARdyyw15xF1QSEvTXFBEEUFZVLa5f3/wO4MTiKxzZrxfr+u6r+uZcy/ny/s5M4l+OVD1LFYDAAAAAAAAAAAAAFXPYjUAAAAAAAAAAAAAUPVqyx4AAAAAAAAAAAAAgEZSV/YA0HS5YzUAAAAAAAAAAAAAUPUsVgMAAAAAAAAAAAAAVa+27AEAAIDmpVL2ADQZ7ff6ZdkjlG7aDT8ue4TStR94XtkjAAAAAAAAACwX7lgNAAAAAAAAAAAAAFQ9i9UAAAAAAAAAAAAAQNWzWA0AAAAAAAAAAAAAVD2L1QAAAAAAAAAAAABA1bNYDQAAAAAAAAAAAABUPYvVAAAAAAAAAAAAAEDVs1gNAAAAAAAAAAAAAFQ9i9UAAAAAAAAAAAAAQNWrLXsAAAAAAAAAAAAAABpHpa7sCaDpcsdqAAAAAAAAAAAAAKDqWawGAAAAAAAAAAAAAKqexWoAAAAAAAAAAAAAoOpZrAYAAAAAAAAAAAAAqp7FagAAAAAAAAAAAACg6lmsBgAAAAAAAAAAAACqnsVqAAAAAAAAAAAAAKDqWawGAAAAAAAAAAAAAKqexWoAAAAAAAAAAAAAoOpZrAYAAAAAAAAAAAAAqp7FagAAAAAAAAAAAACg6tWWPQAAAAAAAAAAAAAAjaSu7AGg6XLHagAAAAAAAAAAAACg6lmsBgAAAAAAAAAAAACqnsVqAAAAAAAAAAAAAKDqWawGAAAAAAAAAAAAAKqexWoAAAAAAAAAAAAAoOpZrAYAAAAAAAAAAAAAqp7FagAAAAAAAAAAAACg6lmsBgAAAAAAAAAAAACqnsVqAAAAAAAAAAAAAKDqWawGAAAAAAAAAAAAAKqexWoAAAAAAAAAAAAAoOrVlj0AAAAAAAAAAAAAAI2jUlf2BNB0uWM1AAAAAAAAAAAAAFD1LFYDAAAAAAAAAAAAAFXvY7VY/clPfjLPPfdc2WMslcMO/Vaee/ahTJ/63zzy8O3p87ltyh6pFDpokGiQaFDQQYNEg0SDgg4aJBoUdGgeDS6754ls8eNLcs5ND3zoa+4Z+0IOvfiW7HjKlfnczy7PNwffmAefeWWFz/bchLdy8O+H5bM/+WN2Pv3qXHLnqFQqldLnWlLN4TpoDDpokGiQaFDQQYNEg0SDgg4aJBokGhR00CDRoKCDBokGiQYFHTRINABgvma5WD148OCFPsaNG5crrrii/uvmYv/998yvzzstg84enK222TUjRz6aW/7+56y9do+yR2tUOmiQaJBoUNBBg0SDRIOCDhokGhR0aB4Nnho3MUMf/nc26t5xka8b9cKEbLvRWvntIQPy16P3zVYb9MiRl9+RZ16dtNTnHj95Wrb48SUf+vz092flsEtuTZcObfOXHw3MT/f5XK66b0yuHjF2hc61vDWH66Ax6KBBokGiQUEHDRINEg0KOmiQaJBoUNBBg0SDgg4aJBokGhR00CDRAICGaiofvCVVM9GiRYusueaaqa2tbXD85ZdfTo8ePbLSSiulpqYmL7zwwhJ9bm2rNZfnmIvtwZF/z+gnnsrhR5xQf+yfY+/LsGF35MSTzi5lpjLooEGiQaJBQQcNEg0SDQo6aJBoUNChaTWYdsOPFzj27szZ+eqvh+Zn+/bJpXePzqd6dMrxe39usT9z4DnXZdct1s+hu/SuP3bTo8/kyuFjMn7ytPRYvX2+1nfTfOVzmyz0/eMnT8uXzvxrnjzv0IU+f92DT2fwrY/m3tO/mVa1LZMkl9/zRP428qncecoBqampWey5kqT9wPMW+9e2PDWl66BMOmiQaJBoUNBBg0SDRIOCDhokGiQaFHTQINGgoIMGiQaJBgUdNEiaVoM5s8Y36vmoXpMG9Ct7BKpA59tHlD3CUmmWd6z+7ne/m86dO+e2227Liy++WP9o2bJl7rzzzrz44otLvFRdlpVWWim9em2eu+5ueAHdddeIbLftViVN1fh00CDRINGgoIMGiQaJBgUdNEg0KOjQPBqcdcPI9P3MOtl2o7WW+L11dZW8O3N2Vm3buv7Y0If/nd/f/lgOH7B1bjz+yzlit61z4R2PZdhjzy7VfGNfeiNbrd+9fqk6Sbb/1Np5c+q7eW3ytMWeq0zN4TpoDDpokGiQaFDQQYNEg0SDgg4aJBokGhR00CDRoKCDBokGiQYFHTRINABgQc1ysfqSSy7Jqaeeml133TW/+93vluozZs6cmalTpzZ4lHHz7s6dO6a2tjYT32j41ylPnDgp3dbo2ujzlEUHDRINEg0KOmiQaJBoUNBBg0SDgg5Nv8EdTzyfZ16dlCN322ap3n/ViDF5b9bs7NJz/fpjl941OsfssV36b/7JrNmpQ/pv/skcsMPmGfLQv5fqHJOmvZeO7ds0OFZ8PWnau4s9V5ma+nXQWHTQINEg0aCggwaJBokGBR00SDRINCjooEGiQUEHDRINEg0KOmiQaADAgmrLHmBp7b333tl6663zzW9+M7feemuuuOKKJXr/oEGDcvrppzc4VtNildS07LA8x1xs/7vUXVNTU8qid9l00CDRINGgoIMGiQaJBgUdNEg0KOjQNBu8PmV6zrnpwVx06JfSeqUl/+327aOfz8V3jspvvrNr/aLz5Onv5fW3p+f060bk59fPv1vG3LpKVlm5Vf3XA8+5LhOmzLvbdFFhuxMuq3++++rtc8PxX67/uiY1Dc5dvKempuHxD5urqWiK10EZdNAg0SDRoKCDBokGiQYFHTRINEg0KOigQaJBQQcNEg0SDQo6aJBoAMB8zXaxOknWXHPN3H333Tn77LOz5ZZbLtH/mJ1wwgk55phjGhxbvdOnl/eIH2nSpMmZM2dOuq3RpcHxLl06ZeIbbzb6PGXRQYNEg0SDgg4aJBokGhR00CDRoKBD027wr1ffzOTp7+Xr5w+tPza3rpLRL0zItQ88nUd/eUhatlj4Xxz1jyeez+nXjcg539wp2260Vv3x4ve5J++/QzZbt+GdMVp+YAn6d4cMyJy6uiTJxHdm5JAL/55rf7xf/fO1Hzhv5/Zt8tb/3Jl6yrT3kiSdVmm4OP1hc5WtKV8HjUkHDRINEg0KOmiQaJBoUNBBg0SDRIOCDhokGhR00CDRINGgoIMGiQYALGjh/0W3GampqckJJ5yQW265Jeedd166d+++WO9r3bp1OnTo0OCxsDtzrWizZ8/O6NFjs1P/HRoc32mnHfLQw483+jxl0UGDRINEg4IOGiQaJBoUdNAg0aCgQ9Nu8NkN18yQY/fPtcfsV//4zNpdsluvDXPtMft96FL17aOfzynX3JezvvGF7PCZdRs816l923RdtV3GT56adTqv2uCxZqf5f+NSj47t6493X719kjR4bY+O7etfu/knumXUCxMye87c+mMP/efVdOnQtsHrFjVX2ZryddCYdNAg0SDRoKCDBokGiQYFHTRINEg0KOigQaJBQQcNEg0SDQo6aJBoAMCCmvUdqz+od+/e6d27d5LklVdeyamnnprLL7+85KkWz/kXXJorr7ggo0aNycOPjMp3Dz4g66y9Zi75w9Vlj9aodNAg0SDRoKCDBokGiQYFHTRINCjo0HQbtFu5VTbo3rHBsTatarNq29b1xwff+kgmvjMjv/j6F5LMW14++W/Dc9ze22fzdbtl0tR5d5JuvVLLtG/TOkly2C69c85ND6Zd61bps/HamTVnbp5+5c1Me29WDuy3+RLPOWDLDXLJnaNy8jX35ZD+W2bcpHdy2T1P5Hs796r/A8eLM1fZmup10Nh00CDRINGgoIMGiQaJBgUdNEg0SDQo6KBBokFBBw0SDRINCjpokGgAQEMfm8XqD5o8eXKuvPLKZrNYff31w9Kp4+o56cSj07171zz19LPZY88DM27c+LJHa1Q6aJBokGhQ0EGDRINEg4IOGiQaFHRo3g3enPpuJrw9vf7rIQ//K3Pq6jLohpEZdMPI+uN7bLVRzvjajkmSgdtunJVb1ebK4WPym1seTptWK2XD7h3zjR02W6oZ2rdpnYsP/VIG3TAyX//NDenQpnUO2GGzBkvaizNX2ZrzdbA86aBBokGiQUEHDRINEg0KOmiQaJBoUNBBg0SDgg4aJBokGhR00CDRgCpVV/YA0HTVVCqVStlDLKlhw4Yt8vkXXnghP/7xjzN37txFvu5/1bZac1nGAgAAoMpMu+HHZY9QuvYDzyt7BAAAAAAA+FiYM8syN41j0q79yh6BKtD5HyPKHmGpNMs7Vu+9996pqanJonbCi7++GAAAAAAAAAAAAADgo7Qoe4Cl0b179wwdOjR1dXULfYwePbrsEQEAAAAAAAAAAACAZqRZLlb37t17kcvTH3U3awAAAAAAAAAAAACAD6ote4Clcdxxx2XGjBkf+vwGG2yQ4cOHN+JEAAAAAAAAAAAAAEBz1iwXq/v27bvI59u1a5d+/fo10jQAAAAAAAAAAAAAQHPXouwBAAAAAAAAAAAAAADKZrEaAAAAAAAAAAAAAKh6FqsBAAAAAAAAAAAAgKpnsRoAAAAAAAAAAAAAqHoWqwEAAAAAAAAAAACAqldb9gAAAAAAAAAAAAAANI5KXdkTQNPljtUAAAAAAAAAAAAAQNWzWA0AAAAAAAAAAAAAVD2L1QAAAAAAAAAAAABA1bNYDQAAAAAAAAAAAABUPYvVAAAAAAAAAAAAAEDVs1gNAAAAAAAAAAAAAFQ9i9UAAAAAAAAAAAAAQNWzWA0AAAAAAAAAAAAAVD2L1QAAAAAAAAAAAABA1bNYDQAAAAAAAAAAAABUPYvVAAAAAAAAAAAAAEDVqy17AAAAAAAAAAAAAAAaR6Wu7Amg6XLHagAAAAAAAAAAAACg6lmsBgAAAAAAAAAAAACqnsVqAAAAAAAAAAAAAKDqWawGAAAAAAAAAAAAAKqexWoAAAAAAAAAAAAAoOpZrAYAAAAAAAAAAAAAqp7FagAAAAAAAAAAAACg6lmsBgAAAAAAAAAAAACqnsVqAAAAAAAAAAAAAKDqWawGAAAAAAAAAAAAAEpx0UUXZfPNN0+HDh3SoUOHbLfddrn99tvrn69UKjnttNPSo0ePtGnTJp///Ofz9NNPN/iMmTNn5ogjjkjnzp3Trl277Lnnnnn11VeXeBaL1QAAAAAAAAAAAABAKdZaa62cffbZefzxx/P444/nC1/4Qvbaa6/65elzzjknv/71r/O73/0ujz32WNZYY43svPPOmTZtWv1n/OhHP8qNN96Ya665JiNHjsz06dOz++67Z+7cuUs0S02lUqks119dM1bbas2yRwAAAKAZmXbDj8seoXTtB55X9ggAAAAAAPCxMGfW+LJHoEq8sWO/skegCnQbPmKZ3t+xY8ece+65Oeigg9KjR4/86Ec/yk9+8pMk8+5O3a1bt/zyl7/MoYcemnfeeSddunTJ1Vdfna985StJktdeey1rr712brvttuy6666Lfd7aZZoaPqZqyh6gCfAnLgAA4KNZKk7ee+3+skcoXZsefcseAQAAAAAAAJqUmTNnZubMmQ2OtW7dOq1bt17k++bOnZvrr78+M2bMyHbbbZcXX3wxr7/+enbZZZcGn9OvX788+OCDOfTQQzNq1KjMnj27wWt69OiRTTfdNA8++OASLVa3WOxXAgAAAAAAAAAAAAB8hEGDBmXVVVdt8Bg0aNCHvv6f//xnVllllbRu3TqHHXZYbrzxxnzmM5/J66+/niTp1q1bg9d369at/rnXX389rVq1yuqrr/6hr1lc7lgNAAAAAAAAAAAAACw3J5xwQo455pgGxxZ1t+pPfepTefLJJ/P2229n6NCh+da3vpURI0bUP19TU9Pg9ZVKZYFj/2txXvO/3LEaAAAAAAAAAAAAAFhuWrdunQ4dOjR4LGqxulWrVtlggw2y1VZbZdCgQenZs2cuuOCCrLHGGkmywJ2nJ06cWH8X6zXWWCOzZs3KlClTPvQ1i8tiNQAAAAAAAAAAAADQZFQqlcycOTPrrbde1lhjjdx11131z82aNSsjRozI9ttvnyTp3bt3VlpppQavmTBhQp566qn61yyu2uUzPgAAAAAAAAAAAADAkvnZz36WAQMGZO211860adNyzTXX5L777ssdd9yRmpqa/OhHP8pZZ52VDTfcMBtuuGHOOuustG3bNl//+teTJKuuumoOPvjg/PjHP06nTp3SsWPHHHvssdlss82y0047LdEsFqsBAAAAAAAAAAAAgFK88cYbOfDAAzNhwoSsuuqq2XzzzXPHHXdk5513TpIcf/zxee+99/KDH/wgU6ZMyWc/+9nceeedad++ff1nnH/++amtrc2Xv/zlvPfee+nfv3/+9Kc/pWXLlks0S02lUqks119dM1bbas2yR6CJqCl7gCbADwYAAGBxvPfa/WWPULo2PfqWPQIAAAAAAB8Dc2aNL3sEqsQbO/YrewSqQLfhI8oeYam0KHsAAAAAAAAAAAAAAICyWawGAAAAAAAAAAAAAKqexWoAAAAAAAAAAAAAoOrVlj0AAAAAAAAAAAAAAI2kUlP2BNBkuWM1AAAAAAAAAAAAAFD1LFYDAAAAAAAAAAAAAFXPYjUAAAAAAAAAAAAAUPUsVgMAAAAAAAAAAAAAVc9iNQAAAAAAAAAAAABQ9SxWAwAAAAAAAAAAAABVz2I1AAAAAAAAAAAAAFD1LFYDAAAAAAAAAAAAAFXPYjUAAAAAAAAAAAAAUPUsVgMAAAAAAAAAAAAAVc9iNQAAAAAAAAAAAABQ9WrLHgAAAAAAAAAAAACAxlGpK3sCaLrcsRoAAAAAAAAAAAAAqHoWqwEAAAAAAAAAAACAqmexGgAAAAAAAAAAAACoeharAQAAAAAAAAAAAICqZ7EaAAAAAAAAAAAAAKh6FqsBAAAAAAAAAAAAgKpnsRoAAAAAAAAAAAAAqHoWqwEAAAAAAAAAAACAqmexGgAAAAAAAAAAAACoeharAQAAAAAAAAAAAICqZ7EaAAAAAAAAAAAAAKh6FqubiMMO/Vaee/ahTJ/63zzy8O3p87ltyh6pFNXc4fjjD89DD96ayW89m/GvjsmQIZdlo43WL3usUlTzdVDQYJ5q79C3z2dz041/yriXRmXOrPHZc89dyx6pFNV+HSQaFHTQINGgoIMGSfNr8PvL/pxNPzegwaPfHl9foee8a/jI7PmN72XLz++RPb/xvdw94oEGz1961bX5ysFHZpudBmaHL301R/7053nx5VdX6EzLk39enK+5fT8sb66Fear9OijooEGiQaJBQQcNEg0SDQo6aJBoUKjmDn4POV81XweFam/g+2G+ar8WEg2oPpW6Gg+PFf5orj4Wi9WzZ8/OTTfdlHPPPTd//vOfM2PGjLJHWiL7779nfn3eaRl09uBstc2uGTny0dzy9z9n7bV7lD1ao6r2Djv03TYXXXRl+vTdIwN2+1pqW9bmtlv/mrZt25Q9WqOq9usg0aCgQ9KuXduMHfuvHPmjk8oepTSuAw0KOmiQaFDQQYOk+TbYYL11c9+wv9Q/brzqwqX+rJtuvSvfPvz4D33+yaf+nWNPHZQ9du2foVdemD127Z9jTx6UsU8/U/+ax5/8Z742cI/89Q/n5w+/OStz5s7N944+Me++9/5Sz9WY/PPiPM31+2F5ci24Dgo6aJBokGhQ0EGDRINEg4IOGiQaFKq9g99DzlPt10GiQeL7oeBa0ACAhmoqlUql7CGW1Pbbb5/bbrstq622Wt588830798/zz77bNZdd9288sor6dq1ax588MGsueaaS/S5ta2W7PXLy4Mj/57RTzyVw484of7YP8fel2HD7siJJ51dykxlaEodmsKflejcuWMmvPbP7PiFgRk58pFGP39ZPxia0nVQFg3m0aGhObPGZ+B+B2XYsH+UPUqjch1oUNBBg0SDgg4aJE2rwXuv3b9Yr/v9ZX/Ovf/3UIZe+fuFPj979uwM/sNVufXO4Zk2fXo2+OQncvT3D8o2vTZf6OtvuvWu3HT7XfnT785Z6PM/PnlQZrz7bi4+74z6Y4cec1I6tF8l557+04W+Z/KUt7PD7l/Ln35/TrbaYrPF+nUlSZsefRf7tStKtf7zYtK0vh+agmq9FlwH8+igQaJBokFBBw0SDRINCjpokGhQ0GG+av09ZOI6SDT4X74fqvtaaEoN5swa36jno3pN6LNj2SNQBbqPHF72CEulWd6x+uGHH86sWbOSJCeeeGJatmyZl19+Of/5z3/y6quvZq211sopp5xS8pSLZ6WVVkqvXpvnrrtHNDh+110jst22W5U0VePTYUGrrtohSTJlytvlDtKIXAcaFHQgcR0kGhR00CDRoKCDBknzbjDu1fHZcc9vZNf9vp1jTxmUV8ZPqH/upDN/nSf++a+ce/pPM/TKC7PLjn1y2I9PysuvLN2/RB7z9L+z/da9Ghz73Da98+Q///2h75k+490kyaod2i/VOWl8zfn7geXHdTCPDhokGiQaFHTQINEg0aCggwaJBgUdSFwHiQbM51rQAIAF1ZY9wLIaMWJEfv3rX2eNNdZIknTq1ClnnnlmvvOd7yzyfTNnzszMmTMbHKtUKqmpadx7FXfu3DG1tbWZ+MakBscnTpyUbmt0bdRZyqTDgs4999SMHPlInn762bJHaTSuAw0KOpC4DhINCjpokGhQ0EGDpPk22Pwzn8pZJx2bdddZM29NfjuXXPm3HHDYj3Pzny/O1GnTc9vdI3LPjVena5dOSZLvfH2/PPDIqNx461350WHfXuLzTXprSjp1XK3BsU4dV8ukyZMX+vpKpZJzBv8hvTbfJBt+8hNLfD7K0Vy/H1i+XAfz6KBBokGiQUEHDRINEg0KOmiQaFDQgcR1kGjAfK4FDQBYULNdrC4WoN9+++2st956DZ5bb731MmHChIW9rd6gQYNy+umnN/zMFqukpmWH5TvoYqpUKg1nqalZ4Fg10GGewRecmc023Tif33GfskcphetAg4IOJK6DRIOCDhokGhR00CBpfg36brf1/C/WT3puunEGfPmg3Hz73Vmja5dUKpV86WuHNHjP7Fmzs2qHeb9Pn/D6xOx5wKH1z82dOzdz5szN1jvN/33T7rt8Iacef0T91//7h6cX9Qeqz/z1hfnPf1/MVRf9aql/jZSnuX0/sGK4DubRQYNEg0SDgg4aJBokGhR00CDRoKADiesg0YD5XAsaADBfs12s/va3v53WrVtn9uzZefnll/OZz3ym/rkJEyZktdVWW+T7TzjhhBxzzDENjq3e6dMrYtRFmjRpcubMmZNua3RpcLxLl06Z+MabjT5PWXSY7zfnn5Hdd98lX+g/MOPHL/oPCHzcuA40KOhA4jpINCjooEGiQUEHDZKPT4O2bVbOhp/8RF5+ZXy6du6Uli1b5LrLfpuWLVss8Lok6dK5U4b+6ff1x+8e8UDuuu+B/PLU4+uPtWvXtv7/7txp9Ux6a0qDz5o85Z10Wn31BWY569cXZvjIh3Pl78/NGl27LPA8TdfH5fuBZeM6mEcHDRINEg0KOmiQaJBoUNBBg0SDgg4kroNEA+ZzLWgAwIJafPRLmp5vfetb6dq1a1ZdddXstddemT59eoPnhw4dmi222GKRn9G6det06NChwePD7lq1Is2ePTujR4/NTv13aHB8p512yEMPP97o85RFh3ku+M0vsvfeA7LLrl/OSy+9UvY4jc51oEFBBxLXQaJBQQcNEg0KOmiQfHwazJo1Ky++PC5dOnXMxhutn7lz6zJ5yttZZ60eDR6dO3VMktTWtmxwvONqq6V161YNjnVafbX6z++5ycZ56LHRDc754GOjs8VmG9d/XalUcuZ5F+buEQ/m8sFnZ60eazTKr53l5+Py/cCycR3Mo4MGiQaJBgUdNEg0SDQo6KBBokFBBxLXQaIB87kWNABgQc3yjtVXXHHFIp8/7bTT0rJly0aaZtmdf8GlufKKCzJq1Jg8/MiofPfgA7LO2mvmkj9cXfZojaraO/x28Fn56lf3zsB9D8q0adPTrdu8Pwn3zjvT8v7775c8XeOp9usg0aCgw7w7Lm6wwXr1X6/3iXXSs+cmmTx5Sl555bUSJ2s8rgMNCjpokGhQ0EGDpHk2OPd3l+bzn/tsunfrmslT3s4lV/4t02e8m7122yk91uiWL+2yY372i1/l2MO/m403Wj9T3nknj44akw0/+YnssP02S3y+A768V779w+Ny2Z+vy459t8vw+x/Kw489kasu+lX9a35x3u9z2133ZfDZp6Rd2zaZ9NbkJMkqq7TLyq1bL7df+4rinxfnaY7fD8uba8F1UNBBg0SDRIOCDhokGiQaFHTQINGgUO0d/B5ynmq/DhINEt8PBdeCBgA01CwXqz/K5MmTc+qpp+byyy8ve5TFcv31w9Kp4+o56cSj07171zz19LPZY88DM27c+LJHa1TV3uGww76VJLn3nqENjh988NG56urryhipFNV+HSQaFHRIturdM/fcPaT+6/N+dVqS5MqrrsvBhxxd0lSNy3WgQUEHDRINCjpokDTPBm9MnJTjT/1lprwzNR1XWzWbb/Lp/PUP56fHGt2SJL848Zhc8qe/5Ve/uzRvvPlWVlu1fXpusnH6brf1Up1vy80+k3NP/2l++4er8ttLr87aa3bPuT8/IZtv8un611x7461Jku8c/pMG7/3Fz47J3l/aeSl/pY3HPy/O0xy/H5Y314LroKCDBokGiQYFHTRINEg0KOigQaJBodo7+D3kPNV+HSQaJL4fCq4FDQBoqKZSqVTKHmJ5GzNmTHr16pW5c+cu0ftqW625giaiuakpe4Am4GP3gwEAAFgh3nvt/rJHKF2bHn3LHgEAAAAAgI+BObMsc9M4JvTZsewRqALdRw4ve4Sl0izvWD1s2LBFPv/CCy800iQAAAAAAAAAAAAAwMdBs1ys3nvvvVNTU5NF3Wy7psY9hwEAAAAAAAAAAAA+qFJX9gTQdLUoe4Cl0b179wwdOjR1dXULfYwePbrsEQEAAAAAAAAAAACAZqRZLlb37t17kcvTH3U3awAAAAAAAAAAAACAD6ote4Clcdxxx2XGjBkf+vwGG2yQ4cOHN+JEAAAAAAAAAAAAAEBz1iwXq/v27bvI59u1a5d+/fo10jQAAAAAAAAAAAAAQHPXouwBAAAAAAAAAAAAAADKZrEaAAAAAAAAAAAAAKh6FqsBAAAAAAAAAAAAgKpnsRoAAAAAAAAAAAAAqHoWqwEAAAAAAAAAAACAqmexGgAAAAAAAAAAAACoeharAQAAAAAAAAAAAICqV1v2AAAAAAAAAAAAAAA0jkqlpuwRoMlyx2oAAAAAAAAAAAAAoOpZrAYAAAAAAAAAAAAAqp7FagAAAAAAAAAAAACg6lmsBgAAAAAAAAAAAACqnsVqAAAAAAAAAAAAAKDqWawGAAAAAAAAAAAAAKqexWoAAAAAAAAAAAAAoOpZrAYAAAAAAAAAAAAAqp7FagAAAAAAAAAAAACg6lmsBgAAAAAAAAAAAACqnsVqAAAAAAAAAAAAAKDq1ZY9AAAAAAAAAAAAAACNo1JX9gTQdLljNQAAAAAAAAAAAABQ9SxWAwAAAAAAAAAAAABVz2I1AAAAAAAAAAAAAFD1LFYDAAAAAAAAAAAAAFXPYjUAAAAAAAAAAAAAUPUsVgMAAAAAAAAAAAAAVc9iNQAAAAAAAAAAAABQ9SxWAwAAAAAAAAAAAABVz2I1AAAAAAAAAAAAAFD1asseAJqiStkDAAAANBNtevQte4TSTX9gcNkjNAmrfO7IskcoXYuamrJHKF1dxb9VAWBB/hfSf3cAAAAAaC7csRoAAAAAAAAAAAAAqHruWA0AAAAAAAAAAABQJSp1/n4p+DDuWA0AAAAAAAAAAAAAVD2L1QAAAAAAAAAAAABA1bNYDQAAAAAAAAAAAABUPYvVAAAAAAAAAAAAAEDVs1gNAAAAAAAAAAAAAFQ9i9UAAAAAAAAAAAAAQNWzWA0AAAAAAAAAAAAAVD2L1QAAAAAAAAAAAABA1bNYDQAAAAAAAAAAAABUPYvVAAAAAAAAAAAAAEDVs1gNAAAAAAAAAAAAAFS92rIHAAAAAAAAAAAAAKBxVCplTwBNlztWAwAAAAAAAAAAAABVz2I1AAAAAAAAAAAAAFD1LFYDAAAAAAAAAAAAAFXPYjUAAAAAAAAAAAAAUPUsVgMAAAAAAAAAAAAAVc9iNQAAAAAAAAAAAABQ9SxWAwAAAAAAAAAAAABVz2I1AAAAAAAAAAAAAFD1LFYDAAAAAAAAAAAAAFXPYjUAAAAAAAAAAAAAUPUsVgMAAAAAAAAAAAAAVa+27AEAAAAAAAAAAAAAaByVupqyR4Amyx2rAQAAAAAAAAAAAICqZ7EaAAAAAAAAAAAAAKh6FqsBAAAAAAAAAAAAgKpnsRoAAAAAAAAAAAAAqHoWqwEAAAAAAAAAAACAqmexGgAAAAAAAAAAAACoeharAQAAAAAAAAAAAICqZ7EaAAAAAAAAAAAAAKh6FqubiMMO/Vaee/ahTJ/63zzy8O3p87ltyh6pFDpokGiQaFDQQYNEg0SDgg4aJBoUdNAg0SBpPg0uG3Zfeh7ws5xz9S0f+prH/vVCeh7wswUeL742cYXO9twrr+egX/wh23znlOx0xNm5+MZ7UqlU6p+/+7GncujZl+fz3/9Ftj/k9Bx42kV5YOx/VuhMS6O5XAuN4fjjfphZM1/Nr351WtmjNDrXwTw6aJBokGhQqOYOxx9/eB568NZMfuvZjH91TIYMuSwbbbR+2WOVopqvg0K1N+jb57O56cY/ZdxLozJn1vjsueeuZY9Ummq/FhINCjpokGiQaFDQQYNEAwDma5aL1a+++momTZpU//X999+fb3zjG+nbt28OOOCAPPTQQyVOt+T233/P/Pq80zLo7MHZaptdM3Lko7nl73/O2mv3KHu0RqWDBokGiQYFHTRINEg0KOigQaJBQQcNEg2S5tPgqf++miHDH8tG66yxWK+/+dxjcs/vTqh/rLNG56U+9/g3p6TnAT/70Oenv/t+Dj378nRZrUP+8vMf5Kff3D1X3ToyV90+sv41o595KdtuukF+d+y387df/DBbb/zJHHne1fn3S68t9VzLW3O5FhpD7949c/Ah38jYsf8qe5RG5zqYRwcNEg0SDQrV3mGHvtvmoouuTJ++e2TAbl9Lbcva3HbrX9O2bZuyR2tU1X4dJBokSbt2bTN27L9y5I9OKnuUUrkWNCjooEGiQaJBQQcNEg0AaKim8sHbEDUT22+/fU4++eQMGDAgN998cwYOHJjdd989G2+8cf7zn//klltuyQ033JDdd999iT63ttWaK2jiRXtw5N8z+omncvgRJ9Qf++fY+zJs2B058aSzS5mpDDpokGiQaFDQQYNEg0SDgg4aJBoUdNAg0SBpWg2mPzB4ocfffX9mvnLS73Lit/fKpTcNz6fW7Z7jD1z4v6t47F8v5JCz/pj7Lzk5Hdp9+LLPTSNG5U+3/l/GvzklPTqvlq/vsn2+svO2C33t+DenZLejz82YP5+10Oevu/vhDL7uztz7+5+l1Uq1SZLLho3I3+56KHcN/klqamoW+r59fvKb7LrtZjlsn/4Njq/yuSM/dO4VqSldCy0+pFljaNeubR595I4cceTPcsJPj8qYsU/n2GNPa/Q56kr6V41N6Tookw4aJBokGhSaUofy/hdyvs6dO2bCa//Mjl8YmJEjH2n085f1H+Oa0nVQFg0amjNrfAbud1CGDftH2aM0OteCBgUdNEg0SDQo6KBB0rQazJk1vlHPR/V6uddOZY9AFVh39N1lj7BUmuUdq5966qlsvPHGSZJBgwblrLPOys0335yzzz47N9xwQ37961/nlFNOKXnKxbPSSiulV6/Nc9fdIxocv+uuEdlu261Kmqrx6aBBokGiQUEHDRINEg0KOmiQaFDQQYNEg6T5NDjrT8OywxafzrabbrDY7/nKSb9L/x8OynfP+mMe/dd/Gzw3dPhj+d31d+bw/XfOjb/8UY748i75/dC7Muz/Ri/VfGOefyW9P71e/VJ1kmy/+YZ5c8rUjH9zykLfU1dXl3ffn5lV27VdqnMub83lWmgMgy84M7fdfk/uvXfkR7/4Y8Z1MI8OGiQaJBoUdFjQqqt2SJJMmfJ2uYM0IteBBsznWtCgoIMGiQaJBgUdNEg0oHpV6mo8PFb4o7mq/eiXND0tWrTI1KlTkyQvvvhiBgwY0OD5AQMG5Cc/+ckiP2PmzJmZOXNmg2OVSuVD78a0onTu3DG1tbWZ+MakBscnTpyUbmt0bdRZyqSDBokGiQYFHTRINEg0KOigQaJBQQcNEg2S5tHg9ofG5N8vvZa//vwHi/X6Lqu1zykH75PPfKJHZs2Zm1tGPpHvDbo8l514SHp/er0kyR9uujc//vpu2WnrTZMka3XtmBfGT8yQ4Y9mzx16LfGMk96eljW7rN7gWKdVV0mSvPXO9KzVteMC77nqtpF5b+as7PLZzZb4fCtCc7gWGsOX998zW265Wbbb/ktlj1IK18E8OmiQaJBoUNBhQeeee2pGjnwkTz/9bNmjNBrXgQbM51rQoKCDBokGiQYFHTRINABgQc1ysbpfv37529/+ls033zxbbrll7rvvvmy++eb1zw8fPjxrrrnmIj9j0KBBOf300xscq2mxSmpadlghM3+Uyv/8Nak1NTULHKsGOmiQaJBoUNBBg0SDRIOCDhokGhR00CDRIGm6DV5/6+2cc/UtufgnB6V1q5UW6z2f6NEln+jRpf7rnhuuk9cnv5Mrb70/vT+9XiZPnZ7X33onp/3xhpx+2Y31r5tbV5dV2rSu/3qfn/wmEya9nSSp/P+/cH7bg0+rf75759Vy4y9/9KFzFP0W9ufOb39wTC668Z5ccPSB9QvYTUVTvRYaw1prdc95552eL33p6wvcRKDaVPN18EE6aJBokGhQ0GGewRecmc023Tif33GfskcphetAA+ZzLWhQ0EGDRINEg4IOGiQaADBfs1ysPvvss9O3b9+89tpr6dOnT0488cQ89thj2XjjjfPss8/m2muvzcUXX7zIzzjhhBNyzDHHNDi2eqdPr8ixF2rSpMmZM2dOuq3RpcHxLl06ZeIbbzb6PGXRQYNEg0SDgg4aJBokGhR00CDRoKCDBokGSdNv8K8XX8vkqTPytZN/X39sbl1dRj37Uq656+E89qefp2WLFh/5OZtvsHZufeDJJPP/pf4pB++TzdZfu8HrWrSYvwX9++O+lTlz6pIkE6e8k4PP/GOuO/OI+udra+eft/Nq7fPWO9MbfNbkqTOSJB07NFycvuPhsTntjzfk3CO+lm033eAjZ28sTf1aaAy9em2ebt265OGHb68/Vltbm759P5sffP/bWaX9J1NXV1fihCue62AeHTRINEg0KOgw32/OPyO7775LvtB/YMaPn1D2OI3KdaAB87kWNCjooEGiQaJBQQcNEg0AWNBH/1e8JmjjjTfOI488klmzZuWcc87JjBkz8pe//CWnnXZann/++VxzzTX59re/vcjPaN26dTp06NDgUbOw2zGtYLNnz87o0WOzU/8dGhzfaacd8tDDjzf6PGXRQYNEg0SDgg4aJBokGhR00CDRoKCDBokGSdNv8NlN1s+QQUfm2jMPr39sst6a2W37nrn2zMMXa6k6SZ556bV0Xq19kqTTqu3TdfUOeXXi5KyzRqcGj7W6dqx/T4/Oq9cf79559SRp8Noe//9YkvTcYO2MeubFzJ4zp/7YQ/98Ll1W75A1u8x/3e0PjskplwzJoB98JTts2fh/KH1Rmvq10BjuvXdkttyyf7beetf6x+OPP5m//e3GbL31rh/7perEdVDQQYNEg0SDgg7zXPCbX2TvvQdkl12/nJdeeqXscRqd60AD5nMtaFDQQYNEg0SDgg4aJBoAsKBmecfqJFl//fXzt7/9LZVKJRMnTkxdXV06d+6clVZavL9ityk5/4JLc+UVF2TUqDF5+JFR+e7BB2SdtdfMJX+4uuzRGpUOGiQaJBoUdNAg0SDRoKCDBokGBR00SDRImnaDdm1aZ8O112hwrE3rVlltlbb1xy+49h+ZOGVqzjxs/yTJn+94ID06r5711+qa2XPm5tYHnszdjz2d8476ev1nfH9g//zy6luySpvW+VzPT2X2nDl5+oXxmTrjvXxztz5LPOeA7bfIxTfem5MvGZKD9/x8xr3+Vi4bdl++t88X6v/w+e0PjslJl1yf4w/YPZtvsHYmvT0tSdK61Upp33blpeqzvDXla6ExTJ8+I0//69kGx2bMeC9vTZ6ywPGPs2q/Dgo6aJBokGhQqPYOvx18Vr761b0zcN+DMm3a9HTrNu/uc++8My3vv/9+ydM1nmq/DhINkqRdu7bZYIP16r9e7xPrpGfPTTJ58pS88sprJU7WuFwLGhR00CDRINGgoIMGiQYANNRsF6sLNTU16datW4Njr7zySk499dRcfvnlJU21ZK6/flg6dVw9J514dLp375qnnn42e+x5YMaNG1/2aI1KBw0SDRINCjpokGiQaFDQQYNEg4IOGiQaJM2/waS3p+X1SW/Xfz17ztz8+q+3ZeKUqWndaqWsv2bX/O7Yb6XvFp+qf83AHbfOyq1Xyp9uvT/nX3NH2rRulQ3X7pZv7Pq5pZqhfduVc8lPD8pZfxqWr59yYTq0bZMDB/TJNwfMX9Iecu+jmTO3LmddOSxnXTms/viefXvljEP3W6rzLm/N/Vpg+XAdzKODBokGiQaFau9w2GHfSpLce8/QBscPPvjoXHX1dWWMVIpqvw4SDZJkq949c8/dQ+q/Pu9XpyVJrrzquhx8yNElTdX4XAsaFHTQINEg0aCggwaJBgA0VFOpVCplD7G8jRkzJr169crcuXOX6H21rdZcQRMBAAAAH1fTHxhc9ghNwiqfO7LsEUrX4v/f6bua1X38/lUjAMuB/4VM/C8kAACwOObMssxN43hpi53LHoEq8Ikn7yp7hKXSLO9YPWzYsEU+/8ILLzTSJAAAAAAAAAAAAADAx0GzXKzee++9U1NTk0XdbLvGHYIAAAAAAAAAAAAAgMXUouwBlkb37t0zdOjQ1NXVLfQxevToskcEAAAAAAAAAAAAAJqRZrlY3bt370UuT3/U3awBAAAAAAAAAAAAAD6otuwBlsZxxx2XGTNmfOjzG2ywQYYPH96IEwEAAAAAAAAAAAA0fe5bCx+uWS5W9+3bd5HPt2vXLv369WukaQAAAAAAAAAAAACA5q5F2QMAAAAAAAAAAAAAAJTNYjUAAAAAAAAAAAAAUPUsVgMAAAAAAAAAAAAAVc9iNQAAAAAAAAAAAABQ9SxWAwAAAAAAAAAAAABVz2I1AAAAAAAAAAAAAFD1LFYDAAAAAAAAAAAAAFXPYjUAAAAAAAAAAAAAUPUsVgMAAAAAAAAAAAAAVc9iNQAAAAAAAAAAAABQ9WrLHgAAAAAAAAAAAACAxlGpqyl7BGiy3LEaAAAAAAAAAAAAAKh6FqsBAAAAAAAAAAAAgKpnsRoAAAAAAAAAAAAAqHoWqwEAAAAAAAAAAACAqmexGgAAAAAAAAAAAACoeharAQAAAAAAAAAAAICqZ7EaAAAAAAAAAAAAAKh6FqsBAAAAAAAAAAAAgKpnsRoAAAAAAAAAAAAAqHoWqwEAAAAAAAAAAACAqmexGgAAAAAAAAAAAACoerVlDwAAAAAAAAAAAABA46hUasoeAZosd6wGAAAAAAAAAAAAAKqexWoAAAAAAAAAAAAAoOpZrAYAAAAAAAAAAAAAqp7FagAAAAAAAAAAAACg6lmsBgAAAAAAAAAAAACqnsVqAAAAAAAAAAAAAKDq1ZY9AAAAAEBztmrfH5U9QpMwbcjRZY9Quvb7nV/2CADQJFXKHgAAAAAAFpM7VgMAAAAAAAAAAAAAVc9iNQAAAAAAAAAAAABQ9SxWAwAAAAAAAAAAAABVz2I1AAAAAAAAAAAAAFD1asseAAAAAAAAAAAAAIDGUakrewJoutyxGgAAAAAAAAAAAACoeharAQAAAAAAAAAAAICqZ7EaAAAAAAAAAAAAAKh6FqsBAAAAAAAAAAAAgKpnsRoAAAAAAAAAAAAAqHoWqwEAAAAAAAAAAACAqmexGgAAAAAAAAAAAACoeharAQAAAAAAAAAAAICqZ7EaAAAAAAAAAAAAAKh6FqsBAAAAAAAAAAAAgKpnsRoAAAAAAAAAAAAAqHq1ZQ8AAAAAAAAAAAAAQOOoq9SUPQI0We5YDQAAAAAAAAAAAABUPYvVAAAAAAAAAAAAAEDVs1gNAAAAAAAAAAAAAFQ9i9UAAAAAAAAAAAAAQNWzWA0AAAAAAAAAAAAAVD2L1QAAAAAAAAAAAABA1bNYDQAAAAAAAAAAAABUPYvVAAAAAAAAAAAAAEDVs1gNAAAAAAAAAAAAAFQ9i9UAAAAAAAAAAAAAQNWzWA0AAAAAAAAAAAAAVL3asgcAAAAAAAAAAAAAoHFUKjVljwBNljtWAwAAAAAAAAAAAABVz2I1AAAAAAAAAAAAAFD1LFYDAAAAAAAAAAAAAFXPYjUAAAAAAAAAAAAAUPUsVgMAAAAAAAAAAAAAVc9idRNx2KHfynPPPpTpU/+bRx6+PX0+t03ZIzWqvn0+m5tu/FPGvTQqc2aNz5577lr2SKVxLbgWEteB62C+ar8WEg0SDQo6aJBoUNBBg0SDRIMk6dFjjVxxxQV5bfzYTJn8nzz6yB3ZcsvNyh5rAZfd+2S2OO7SnHPzQx/6mnv++WIO/cNt2fG0q/O5k/6Ub/725jz47CsrfLbnJkzOwRf9PZ894fLsfMZfcsldo1OpVEqfa0n4PZQGH+RnowaJBokGBR00SDRINCjooEGiQUEHDRINEg0KOmiQaADAfM1ysfq8887Lyy+/XPYYy83++++ZX593WgadPThbbbNrRo58NLf8/c9Ze+0eZY/WaNq1a5uxY/+VI390UtmjlMq14FpIXAeJ66DgWtAg0aCggwaJBgUdNEg0SDRIktVWWzXDh9+Q2bPnZM+9vpkttvxCfvLTM/LOO1PLHq2Bp155M0Mf/nc26t5xka8b9cLr2XbDNfPbg7+Yvx61T7baoEeOvOLOPDN+0lKfe/zkadniuEs/9Pnp78/KYX+4LV06tMtfjto7P917+1w1Ymyu/r9/rtC5lje/h9Kg4GejBokGiQYFHTRINEg0KOigQaJBQQcNEg0SDQo6aJBoAEBDNZUP3oKnmWjRokVatGiRHXfcMYccckj22WeftGrVapk/t7bVmsthuiX34Mi/Z/QTT+XwI06oP/bPsfdl2LA7cuJJZ5cyU5nmzBqfgfsdlGHD/lH2KI3OtdBQtV4LroOGqvU6SFwLiQaJBgUdNEg0KOigQaJB0rQatGxRzp9b/8UZP81222+d/v33LeX8/+vt645a4Ni7M2fnq7+5IT/bp08uveeJfKpHpxy/13aL/ZkDf3V9du25fg7duVf9sZseezZX3jc24ydPS4/VV8nX+myar2z/mYW+f/zkafnSoGvy5LnfXejz1z34rwy+/bHce+oBaVXbMkly+b1P5m8PPJ07T/p6ampqFnuuJGm/3/mL/WtbUar591CFam7QlH42lkUDDRINCjpokGiQaFDQQYNEg4IOGiQaJBoUdNAgaVoN5swa36jno3o9++kBZY9AFfjUM7eXPcJSaZZ3rE6SP/7xj2nXrl0OPPDA9OjRIz/60Y/y1FNPlT3WEltppZXSq9fmuevuEQ2O33XXiGy37VYlTUUZXAskrgPmcy1okGhQ0EGDRIOCDhokGiQaFHbffeeMHjU2f/3LRXll3BN55OHbc9BBXyt7rAbOuvGB9N14nWy70ZL/Yfa6ukrenTk7q7ZtXX9s6CPP5Pd3PJ7Dv7hVbjxuvxwxYOtc+I/HM+zx/yzVfGNffiNbfbJ7/VJ1kmz/qbXy5tR389qUaYs9FzQFfjZqkGiQaFDQQYNEg0SDgg4aJBoUdNAg0SDRoKCDBokGACyo2S5W77bbbrnpppvy6quv5vjjj88//vGP9OzZM9tss00uvfTSTJu28P/4VZg5c2amTp3a4FHGzbs7d+6Y2traTHyj4V8fO3HipHRbo2ujz0N5XAskrgPmcy1okGhQ0EGDRIOCDhokGiQaFNZbb51873sH5Pn/vpTd9zggl/7xz/n1eT/PN77RNO5gfceT/80z4yflyAFbL9X7r/q/sXlv1pzs0vOT9ccuvXt0jtn9s+m/2XpZs2OH9N9svRzQd9MMefjfS3WOSdPeS8f2bRoc67jKvK8nTX1vseeCpsDPRg0SDRINCjpokGiQaFDQQYNEg4IOGiQaJBoUdNAg0QCABdWWPcCy6tq1a44//vgcf/zxuf/++3PZZZfl6KOPztFHH53p06d/6PsGDRqU008/vcGxmharpKZlhxU98kL971J3TU1NKYvelM+1QOI6YD7XggaJBgUdNEg0KOigQaJBokGLFi0yatTYnHLKL5MkY8Y8nc9svFG+990D85e/DC11ttffnp5zbn4oF313QFqvtOT/+un2J57PxXeOzm++vUv9ovPk6e/l9bdn5PTr/y8/H3J//Wvn1lWyysqt6r8e+KvrM2HKvH8nVFwO2514Rf3z3VdfJTccu3/91zX/c+7iCqr53yc+ZC5oaqr9Z2OiQaJBokFBBw0SDRINCjpokGhQ0EGDRINEg4IOGiQaADBfs1ysrlnYf9lK0rdv3/Tt2zeDBw/Otddeu8jPOOGEE3LMMcc0OLZ6p08vtxkX16RJkzNnzpx0W6NLg+NdunTKxDfebPR5KI9rgcR1wHyuBQ0SDQo6aJBoUNBBg0SDRIPChNcn5t/PPNfg2DPPPJ+9996tpInm+9erkzJ5+nv5+gU31h+bW1fJ6Bcn5NoHn86jgw5KyxYL/4vU/vHkf3P69f+Xcw7cKdtutGb98eI/Ypy83w7ZbJ2G/79v2WL+vyv63cFfzJy5dUmSie+8m0MuviXXHj2w/vnalvPP27l9m7w1reGdqadMn/d1p/+5k/WHzQVNhZ+NGiQaJBoUdNAg0SDRoKCDBokGBR00SDRINCjooEGiAdWrUrfwHUwgWfh/wWriPupPA3Xo0CHf/e53F/ma1q1bp0OHDg0eH7awvSLNnj07o0ePzU79d2hwfKeddshDDz/e6PNQHtcCieuA+VwLGiQaFHTQINGgoIMGiQaJBoWHHno8G220foNjG274yYwb92pJE8332Q16ZMiP9821Rw+sf3xmrc7ZbcsNcu3RAz90qfr2J57PKdeOyFlf/0J22HidBs91at82XVdtl/FvTc06nVdt8Fiz4/y/gazH6u3rj3dffZUkafDaHqu3r3/t5ut2y6gXJ2T2nLn1xx76z6vp0qFtg9ctai5oKvxs1CDRINGgoIMGiQaJBgUdNEg0KOigQaJBokFBBw0SDQBYULO8Y3VdXV3ZIyxX519waa684oKMGjUmDz8yKt89+ICss/aaueQPV5c9WqNp165tNthgvfqv1/vEOunZc5NMnjwlr7zyWomTNS7XgmshcR0kroOCa0GDRIOCDhokGhR00CDRINEgSQYP/mNG3Hdjjj/+8Awdcku22nqLHHzw1/ODH/6k7NHSbuVW2WCNjg2OtWm1UlZtu3L98cG3PZqJ78zIL762Y5J5y8snX3Nfjttr+2y+TtdMmvpukqT1SrVp36ZVkuSwnXvlnJsfTLuVW6XPp9fKrDl1efrVNzPt3Zk5sN/mSzzngC03yCV3jc7J147IIf23yLg338ll9z6Z7+3Uq/4P4C/OXGXzeygNCn42apBokGhQ0EGDRINEg4IOGiQaFHTQINEg0aCggwaJBgA01CwXqz/KK6+8klNPPTWXX3552aMsluuvH5ZOHVfPSScene7du+app5/NHnsemHHjxpc9WqPZqnfP3HP3kPqvz/vVaUmSK6+6LgcfcnRJUzU+14JrIXEdJK6DgmtBg0SDgg4aJBoUdNAg0SDRIElGjRqTL3/5uznjjJ/mxJ8dlZdeeiXHHndarrnmprJHWyxvTn03E96eUf/1kIefyZy6Sgbd+EAG3fhA/fE9em+YM776+STJwM9+Oiu3qs2V943Nb259JG1arZQNu6+eb/TZdKlmaN+mVS7+3m4ZdOMD+foFN6VDm1Y5oO9mOXCHzZZorrL5PZQGBT8bNUg0SDQo6KBBokGiQUEHDRINCjpokGiQaFDQQYNEAwAaqqlUKpWyh1jexowZk169emXu3Lkf/eIPqG215gqaCAAAAPi4atmiRdkjNAlvX3dU2SOUrv1+55c9AgAAAADQjM2ZZZmbxvHMRruVPQJV4NP/ua3sEZZKs7xj9bBhwxb5/AsvvNBIkwAAAAAAAAAAAAAAHwfNcrF67733Tk1NTRZ1s+2amppGnAgAAAAAAAAAAAAAaM6a5d9V27179wwdOjR1dXULfYwePbrsEQEAAAAAAAAAAACAZqRZLlb37t17kcvTH3U3awAAAAAAAAAAAACAD6ote4Clcdxxx2XGjBkf+vwGG2yQ4cOHN+JEAAAAAAAAAAAAAEBz1iwXq/v27bvI59u1a5d+/fo10jQAAAAAAAAAAAAAQHPXouwBAAAAAAAAAAAAAADK1izvWA0AAAAAAAAAAADAkqtUyp4Ami53rAYAAAAAAAAAAAAAqp7FagAAAAAAAAAAAACg6lmsBgAAAAAAAAAAAACqnsVqAAAAAAAAAAAAAKDqWawGAAAAAAAAAAAAAKqexWoAAAAAAAAAAAAAoOpZrAYAAAAAAAAAAAAAqp7FagAAAAAAAAAAAACg6lmsBgAAAAAAAAAAAACqnsVqAAAAAAAAAAAAAKDqWawGAAAAAAAAAAAAAKpebdkDAAAAAAAAAAAAANA4KnU1ZY8ATZY7VgMAAAAAAAAAAAAAVc9iNQAAAAAAAAAAAABQ9SxWAwAAAAAAAAAAAABVz2I1AAAAAAAAAAAAAFD1LFYDAAAAAAAAAAAAAFXPYjUAAAAAAAAAAAAAUPUsVgMAAAAAAAAAAAAAVc9iNQAAAAAAAAAAAABQ9SxWAwAAAAAAAAAAAABVz2I1AAAAAAAAAAAAAFD1LFYDAAAAAAAAAAAAAFXPYjUAAAAAAAAAAAAAUPVqyx4AAAAAAAAAAAAAgMZRV6kpewRostyxGgAAAAAAAAAAAACoeiv8jtVjxozJkCFDMmnSpKy33no54IAD0qNHjxV9WgAAAAAAAAAAAACAxVZTqVQqS/vmxx57LD/84Q9TW1ub2267LauttlqD5y+55JL88Ic/zAdPscoqq+SGG25I//79l3roFaW21ZpljwAAAABAMzXjiavKHqF0HXp/u+wRmoS5dXVljwAAADQDNWUP0AQs9cIKwMfUnFnjyx6BKvHUJ3cvewSqwKYv3FL2CEulxbK8+e9//3sef/zxrL766gssVb/44os58sgjU1dXl0qlUv+YNm1avvzlL2fSpEnLcmoAAAAAAAAAAAAAgOVmmRar77vvvtTU1GTAgAELPHfhhRdm9uzZadOmTW644Ya88847ue6669KmTZu8/fbbufjii5fl1AAAAAAAAAAAAAAAy80yLVaPHz/vrx7YdNNNF3jupptuSk1NTQ499NDsvffead++ffbbb78cdthhqVQquf3225fl1AAAAAAAAAAAAAAAy80yLVa/+eabSZKOHTs2OD5+/Pj897//TZLsv//+DZ7bZZddkiTPPvvsspwaAAAAAAAAAAAAAGC5WabF6lmzZiVJpk+f3uD4/fffnyRp27ZtttlmmwbPdevWLUkybdq0ZTk1AAAAAAAAAAAAAMBys0yL1V26dEmS+rtTF+66664kybbbbpuWLVs2eO79999Pkqy66qrLcmoAAAAAAAAAAAAAgOVmmRart9pqq1QqlVx22WWpq6tLkrz11lu54YYbUlNTk/79+y/wnmIJu7hzNQAAAAAAAAAAAABA2ZZpsfqb3/xmkuT+++9Pnz59cuyxx2b77bfPO++8k9ra2nzjG99Y4D0PPvhgkmSjjTZallMDAAAAAAAAAAAAACw3tcvy5n322Sf77bdfhgwZkocffjiPPPJIKpVKkuT444/P2muv3eD1c+fOXeTdrAEAAAAAAAAAAABYcSqVmrJHgCZrmRark+Saa67JhRdemOuvvz6vv/56unfvnm9961v5zne+s9DXvvHGG0mSnXfeeVlPDQAAAAAAAAAAAACwXNRUiltMk9pWa5Y9AgAAAADN1Iwnrip7hNJ16P3tskdoEubW1ZU9AgAA0Ay4T2RiYQWgoTmzxpc9AlXin+vtUfYIVIHNXvx72SMslRZlDwAAAAAAAAAAAAAAULZGWayeOXNm3njjjdS5UwsAAAAAAAAAAAAA0AQt02L19OnTc9ttt+W2227L9OnTF3h+0qRJ2XfffdOhQ4f06NEjq6++eo499tjMmjVrWU4LAAAAAAAAAAAAALBc1S7Lm4cOHZrvfOc7WWeddfLCCy80eK6uri4DBgzI6NGjU6lUkiTTpk3L+eefn3HjxuW6665bllMDAAAAAAAAAAAAACw3y3TH6n/84x9Jkn333TctWjT8qGuvvTajRo1KkvTq1StHH310evXqlUqlkqFDh+aOO+5YllMDAAAAAAAAAAAAACw3y3TH6qeeeio1NTXZbrvtFnju6quvTpL07t07Dz74YGprazN79uz07ds3jz32WK666qp88YtfXJbTAwAAAAAAAAAAAAAsF8t0x+o333wzSbLuuus2OD579uyMGDEiNTU1+cEPfpDa2nn72yuttFIOO+ywVCqVPPLII8tyagAAAAAAAAAAAACA5WaZFqsnT56cZN7C9Ac9/vjjee+995IkAwYMaPDcRhttlCR5/fXXl+XUAAAAAAAAAAAAAADLzTItVrdp0yZJMnHixAbHR4wYkSRZf/31061bt4W+BwAAAAAAAAAAAACgqVimxer1118/SXLfffc1OH7jjTempqYm/fr1W+A9b775ZpKka9euy3JqAAAAAAAAAAAAAJZQpeLhseIfzdUyLVbvvPPOqVQqufDCC3P77bdn+vTp+e1vf5vHHnssSbLHHnss8J6xY8cmSXr06LEspwYAAAAAAAAAAAAAWG5ql+XNRx11VC6++OJMmzYtu+++e4PnNt5444UuVt96662pqanJdttttyynBgAAAAAAAAAAAABYbpbpjtXdu3fP3//+96yxxhqpVCr1j09+8pMZMmRIampqGrz+v//9b+6///4k8+52DQAAAAAAAAAAAADQFCzTHauTpG/fvnnxxRfzwAMP5PXXX0/37t3Tp0+f1NYu+NETJkzIySefnCTp16/fsp4aAAAAAAAAAAAAAGC5WObF6iRp1apVdtxxx498XZ8+fdKnT5/lcUoAAAAAAAAAAAAAgOWmRdkDAAAAAAAAAAAAAACUzWI1AAAAAAAAAAAAAFD1apfXB1UqlTz55JMZM2ZMJk2alPfeey+VSmWR7znllFOW1+kBAAAAAAAAAAAAAJbaclmsvvLKK3P66afn5ZdfXqL3WawGAAAAAAAAAAAAAJqCZV6sPvHEE3P22Wd/5N2pk6SmpmaxXgcAAAAAAAAAAAAA0JhaLMubH3nkkQwaNChJsvPOO+fJJ5/M6NGjk8xbop47d24mTZqUO+64I3vttVcqlUr69OmTCRMmpK6ubtmnBwAAAAAAAAAAAABYDpbpjtUXXXRRkmTdddfNrbfemtra2jz99NP1z9fU1KRjx47ZZZddsssuu+Siiy7KD3/4w3zxi1/MI488klatWi3b9AAAAAAAAAAAAAAstrpKTdkjQJO1THesfvDBB1NTU5MjjzwytbUfvaP9/e9/P/vuu2/Gjh2bCy+8cFlODQAAAAAAAAAAAACw3CzTYvWECROSJJtsssn8D2wx/yNnz569wHsOPPDAVCqVXHvttcty6o+dww79Vp579qFMn/rfPPLw7enzuW3KHqkUOmiQaJBo0LfPZ3PTjX/KuJdGZc6s8dlzz13LHqk01X4tJBokGhR00CDRoKCDBokG/plRgw9qDt8Pfxx6RzYf+IP88rLrP/Q1J/32qmw+8AcLPPY56owVOtt/Xh6f75z062z91aOy0yEn5OLrbkulUql//u6Hn8j3Thucft8+Ptt945gc8NNz88AT/1qhMy2pHj3WyBVXXJDXxo/NlMn/yaOP3JEtt9ys7LEalZ8J8zWHnwkrmgYaFHTQINEg0aCggwaJBoVq7nD88YfnoQdvzeS3ns34V8dkyJDLstFG65c9Vimq+TooaDCPDhokGgAw3zItVheL0127dq0/tsoqq9T/32+++eYC71l77bWTJM8///yynDp///vfc+qpp+ahhx5Kktx7773Zbbfd8sUvfjF/+MMflumzG9v++++ZX593WgadPThbbbNrRo58NLf8/c9Ze+0eZY/WqHTQINEg0SBJ2rVrm7Fj/5Ujf3RS2aOUyrWgQaJBQQcNEg0KOmiQaJD4Z8ZEg0Jz+H546rmXMuSuB7LRumsu8nU/OWj/3HvZoPrHnX84M6uu0i47b7flUp97/MS3svnAH3zo89PffS+Hnv7bdOm4Wv76y5/kp4d8OVfefHeuGnZP/WtGPf18tu356fz+xB/kmnN/mq033ShHDLoo/37hlaWea3labbVVM3z4DZk9e0723Oub2WLLL+QnPz0j77wztezRGpWfCfM0h58JK5oGGhR00CDRINGgoIMGiQaFau+wQ99tc9FFV6ZP3z0yYLevpbZlbW679a9p27ZN2aM1qmq/DhINCjpokGgAQEM1lQ/efmYJrb322nnttddy3333pW/fvkmSWbNmpV27dqmrq8udd96Z/v37N3jPbbfdlt133z2tWrXK+++/v1Tnvfjii3PEEUekZ8+eee6553LhhRfm+9//fr7yla+kZcuWueqqqzJo0KAcddRRS/S5ta0W/R+3VpQHR/49o594KocfcUL9sX+OvS/Dht2RE086u5SZyqCDBokGiQb/a86s8Rm430EZNuwfZY/S6FwLGiQaFHTQINGgoIMGiQb/q5r/mbFQzQ2a0vfDjCeuWuDYu++9n68ce3ZO/N5X84cht+dTn1grPzl4/8X6vHsfeTJHn3Npbr/o5+nRtVP98ZvueShX3HRnxk98Kz26dsrXd/t8vjqg30I/Y/zEtzLgsJMz9oYLF/r8tXf8Xwb/+eYMv+LstFpppSTJZTf8I3+77b7cdelZqampWej79jnqjOz6ud457Mu7NTjeofe3F+vXtjz94oyfZrvtt07//vs2+rk/zNy6ulLP72dC0/iZUBYNNCjooEGiQaJBQQcNEg0KTanDwn/H1bg6d+6YCa/9Mzt+YWBGjnyk0c+/1Asry6gpXQdl0WAeHTRImlaDObPGN+r5qF5Prrtn2SNQBbZ4eVjZIyyVZbpj9SabbJIkeeaZZ+qPtWrVqv74tddeu8B7/vKXvyRJevRY+j/RM3jw4Fx44YV5/PHHc9NNN+WQQw7J2WefnUsvvTQXX3xxLrzwwlxyySVL/fmNaaWVVkqvXpvnrrtHNDh+110jst22W5U0VePTQYNEg0QD5nMtaJBoUNBBg0SDgg4aJBrABzWH74czL702fXtvmm17fnqJ33vDPQ9m280/1WCpeshdI/Pbvw7LEd/YMzcNPiVHfmPP/P5vt+Tm4Q8v1Xxjnn0hvTfZsH6pOkm23+IzmTj5nYyf+NZC31NXV5cZ772fVVdpu1TnXN52333njB41Nn/9y0V5ZdwTeeTh23PQQV8reyxK0Bx+JqxoGmhQ0EGDRINEg4IOGiQaFHRY0KqrdkiSTJnydrmDNCLXgQYFHTRINABgQcu0WN23b99UKpUMHz68wfGvfOUrqVQqufzyy3PKKafk6aefzmOPPZbDDz88f/vb31JTU5MBAwYs9Xlfeuml7LrrrkmSHXfcMXPnzs0OO+xQ//znP//5vPzyy4v8jJkzZ2bq1KkNHstw8+6l1rlzx9TW1mbiG5MaHJ84cVK6rdG10ecpiw4aJBokGjCfa0GDRIOCDhokGhR00CDRAD6oqX8/3D7y8fz7hVdy1AF7LfF735z8Th4Y/a8M3OlzDY7/4frb8+NvD8xO226Ztbp1zk7bbpkD9/hChtx5/1LN+NbbU9NptfYNjhVfv/X21IW+58ph9+S992dll+17L9U5l7f11lsn3/veAXn+vy9l9z0OyKV//HN+fd7P841vNJ07WNM4mvrPhMaggQYFHTRINEg0KOigQaJBQYcFnXvuqRk58pE8/fSzZY/SaFwHGhR00CDRAIAF1S7Lm/fee++cfPLJueWWWzJ16tR06DDvTzIeddRRufTSS/PSSy/lzDPPzJlnntngfauvvnpOOOGEhX3kYunUqVNefvnlrLPOOnnttdcyZ86cjBs3LptuummS5OWXX07Hjh0X+RmDBg3K6aef3uBYTYtVUtOyw1LPtSz+d6m7pqamlEXvsumgQaJBogHzuRY0SDQo6KBBokFBBw0SDeCDmuL3w+uTJueXl12fS045Iq1brfTRb/gfNw9/KO3btckXtulZf2zyO9Py+qQpOe33f87pF/21/vjcuXOzSts29V/vc9QZee3NyUnmt/ns14+uf75Hl4658YKT67+u+Z+/fHp+ugX/Uurb7n8sF117awb/9LAFFrLL0qJFi4waNTannPLLJMmYMU/nMxtvlO9998D85S9DS56OMjTFnwmNTQMNCjpokGiQaFDQQYNEg4IO8wy+4MxstunG+fyO+5Q9SilcBxoUdNAg0QCA+ZZpsXqTTTbJ8OHDM2fOnMyZM6f+eNu2bTN8+PAccMABeeCBBxq8Z9NNN83VV1+dtdZaa6nPu9dee+Xggw/Ot771rQwbNizf/OY38+Mf/zgtWrRITU1NjjvuuOyyyy6L/IwTTjghxxxzTINjq3da8r+SdVlNmjQ5c+bMSbc1ujQ43qVLp0x8481Gn6csOmiQaJBowHyuBQ0SDQo6aJBoUNBBg0QD+KCm/P3wr/+Oy+R3puWrx51df2xuXV1G/ev5XHP7iDx+7eC0bLnwv0yuUqnkpnsfyu79PpuVVqptcDxJTv3+N7LZRp9o8J4WLeZ/1u9P/EHmzJ2bJJk4+e0cdPJvcv15829yUNuyZf3/3Wm1Dpn0P3emnvzOtP//XMPF6TtGPp7Tfv/n/OrYQ7Jtz8b/92gfZsLrE/PvZ55rcOyZZ57P3nvvVtJElKUp/0xoLBpoUNBBg0SDRIOCDhokGhR0mO8355+R3XffJV/oPzDjx08oe5xG5TrQoKCDBokGACxo4f/1Zgn069cv/fv3X+AO0euuu27uv//+/Pvf/86QIUNyzTXXZNSoURk7dmx69uz5IZ+2eH75y1+mX79+ueaaa9KrV69ceumlOfjgg7PXXntlwIAB6dSpUwYNGrTIz2jdunU6dOjQ4FFTs+BdeFa02bNnZ/Tosdmp/w4Nju+00w556OHHG32esuigQaJBogHzuRY0SDQo6KBBokFBBw0SDeCDmvL3w2c3/3SGnn9SrjvvZ/WPTdZfJ1/aYetcd97PPnSpOkkef/q5jJvwZvbpv32D451W65CuHVfLq29MyjrduzZ4rNWtc/3renTtVH+8e5dOSdLgtT26dqp/bc9PfTKj/vVcZs+ef9OEh578d7p2XDVrfuB1t93/WE7+3dU5++jvZIetNlvmPsvTQw89no02Wr/BsQ03/GTGjXu1pIkoS1P+mdBYNNCgoIMGiQaJBgUdNEg0KOgwzwW/+UX23ntAdtn1y3nppVfKHqfRuQ40KOigQaIBAAtapjtWL45PfepT+dSnPrVcP7Ndu3a59NJLGxw79thjc/jhh2f27Nlp375p/DWki+v8Cy7NlVdckFGjxuThR0bluwcfkHXWXjOX/OHqskdrVDpokGiQaJAk7dq1zQYbrFf/9XqfWCc9e26SyZOn5JVXXitxssblWtAg0aCggwaJBgUdNEg0SPwzY6JBoal+P7Rrs3I2XLdHg2NtVm6dVVdpV3/8gj/flDfeejtnHfXtBq+78Z4Hs9mGn1jg/Uny/a98Kb+87Lq0a7ty+vTaJLNmz8m/nh+XqTPezTf37L/Ec+7Wd+tcfN1tOel3V+WQgV/MuAkT88cb7sih++9WfxOC2+5/LCcNvjLHH7R/Nt9ovUya8k6SpHWrVmnfrs0Sn3N5Gzz4jxlx3405/vjDM3TILdlq6y1y8MFfzw9++JOyR2tUfibM01R/JjQmDTQo6KBBokGiQUEHDRINCtXe4beDz8pXv7p3Bu57UKZNm55u3ebdofWdd6bl/fffL3m6xlPt10GiQUEHDRINAGhohS9WN6aVV145K6+8cl555ZWceuqpufzyy8seabFcf/2wdOq4ek468eh07941Tz39bPbY88CMGze+7NEalQ4aJBokGiTJVr175p67h9R/fd6vTkuSXHnVdTn4kKNLmqrxuRY0SDQo6KBBokFBBw0SDRL/zJhoUGjO3w9vTpma1ydNaXBs2oz3cvdDT+T4g/df6Hv23flzWbl1q1x58105/6qb0mblVtlwnR45YPcvLNUM7du1ySWnHpGzLr02Xzv+7HRo1zYH7tG/wZL2kDtHZs7cupx16bU569Jr64/vueO2+cUR31yq8y5Po0aNyZe//N2cccZPc+LPjspLL72SY487Lddcc1PZozUqPxPmac4/E5YXDTQo6KBBokGiQUEHDRINCtXe4bDDvpUkufeeoQ2OH3zw0bnq6uvKGKkU1X4dJBoUdNAg0QCAhmoqlUql7CGWtzFjxqRXr16ZO3fuEr2vttWaK2giAAAAAD7uZjxxVdkjlK5D72+XPUKTMLeuruwRAACAZqCm7AGagI/dwgrAMpozyzI3jeOJdfYqewSqwJbjbi57hKWyWHesvuqqFfMfhb75zaW7o82wYcMW+fwLL7ywVJ8LAAAAAAAAAAAAAFSnxbpjdYsWLVJTs3z/rGRNTU3mzJmzVO8t5lnU6DU1Ne5YDQAAAECjccdqd6wuuGM1AACwONyx2h2rAf6XO1bTWNyxmsbQXO9Y3WJxX1ipVJb7Y2l17949Q4cOTV1d3UIfo0ePXurPBgAAAAAAAAAAAACqT+3ivOjFF19c0XMskd69e2f06NHZe++9F/r8R93NGgAAAAAAAAAAAADggxZrsXrddddd0XMskeOOOy4zZsz40Oc32GCDDB8+vBEnAgAAAAAAAAAAAACas8VarG5q+vbtu8jn27Vrl379+jXSNAAAAAAAAAAAAABAc9ei7AEAAAAAAAAAAAAAAMq2RIvVDz/8cAYOHJiBAwdmyJAhS3Si66+/vv69o0aNWqL3AgAAAAAAAAAAAACsSEu0WH3UUUfl5ptvzrhx47Lnnnsu0Yn22muvjBs3LjfffHOOPvroJXovAAAAAAAAAAAAAMCKtNiL1Y888kgee+yxJMngwYPTqlWrJTpRq1at8tvf/jaVSiUPPPCAu1YDAAAAAAAAAAAAAE3GYi9WX3fddUmSPn36ZPvtt1+qk2233Xbp169fkuSaa65Zqs8AAAAAAAAAAAAAAFjeahf3hQ899FBqamqy1157LdMJ99xzz4wYMSIPPvjgMn0OAAAAAAAAAAAAAEumUil7Ami6FvuO1f/973+TJJttttkynXDTTTdt8HkAAAAAAAAAAAAAAGVb7MXqt99+O0nSpUuXZTph8f7i8wAAAAAAAAAAAAAAyrbYi9Xt2rVLkkydOnWZTjht2rQkSZs2bZbpcwAAAAAAAAAAAAAAlpfFXqwu7jT9/PPPL9MJi/cv652vAQAAAAAAAAAAAACWl8VerN5yyy1TqVRy2223LdMJb7311vrPAwAAAAAAAAAAAABoChZ7sXrXXXdNktx888156qmnlupkTz31VG666abU1NTUfx4AAAAAAAAAAAAAQNkWe7H6K1/5Srp165a6urrsu+++efPNN5foRJMmTcq+++6burq6dOnSJV/96leXeFgAAAAAAAAAAAAAgBVhsRer27ZtmzPOOCOVSiXPP/98tthii9x4442L9d6bbropW265ZZ577rnU1NTk5z//edq2bbvUQwMAAAAAAAAAAAAALE+1S/LiQw45JKNHj87FF1+c119/Pfvtt1/WWWed7LbbbunVq1e6deuWdu3aZcaMGXnjjTcyevTo3H777Xn55ZdTqVSSJN/73vfyve99b4X8YgAAAAAAAAAAAAAAlsYSLVYnye9///usscYaOeOMMzJ37tyMGzcuF1988SLfU6lU0qJFi5x00kk59dRTl3pYAAAAAAAAAAAAAIAVocWSvqGmpiannHJKHn300ey7775p0aJFKpXKhz5atGiR/fbbL48++mhOO+201NTUrIhfBwAAAAAAAAAAAADAUlviO1YXttxyy1x//fWZOnVqRo4cmTFjxmTSpEmZNm1a2rdvn86dO6dnz57p06dPOnTosDxnBgAAAAAAAAAAAGAp1FXcIBc+zFIvVhc6dOiQ3XbbLbvtttvymAcAAAAAAAAAAAAAoNG1KHsAAAAAAAAAAAAAAICyWawGAAAAAAAAAAAAAKqexWoAAP4fe3ceLmVd/3/8NXAAAQERZFVz1zD3NRXNJU1SEk3TNDX3cvdnGmm5lGup4ZK5lILmngu5lbuRO5ZroWl+URaRTRTZz/z+oDl4BJT13Oc0j8d1zXV57rln7jfP654znOHjfQAAAAAAAAAAoOpZWA0AAAAAAAAAAAAAVD0LqwEAAAAAAAAAAACAqmdhNQAAAAAAAAAAAABQ9SysBgAAAAAAAAAAAACqnoXVAAAAAAAAAAAAAEDVs7AaAAAAAAAAAAAAAKh6FlYDAAAAAAAAAAAAAFWvpugBoDFqVioVPULhasvlokeARqN5M/8f0qza2qJHAABotPwEOZufIpO2Gx1Y9AiF++RfdxU9QqPQZp1+RY8AjYL3yNm8RwIA8+PvCQBAUcpln9zA/CzQwupBgwYtlYMfeKB/bAIAAAAAAAAAAAAAirdAC6sPPvjglJbwFXxLpZKF1QAAAAAAAAAAAABAo7BAC6uTpFz2S2gAAAAAAAAAAAAAgP9NC7Sw+j//+c/SngMAAAAAAAAAAAAAoDALtLD6S1/60tKeAwAAAAAAAAAAAACgMM2KHgAAAAAAAAAAAAAAoGgWVgMAAAAAAAAAAAAAVc/CagAAAAAAAAAAAACg6tUsqSd66623Mnjw4Lz00ksZO3ZspkyZknK5PN/9S6VSHnnkkSV1eAAAAAAAAAAAAACARbbYC6s/+eSTHH300bnhhhvmWkhdLpdTKpXm2pZkru0AAAAAAAAAAAAAAEVZrIXV5XI5/fr1y8MPP5xyuZzOnTtnxRVXzD/+8Y+USqX07t07EyZMyLBhwzJjxoyUSqWsvfba6dat25KaHwAAAAAAAAAAAABgsS3Wwurbb789Dz30UEqlUs4444z89Kc/zeuvv571118/SfLEE08kSSZPnpxrr702P/3pTzN+/Phcc8012WabbRZ/egAAAAAAAAAAAAAWWG25VPQI0Gg1W5wH33TTTUmSr371qznjjDPSrFmzlEpzv+Datm2b448/Po888kg++uij7Lnnnhk5cuTiHBoAAAAAAAAAAAAAYIlZrIXVL7zwQkqlUg4//PAF2n+zzTbLD37wg4wdOzaXXnrp4hwaAAAAAAAAAAAAAGCJWayF1WPHjk2SrLbaanXbWrRoUfffU6ZMmesx3/zmN5Mk99577+IcGgAAAAAAAAAAAABgiVmshdU1NTVJknbt2tVt+/R/jx49eq7HdOjQIUny7rvvLs6hAQAAAAAAAAAAAACWmMVaWN2jR48kyQcffFC3rVu3bmndunWS5MUXX5zrMf/+97+TJDNnzlycQwMAAAAAAAAAAAAALDGLtbB6gw02SJK88sorddtKpVK22GKLJMlvfvObevvPnDkzl1xySZJkzTXXXJxDAwAAAAAAAAAAAAAsMYu1sHqHHXZIuVzOgw8+WG/7IYccknK5nMcffzzbbbddrrjiivzyl7/MFltskeeeey6lUin77LPPYg0OAAAAAAAAAAAAALCklMrlcnlRHzx69Oj07NkzzZo1y7Bhw7LaaqvV3denT588+OCDKZVK9R5TLpez0UYb5W9/+1uWWWaZRZ98Kahp2bPoEWgkmn3mvK1GtYv+rQH+5zRvtlj/H9L/hFm1tUWPAADQaPkJcjY/RZIkn/zrrqJHaBTarNOv6BGgUfAeOZv3SAAAABbUzOkjih6BKvFsjz2LHoEqsMXIO4seYZEs1kqxbt26ZcaMGZk6dWq9RdVJctddd+W0005L165dUy6XUy6X06FDhxx99NF57LHHGt2iagAAAAAAAAAAAACgei3WFasX1Pjx4zNz5syssMIKc13BujFxxWoqXLHaFavh01yx2hWrAQA+j58gZ/NTJIkrVle4YjXM5j1yNu+RAAAALChXrKahuGI1DaGpXrG6piEOsvzyyzfEYQAAAAAAAAAAAAAAFkmDLKwGAAAAAAAAAAAAoHh+wxbMX7OiBwAAAAAAAAAAAAAAKNpiXbF6hx12WOTHlkqlPPLII4tzeAAAAAAAAAAAAACAJWKxFlY//vjjKZVKKZfnf2H4UqlU7+vKvp/dDgAAAAAAAAAAAABQlMVaWL3tttt+4QLpyZMn580338yHH36YUqmUtdZaK927d1+cwwIAAAAAAAAAAAAALFGLfcXqBVEul3Pffffl+OOPz/jx43Pttddmm222WZxDAwAAAAAAAAAAAAAsMc0a4iClUim77bZbhgwZkubNm6dfv34ZMWJEQxwaAAAAAAAAAAAAAOALNcjC6oru3bvnpJNOyrhx43LhhRc25KEBAAAAAAAAAAAAAOarQRdWJ8k222yTJLnvvvsa+tAAAAAAAAAAAAAAAPPU4AurW7ZsmSQZOXJkQx8aAAAAAAAAAAAAAGCeGnxh9ZAhQ5Ikbdq0aehDAwAAAAAAAAAAAADMU4MurH766adz9tlnp1QqZfPNN2/IQzdqvbfZInffdX2GvzM0M6ePSN++uxQ9UmGOOvKgvDns6Xw86a08+8wD2Wbr6jlPfnr6SZk+7b16t+H/92LRYxWims+Dimpv4PvibD16dMt11w3IyBEvZ8L4N/Lcsw9mo43WK3qsBlftr4dEgwodNEg0qNBBg0QDf2dMTjnlmDz91H0ZP25YRrz3Uu6443dZa63Vix6rENX+ekiaToNrbx2c9Xb9Xi747Y2fu9+9j/4te/3wJ9lsj0Oz/XePyekXX52Jkz5aqrO98Z93c/CPfpFNv3VIdjzguFz5h7tSLpfr7n/4b8/n8J+cn22/88Nsuefh2f/Es/K3oS8v1ZkWRVM5F5amam/gPdJ75KdV++sh0SDRINGgQgcNEg0qdNAg0SDRoEIHDRINAJhjsRZWn3322V94O/PMM3P88cdn6623Tu/evTNhwoQkyYknnrhYg0+ZMiW///3vc8ghh2TXXXfNbrvtlmOPPTaPPPLIYj1vEdq2bZOXX349x51wetGjFGrvvfvm4ovOzHnnX5pNN98lQ4Y8l3v/dGNWWqlH0aM1mNde+1dWWnmjutvGm+xU9EgNznmgQeL7YpIst1yHPPbYnZkxY2b6fuvAbLjRDjn1xz/Phx9OKnq0BuX1oEGFDhokGlTooEGiQeLvjEmybe8tc+WVA7NN792za5/9UtO8Jvffd1PatGld9GgNyuuh6TR4ddjbueOBx7LWqit97n4vvjosp110VfbcZbvc9dvzctFPjs1rb7ydM379u0U+9oj3P8h6u35vvvd/PHlKjjjtgnTp1DE3Dzgr/X/wvQz84/0ZdOcDdfsMfWVYvrrRV/Kbs0/OrZf9PJtv8OUcc+bF+ee/31nkuZa0pnIuLE0aeI9MvEdWeD1okGiQaFChgwaJBhU6aJBokGhQoYMGiQZUp9pyyc1tqd+aqlL505ddWUjNmjVLqbTgf/hyuZyamppceOGFOeGEExb1sPn3v/+dnXbaKR9//HFatmyZ0aNHp0+fPhk7dmxeeOGF7LnnnrnppptSU1OzUM9b07LnIs+0pMycPiJ7fvuQDB7856JHaXBPDflTXvz7qznm2P512155+fEMHvxgTjv9/AadpdlCnNdLyk9PPyl9++6SzTZvHFeQqV30bw2LpTGdB0XRoL7G8H2xebMG/QUPSZJf/PzH+epWm2XHHfdq8GPPy6za2kKO6/WgQYUOGiQaVOigQaLBZxX9d8bG8rFQ587LZ9TIV7L9DntmyJBnG/z4xfwU6fWQNK4Gn/zrrnlvnzI1+xz705x29EG5+uZ7ss5qX8qpRx0wz32vv+O+3Hrfo3nguovqtv3hnr/kujvuy8M3DKjbdtdfnsx1d9yXEaM/SI+unbP/t3bOvrvN+39SH/H+B/nGwSfllQdumOf9t977cAZcf3sev+nytGzZIkly7W1/ys2DH8rDNwyY72egexz54+yy7Rb5wf796m1vs06/ee6/tDWmc6EoGtTnPXI275HV+3rQQINEgwodNEg0qNBBg0SDRIMKHTRIGleDmdNHNOjxqF5PdW8c61H437bVqD8WPcIiWeyVYuVy+XNvSdKuXbusv/76Oe644/KPf/xjsRZVJ8lxxx2Xb3zjGxkzZkxGjhyZc889N7W1tXnmmWfyz3/+M88//3x+8YtfLO4fjQbUokWLbLzx+nno4SfqbX/ooSfy1S03LWiqhrfGGqvmnf+8kGHDnsqNN1yRVVddueiRGpTzQAPm2G23r+fFoS/npj9cmXeH/z3PPvNADjlkv6LHalBeDxpU6KBBokGFDhokGjB/HTq0T5JMmDCx2EEakNdD02lwzhUD03uzDfLVjb7yhftu2GvNvD92fJ587h8pl8sZO+HDPDTkuWy7+YZ1+9zxwGO5bODtOe6gb+eeq8/P8QfvncsH/TH3PPTXRZrvpX/9O5ust07douok2Xrj9TJm3ISMeP+DeT6mtrY2k6dMTYd2yy7SMZe0pnIuLE0aMD/eI+eopteDBhokGlTooEGiQYUOGiQaJBpU6KBBogEAc1u4Szp/Rm1BV6984okn8o9//CPN/nsF0ZNOOik/+9nPMm7cuKy55pr59a9/nRNOOCFnnnnmfJ9j2rRpmTZtWr1t5XJ5oa7AzZLTufPyqampyZj3x9bbPmbM2HTt1qWgqRrWc8//PYccckLefPPtdOnaOf1/fHyeePzubLjRDhk/fmLR4zUI54EGzLHqqivniCMOyIBLr80FF16ezTbbMBdfdHamTZueP/yhaf7fXAvL60GDCh00SDSo0EGDRAPm75e/PCNDhjyb114bVvQoDcbroWk0eODxp/P6W+/klgFnLdD+G/ZaK+ef8oP86PwrMn36jMycNStf23Lj9P/B9+r2uerme3Ly4d/NTltvliRZsVuXvDV8RG5/4NF86+u9F3rGseM/TI+unett69Sxw+z7JnyYFefRcuCdD2TK1GnZZdvNF/p4S0NTOBeWNg2YH++Rc1TT60EDDRINKnTQINGgQgcNEg0SDSp00CDRAIC5LdbC6qIst9xy+eijj+q+/uSTTzJz5sy0bNkySbL++utn1KhRn/sc5513Xs46q/4/5pSaLZtS8/ZLfmAWWOUq5xWlUmmubf+r/vznx+Z88VryzDND869//i3f+97eGTDgmuIGK0A1nwcVGtCsWbMMHfpyfvazC5IkL730Wnp9ea0ccfj3qmZhdYXXgwYVOmiQaFChgwaJBtR36YBzst5Xvpyvbd+v6FEK4fXQeBuM/mBczr/qxlx9zilp9d/P7r7IW/83Iuf/9oYc9d09stUm62Xs+Im56Npb8vPLrsvZJx6e8RMnZfQH43LGr6/NmQN+V/e4WbNqs2zb1nVf73HkjzNyzH//Qey/LTbvd1jd/T26dM7dV835Va6fveBCpV8pc1+I4f7Hn86VN96ZAWecmE7LdVigP1dDaaznQkPSgE/zHun1oIEGiQYVOmiQaFChgwaJBokGFTpokGgAwBxNcmH117/+9Zx00kn57W9/m1atWqV///7ZcMMN065duyTJ8OHD06XL5/8fQ/37989JJ51Ub1vHTusstZn5fGPHjs/MmTPTtdsK9bavsEKnjJnPr1v9X/fJJ1Py6mv/yhprrFr0KA3GeaABc4waPSb//Neb9bb961//zh579Clooobn9aBBhQ4aJBpU6KBBogFz+/UlP89uu+2cHXbcMyNGfP7/aP6/xuuh8Td47c3/ZPzESfnOsT+r2zartjZDXx2Wm//0UIYOvi7Nmzer95hrb/tTNuy1Zr7/7W8mSdZedeW0btUqB/3oFzn2oL3rFkCfcdwhWX+dNeo9tlmzOYugf3P2yZk5a1aS5P2x43PIqefmjivOqbu/pnnzuv/uvHyHjJ3wYb3nGj9xUpKkU8f6F2J48Ilncsavr81FPzk2X93oKwsXZClq7OdCQ9CAz/IeWd2vBw00SDSo0EGDRIMKHTRINEg0qNBBg0QDAObW7It3+ZwHN2uWmpqavP766wv8mLfeeqvucYvqwgsvzLRp09KrV6+sscYaefbZZ/O73825Os0HH3yQH/3oR5/7HK1atUr79u3r3T57VRoazowZM/Liiy9npx23rbd9p522zdPPvFDQVMVq2bJl1ll7zYweNaboURqM80AD5nj66Rey1lqr19u25pqrZfjw9wqaqOF5PWhQoYMGiQYVOmiQaEB9A379i+yxx67ZeZd98s477xY9ToPzemj8DbbccN3ceeW5uf2KX9Td1l1z1Xxz+61y+xW/mGtRdZJMnTYtzZrV397sv/uVy+V07tghXTp1zHujP8jKPbrWu634qV/P2qNr57rtPbp2TpJ6+1a2JckG66yRoa/+KzNmzKzb9tSLr6ZLp47p2XXOP6rd//jTOf3iq3P+KT/ItptvuEQaLSmN/VxoCBrwad4jvR400CDRoEIHDRINKnTQINEg0aBCBw0SDQCY22JfsXpRf+XB4vyqhC5duuTpp5/Om2++mWnTpmWdddapt1D729/+9iI/dxHatm1T76rEq66ycjbYYN2MHz8h7747ssDJGtYlA67JwOsGZOjQl/LMs0Nz+KEHZOWVeuaqq28oerQGcf75p+e++x7Ou++OyAordM5P+h+X9u2XzQ033l70aA2q2s+DRIPE98UkufTSa/PE43fllFOOyR/vuDebbrZhDj30u/nh0acWPVqD8nrQoEIHDRINKnTQINEg8XfGJLns0nOz7757ZM+9DslHH32crv9d/Pnhhx9l6tSpBU/XcLweGneDtm1aZ81VVqq3rfUyrbJcu2Xrtv/6ulszZtyEnHvyUUmS7bbYKGcN+H1uvffhbLXJ+hk7fmIuuOrGrLf2aunSqWOS5IcH7Jnzf3tDlm3TOttsun6mz5iZ1978TyZ9PDkH7bnrQs/ZZ/utcuVNd+e0i6/O4d/ZPcNHvJ9rbx2co767R93FGO5//Omc9qurcupRB2SDddbI2PETkyStWrVMu7ZtFjXREtWYz4WGooH3yMR7ZIXXgwaJBokGFTpokGhQoYMGiQaJBhU6aJBoAEB9i72wemFVFlQviatDr7nmmvPc/u677+aMM87I73//+8U+RkPYdJMN8sjDd9R9fdGvzkySDBx0Ww497MSCpmp4t98+OJ2W75jTTzsx3bt3yauvDcvufb+X4cNHFD1ag1ixZ/fcMOjydO68fD74YHyee+7F9O7dt2r+/BXVfh4kGiS+LybJ0KEvZZ99Ds/Pf/7jnPaT4/POO+/m5B+dmVtuubvo0RqU14MGFTpokGhQoYMGiQaJvzMmyVFHHZQkefSRP9bbfuihJ2bQDbcVMVIhvB6afoMPxk/MqDHj6r7e4+vbZvInU3Pznx7Or669Oe3atsnmG/TKiYd8p26fvb7xtSzTqmWuv+P+XPy7W9J6mVZZc5UV8709vrFIM7Rr2yZXn3NqzvnNwOx73Blpv2ybHLjnN3LgpxZp337/o5k5a1bOuWJgzrliYN32vjttk3P+35GLdNwlramfC0uCBt4jE++RFV4PGiQaJBpU6KBBokGFDhokGiQaVOigQaIBAPWVyotx6ehmzZqlVCrllVdeSa9evRboMc8++2y++tWvpl27dvnwww8X9dCf66WXXsrGG2+cWbNmLdTjalr2XCrz0PQ0WwIL/5u62sW4qjz8r2nebO5fTV1tZtXWFj0CAECj5SfI2fwUSZJ88q+7ih6hUWizTr+iR4BGwXvkbN4jAQAAWFAzp1vMTcN4qvteRY9AFdhq1B+/eKdGaIlcsXpBrz49efLkXHbZZUmS1VdffZGPN3jw4M+9/+23317k5wYAAAAAAAAAAAAAqs9CLaxebbXV5rl95513TosWLT73sdOmTcuYMWNSW1ubUqmU3XfffWEOXc8ee+yRUqmUz7vY9oIu9gYAAAAAAAAAAAAAWKiF1e+8885c28rlckaMWLhfQbDlllvmlFNOWajHfFr37t1zxRVXZI899pjn/f/4xz+yySabLPLzAwAAAAAAAAAAAPwvKpdduBbmZ6EWVh900EH1vh44cGBKpVL69u2b5ZZbbr6PK5VKWWaZZdK9e/dstdVW2WGHHRbritKbbLJJXnzxxfkurP6iq1kDAAAAAAAAAAAAAHzaQi2svu666+p9PXDgwCTJOeeck169ei25qb7Aj370o0yePHm+96+xxhp57LHHGmweAAAAAAAAAAAAAKBpW6iF1Z91xhlnJEm6dOmyRIZZUL179/7c+9u2bZvtttuugaYBAAAAAAAAAAAAAJq6JbKwGgAAAAAAAAAAAACgKWtW9AAAAAAAAAAAAAAAAEVbrIXVf//739O8efO0bt06I0aM+ML9R4wYkWWWWSY1NTV5/fXXF+fQAAAAAAAAAAAAAABLzGItrL711ltTLpez2267pWfPnl+4f8+ePdO3b9/U1tbmlltuWZxDAwAAAAAAAAAAAAAsMYu1sPrxxx9PqVTKrrvuusCP+eY3v5kkefjhhxfn0AAAAAAAAAAAAAAAS8xiLax+9913kyS9evVa4MesvfbaSZL33ntvcQ4NAAAAAAAAAAAAALDELNbC6nHjxiVJlllmmQV+TKtWrZIkY8aMWZxDAwAAAAAAAAAAAAAsMYu1sLpjx45JkuHDhy/wYypXqm7fvv3iHBoAAAAAAAAAAAAAYImpWZwH9+rVK2PGjMngwYPTt2/fBXrMXXfdlSRZe+21F+fQAAAAAAAAAAAAACyk2qIHgEZssa5Y3adPn5TL5QwaNCh//etfv3D/J598MjfccENKpVJ22223xTk0AAAAAAAAAAAAAMASs1gLq4888sh07tw5s2bNSp8+fXLZZZdl6tSpc+03derUXHrppfnmN7+ZWbNmpWPHjvnBD36wOIcGAAAAAAAAAAAAAFhiahbnwcsuu2xuuumm9OnTJ5988klOOOGE/OQnP8mmm26a7t27p1QqZeTIkXnhhRfyySefpFwup0WLFrn55pvTvn37JfVnAAAAAAAAAAAAAABYLIu1sDpJdtppp/z5z3/OAQcckFGjRmXy5Ml58skn6+1TLpeTJD179swNN9yQr33ta4t7WAAAAAAAAAAAAACAJWaxF1Ynyfbbb5+33norgwYNyn333Ze///3vGTt2bJKkc+fO2XjjjbP77rvngAMOSKtWrZbEIQEAAAAAAAAAAAAAlpglsrA6SZZZZpkcccQROeKII5bUUwIAAAAAAAAAAAAANIhmRRz0+eefz7HHHlvEoQEAAAAAAAAAAAAA5tJgC6vfe++9nHfeeenVq1e23HLL/OY3v2moQwMAAAAAAAAAAAAAfK6apfnkkydPzh133JFBgwbliSeeSLlcTpKUy+WUSqWleWgAAAAAAAAAAAAAgAW2xBdWl8vlPPzwwxk0aFDuvvvufPLJJ3Xbk2TFFVfMnnvumb322mtJHxoAAAAAAAAAAAAAYJEssYXVr732WgYOHJibbropo0aNSjJnMfXKK6+cvffeO9/+9rezxRZbLKlDAgAAAAAAAAAAAAAsEYu1sPqDDz7IH/7whwwaNCgvvfRSkjmLqZdbbrlMnDgxpVIpF154YfbZZ5/FnxYAAAAAAAAAAACARVZOqegRoNFa6IXV06ZNyz333JNBgwblL3/5S2bNmlW3mLpVq1bp06dPDjjggPTp0yetW7de4gMDAAAAAAAAAAAAACxpC7ywesiQIRk0aFBuv/32TJo0Kcnsq1OXSqX07t07BxxwQPbZZ5906NBhqQ0LAAAAAAAAAAAAALA0LPDC6m233TalUqnu6tS9evXK/vvvn/333z8rr7zyUhsQAAAAAAAAAAAAAGBpW+CF1RXt2rXLgAEDcvDBBy+FcQAAAAAAAAAAAAAAGl6zhdm5XC7n448/zqGHHpr1118/F154Yd57772lNRsAAAAAAAAAAAAAQINY4IXVf/3rX3PYYYelQ4cOKZfLefXVV9O/f/+sssoq2X777fP73/8+kyZNWpqzAgAAAAAAAAAAAAAsFQu8sHrrrbfO1VdfndGjR+fWW29Nnz590rx589TW1ubJJ5/M4Ycfnm7dumXvvffO4MGDM3PmzKU5NwAAAAAAAAAAAADAErPAC6srWrZsmb333jv33ntvRowYkYsuuijrr79+yuVypk6dmjvvvDP9+vVL165dl8a8AAAAAAAAAAAAAABLXKlcLpeXxBO9+uqruf7663PzzTdn1KhRs5+8VEqSdO/ePXvttVe+/e1vp3fv3kvicEtFTcueRY8AAAAAADRxn7xxT9EjFK7NWt8qegQAoJEqFT1AI7BE/oEeAPifNHP6iKJHoEo82W3vokegCmw7+vaiR1gkS2xhdUVtbW3+8pe/ZNCgQbnnnnsyZcqU2Qf67yLrLl26pF+/ftlrr72y4447LslDLzYLqwEAAACAxWVhtYXVAMD8WVhtYTUAMH8WVtNQLKymIVhYPQ8fffRRbr311txwww0ZMmRIKocqlUoplUqZOXPm0jr0IrGwGgAAAABYXBZWW1gNAMyfhdUWVgMA82dhNQ3FwmoaQlNdWF2zNJ+8Xbt2Oeyww3LYYYflnXfeyaBBg3LjjTfm3//+99I8LAAAAAAAAAAAAADzUOv/9oP5atZQB1pllVXys5/9LG+88Ub++te/5vDDD2+oQwMAAAAAAAAAAAAAfK6lesXq+dl6662z9dZbF3FoAAAAAAAAAAAAAIC5NNgVqwEAAAAAAAAAAAAAGisLqwEAAAAAAAAAAACAqmdhNQAAAAAAAAAAAABQ9SysBgAAAAAAAAAAAACqnoXVAAAAAAAAAAAAAEDVs7AaAAAAAAAAAAAAAKh6FlYDAAAAAAAAAAAAAFXPwmoAAAAAAAAAAAAAoOpZWA0AAAAAAAAAAAAAVL2aogcAAAAAAAAAAAAAoGHUplT0CNBouWI1AAAAAAAAAAAAAFD1LKwGAAAAAAAAAAAAAKqehdUAAAAAAAAAAAAAQNWzsBoAAAAAAAAAAAAAqHoWVgMAAAAAAAAAAAAAVc/CagAAAAAAAAAAAACg6llYDQAAAAAAAAAAAABUPQurAQAAAAAAAAAAAICqZ2E1AAAAAAAAAAAAAFD1LKwGAAAAAAAAAAAAAKqehdUAAAAAAAAAAAAAQNWrKXoAAAAAAAAAAAAAABpGOaWiR4BGyxWrAQAAAAAAAAAAAICqZ2E1AAAAAAAAAAAAAFD1LKwGAAAAAAAAAAAAAKqehdUAAAAAAAAAAAAAQNWzsBoAAAAAAAAAAAAAqHoWVgMAAAAAAAAAAAAAVc/CagAAAAAAAAAAAACg6jXZhdWTJ0/ONddck+9///vZdddd06dPn3z/+9/Ptddem8mTJxc93kI76siD8uawp/PxpLfy7DMPZJutNy96pELooEGiQaJBhQ4aJBokGlTooEGiQYUOGiQaJBpU6KBB7222yN13XZ/h7wzNzOkj0rfvLkWPVIimch5ce8s9WW+X/XPBlTd87n73Pvq37HVU/2zW9/vZfr+jc/qvrsrESR8t1dne+M/wHHzyz7Pp7gdnx+8ekytvvDPlcrnu/oeHPJ/Df3xett3nqGzZ79Dsf8IZ+dsLLy/VmRZFUzkXliYNNPDeMJsOs1X76yHRoKKaO5xyyjF5+qn7Mn7csIx476XcccfvstZaqxc9ViGq+Tz4NB00SDRINKjQQYNEAwDmaJILq19//fWstdZaOeWUUzJhwoSsvPLKWXHFFTNhwoT86Ec/ytprr53XX3+96DEX2N57983FF52Z886/NJtuvkuGDHku9/7pxqy0Uo+iR2tQOmiQaJBoUKGDBokGiQYVOmiQaFChgwaJBokGFTpokCRt27bJyy+/nuNOOL3oUQrTVM6DV4e9lTvufyxrrbry5+734qvDctovr8ye39gud119QS467bi89sbbOeOSaxf52CNGf5D1dtl/vvd/PPmTHNH//HTp1DE3X/bz9P/hQRn4x/sy6I/31+0z9JV/5asbfyW/+fmPcuvl52Tz9XvlmDN+lX/++51FnmtJayrnwtKkgQaJ94YKHbweEg0qqr3Dtr23zJVXDsw2vXfPrn32S03zmtx/301p06Z10aM1qGo/Dyp00CDRINGgQgcNEg0AqK9U/vQlR5qI7bffPt26dcvAgQPTsmXLevdNnz49Bx98cEaNGpXHHntsoZ63pmXPJTnmAntqyJ/y4t9fzTHH9q/b9srLj2fw4Adz2unnFzJTEXTQINEg0aBCBw0SDRINKnTQINGgQgcNEg0SDSp00OCzZk4fkT2/fUgGD/5z0aM0qMZ2Hnzyxj1zb5syNfscfVpOO+b7ufrmu7POal/KqT/43jwff/3t9+XW+x7OA9dfUrftD/f8Odfddm8e/sNlddvu+vMTue72ezNi9Afp0bVz9t9jl+y7+9fn+ZwjRn+Qbxx0Ql758x/mef+tf3o4A667NY/f8pu0bNkiSXLtrYNz8z1/ycN/uCylUmmej9vj8FOyy3Zb5gcH7Flve5u1vjXP/Ze2xnYuFEEDDT6rWt8bPqtaO3g9aFDRmDrM+28VDatz5+UzauQr2X6HPTNkyLMNfvyi/oG+MZ0HRdJBg0SDRIMKHTRIGleDmdNHNOjxqF6PdP1O0SNQBXZ8/9aiR1gkTfKK1c8++2x++tOfzrWoOklatmyZn/zkJ3n22Yb/AXhRtGjRIhtvvH4eeviJetsfeuiJfHXLTQuaquHpoEGiQaJBhQ4aJBokGlTooEGiQYUOGiQaJBpU6KABszWV8+Ccy69P7803zFc3/soX7rthrzXz/tjxefK5f6RcLmfshA/z0F+fy7abb1i3zx33P5rLrr8txx28T+659sIc//3v5PKBd+Seh55cpPle+ueb2WS9deoWVSfJ1pusnzHjJmTE+x/M8zG1tbWZPGVqOrRbdpGOuaQ1lXNhadJAA/g0rwcNKnSYW4cO7ZMkEyZMLHaQBuQ8mE0HDRINEg0qdNAg0QCAudUUPcCi6NixY95888306tVrnvf/+9//TseOHT/3OaZNm5Zp06bV21Yul+d75ZWlpXPn5VNTU5Mx74+tt33MmLHp2q1Lg85SJB00SDRINKjQQYNEg0SDCh00SDSo0EGDRINEgwodNGC2pnAePPD403n93//JLZf9fIH233DdtXL+qT/Mj869LNOnz8jMWbPytS03Tv+jD6rb56qb7s7JR+yfnbbZLEmyYrcueWv4e7n9vkfzra9vu9Azjp0wMT26rlBvW6eOHWbfN/7DrDiPlgP/eH+mTJ2WXbbbYqGPtzQ0hXNhadNAA/g0rwcNKnSY2y9/eUaGDHk2r702rOhRGozzYDYdNEg0SDSo0EGDRAOqV23RA0Aj1iQXVh9++OE56KCDcvrpp+frX/96unbtmlKplNGjR+ehhx7KueeemxNOOOFzn+O8887LWWedVW9bqdmyKTVvvxQnn79yuf4vfCqVSnNtqwY6aJBokGhQoYMGiQaJBhU6aJBoUKGDBokGiQYVOmjAbI31PBg9ZlzOv3JQrj73x2k1j9/ANy9v/d97Of83g3LU/v2y1SbrZ+z4ibno2pvy80t/n7NPOiLjJ07K6A/G5YxLrsmZv7627nGzZtVm2bat677e4/BTMnLMf/9R8L8pNv/WIXX39+jSOXdfc2Hd15+96ESl37yuRXH/Y0/lyhvuzIAzT0qn5Tos0J+roTTWc6EhaaABfJrXgwYVOsx26YBzst5Xvpyvbd+v6FEK4TyYTQcNEg0SDSp00CDRAIA5muTC6jPPPDOtW7fOxRdfnFNOOaXuA/9yuZxu3brlxz/+cU455ZTPfY7+/fvnpJNOqretY6d1ltrM8zN27PjMnDkzXbvVvxrMCit0ypj5/IrN/0U6aJBokGhQoYMGiQaJBhU6aJBoUKGDBokGiQYVOmjAbI39PHjt3//J+ImT8p1jTq/bNqu2NkNf+VduHvyXDL13YJo3b1bvMdfeOjgbrrtWvr/3bkmStVdbOa2XaZWD/t/ZOfagvVNqNnv/M044LOuvvXq9xzb71HP95hc/ysyZs5Ik74+bkEN+9Ivc8Ztz6+6vqWle99+dOy6XseMn1nuu8RMnJZlz5eqKBx9/Omdcck0uOu24fHXjryxUj6WpsZ8LDUEDDeDTvB40qNBhjl9f8vPsttvO2WHHPTNixKiix2lQzoPZdNAg0SDRoEIHDRINAJhbsy/epXE69dRTM3LkyLz11lsZMmRIhgwZkrfeeisjR478wkXVSdKqVau0b9++3u2zV2RpCDNmzMiLL76cnXas/+s5d9pp2zz9zAsNPk9RdNAg0SDRoEIHDRINEg0qdNAg0aBCBw0SDRINKnTQgNka+3mw5Ybr5s6rzs/tV55bd1t3rdXyzR22yu1XnjvXouokmTp1epp95rPKZv9dTF1O0rljh3Tp3DHvjRqTlXt2q3db8VO/orZH1xXqtvfo0jlJ6u3bo+ucfzDc4MtrZuir/8qMGTPrtj019JV06dQxPT+13/2PPZXTL7oq5//46Gy7xUZLpNGS0tjPhYaggQbwaV4PGlToMNuAX/8ie+yxa3beZZ+88867RY/T4JwHs+mgQaJBokGFDhokGgAwtyZ5xepPW3XVVbPqqqsWPcZiuWTANRl43YAMHfpSnnl2aA4/9ICsvFLPXHX1DUWP1qB00CDRINGgQgcNEg0SDSp00CDRoEIHDRINEg0qdNAgSdq2bZM11pjz+diqq6ycDTZYN+PHT8i7744scLKG05jPg7ZtWmfNVVaqt631Mq2yXLt2ddt//ftbMmbshJx7yg+SJNttuVHO+vXvcuufHs5Wm66fseMn5ILf3pj11l49XTp1TJL88IC9cv6Vg7Jsm9bZZrMNMn3GjLz2xn8y6ePJOWivPgs9Z58dtsqVf7gzp/3qtzl8v29l+IjRufaWe3LU/v3qLkhx/2NP5bRf/jan/uB72WCdNequcN2qVcu0a9tmURMtUY35XGgoGmiQeG+o0MHrIdGgoto7XHbpudl33z2y516H5KOPPk7X//6PYx9++FGmTp1a8HQNp9rPgwodNEg0SDSo0EGDRAMA6muyC6unTJmSoUOHZvnll0+vXr3q3Td16tTcdtttOfDAAwuabuHcfvvgdFq+Y04/7cR0794lr742LLv3/V6GDx9R9GgNSgcNEg0SDSp00CDRINGgQgcNEg0qdNAg0SDRoEIHDZJk0002yCMP31H39UW/OjNJMnDQbTn0sBMLmqphNfXz4IPxEzPqg3F1X++x83aZPGVqbh78l/zqmj+kXds22XzDdXPiofvW7bPXrttnmVYtc/0d9+Xi392c1q1aZc1VV8r3+n1jkWZo17ZNrj7vxznn8uuz7zE/Tft2bXPgXrvmwE8t0r79/kczc9asnHP59Tnn8uvrtvf9eu+cc/JRi3TcJa2pnwtLggYaJN4bKnTwekg0qKj2DkcddVCS5NFH/lhv+6GHnphBN9xWxEiFqPbzoEIHDRINEg0qdNAg0QCA+krlcrlc9BAL64033sjOO++c4cOHp1QqpXfv3rn55pvTvXv3JMn777+fHj16ZNasWQv1vDUtey6NcQEAAACAKvLJG/cUPULh2qz1raJHAAAaqVLRAzQCTe4f6AGABjNzusXcNIyHun6n6BGoAl9//9aiR1gkzYoeYFGceuqpWW+99TJmzJgMGzYs7du3z9Zbb53hw4cXPRoAAAAAAAAAAAAA0AQ1yYXVTz31VM4999x07tw5a6yxRgYPHpxdd901vXv3zttvv130eAAAAAAAAAAAAABAE1NT9ACLYsqUKampqT/6FVdckWbNmmW77bbLTTfdVNBkAAAAAAAAAAAAAEBT1CQXVq+zzjp54YUX8uUvf7ne9ssuuyzlcjl9+/YtaDIAAAAAAAAAAAAAoClqVvQAi6Jfv365+eab53nf5Zdfnv322y/lcrmBpwIAAAAAAAAAAAAAmqpS2QrkOjUtexY9AgAAAADQxH3yxj1Fj1C4Nmt9q+gRAIBGqlT0AI2Af6AHAOZn5vQRRY9AlfhL132LHoEqsPP7txQ9wiJpklesBgAAAAAAAAAAAABYkiysBgAAAAAAAAAAAACqnoXVAAAAAAAAAAAAAEDVs7AaAAAAAAAAAAAAAKh6FlYDAAAAAAAAAAAAAFXPwmoAAAAAAAAAAAAAoOpZWA0AAAAAAAAAAAAAVD0LqwEAAAAAAAAAAACAqmdhNQAAAAAAAAAAAABQ9SysBgAAAAAAAAAAAACqnoXVAAAAAAAAAAAAAEDVqyl6AAAAAAAAAAAAAAAaRm3RA0Aj5orVAAAAAAAAAAAAAEDVs7AaAAAAAAAAAAAAAKh6FlYDAAAAAAAAAAAAAFXPwmoAAAAAAAAAAAAAoOpZWA0AAAAAAAAAAAAAVD0LqwEAAAAAAAAAAACAqmdhNQAAAAAAAAAAAABQ9SysBgAAAAAAAAAAAACqnoXVAAAAAAAAAAAAAEDVs7AaAAAAAAAAAAAAAKh6FlYDAAAAAAAAAAAAAFWvpugBAAAAAAAAAAAAAGgYtUUPAI2YK1YDAAAAAAAAAAAAAFXPwmoAAAAAAAAAAAAAoOpZWA0AAAAAAAAAAAAAVD0LqwEAAAAAAAAAAACAqmdhNQAAAAAAAAAAAABQ9WqKHgAAAAAA/heUih6gESgXPUAj0W6dfkWPULjJfx9U9AiFa7fxQUWPULjasu8KAMytVPI357L3SP7Lq8HPkQAAND6uWA0AAAAAAAAAAAAAVD0LqwEAAAAAAAAAAACAqmdhNQAAAAAAAAAAAABQ9SysBgAAAAAAAAAAAACqnoXVAAAAAAAAAAAAAEDVqyl6AAAAAAAAAAAAAAAaRjmlokeARssVqwEAAAAAAAAAAACAqmdhNQAAAAAAAAAAAABQ9SysBgAAAAAAAAAAAACqnoXVAAAAAAAAAAAAAEDVs7AaAAAAAAAAAAAAAKh6FlYDAAAAAAAAAAAAAFXPwmoAAAAAAAAAAAAAoOpZWA0AAAAAAAAAAAAAVD0LqwEAAAAAAAAAAACAqmdhNQAAAAAAAAAAAABQ9SysBgAAAAAAAAAAAACqXk3RAwAAAAAAAAAAAADQMGpLRU8AjZcrVgMAAAAAAAAAAAAAVc/CagAAAAAAAAAAAACg6llYDQAAAAAAAAAAAABUPQurAQAAAAAAAAAAAICqZ2E1AAAAAAAAAAAAAFD1LKwGAAAAAAAAAAAAAKqehdUAAAAAAAAAAAAAQNWzsBoAAAAAAAAAAAAAqHoWVgMAAAAAAAAAAAAAVc/CagAAAAAAAAAAAACg6llYDQAAAAAAAAAAAABUvZqiBwAAAAAAAAAAAACgYdSmVPQI0Gi5YjUAAAAAAAAAAAAAUPUsrAYAAAAAAAAAAAAAqp6F1QAAAAAAAAAAAABA1bOwGgAAAAAAAAAAAACoev+TC6vff//9nH322UWPsVCOOvKgvDns6Xw86a08+8wD2WbrzYseqRA6aJBokGhQoYMGiQaJBhU6aJBoUKGDBokGiQYVOlR3g1NOOSZPP3Vfxo8blhHvvZQ77vhd1lpr9aLHKkQ1nwdJMmzYU5k29d25bgN+/YuiR5vLtX98MOvv+cNc8LvbP3e/6TNm5NI/3JNdjjg9m+xzXPr84Ge565Gnlupsb/zfiHz/9Iuz2b7HZ6fD+ue3t92fcrlcd//Dz/w9R5x5abY7+JR8df+TcsCPf5m//f31pTrT4jjlR0dn+rT38qtfnVn0KA2u2r8nVOigQaJBokGFDnNU63tk7222yN13XZ/h7wzNzOkj0rfvLkWPVJhqfj34OXKOaj4PKjSYTQcNEg0AmON/cmH16NGjc9ZZZxU9xgLbe+++ufiiM3Pe+Zdm0813yZAhz+XeP92YlVbqUfRoDUoHDRINEg0qdNAg0SDRoEIHDRINKnTQINEg0aBCBw227b1lrrxyYLbpvXt27bNfaprX5P77bkqbNq2LHq1BVft5kCRbb71bVv7SxnW3XfvslyT54533FjxZfa+++U7ueOhvWetLPb9w35N/9bs8+/KwnHX0ARl8+Rm54KRDsmrProt87BFjxmX9PX843/s//mRKjjzrsqyw/HK56YJT8+PD9snAex7OoMGP1O0z9LV/Z8sN1skVp/0wt/zyx9nsK2vl2POuzD/ffneR51paNtlkgxx62P55+eXGu/B7afE9YTYdNEg0SDSo0GGOan6PbNu2TV5++fUcd8LpRY9SqGp/Pfg5crZqPw8SDSp00CDRAID6SuVPX26jiXj55Zc/9/5//etf2W+//TJr1qyFet6all/8Yf7S8NSQP+XFv7+aY47tX7ftlZcfz+DBD+a0088vZKYi6KBBokGiQYUOGiQaJBpU6KBBokGFDhokGiQaVOjQuBqUGvRo89a58/IZNfKVbL/Dnhky5NkGP35RHzQ2pvMgSZo3K/56Fr/65Rnp02en9Fq3dyHHnzT0+rm2fTJlar5z8vk57Yh9c/UdD2TtVVbMqYfuPc/HD3nxtZx68e9z/5Vnp0O7tvM9zt2PPJ3r7v5LRowZlx5dOuW7fb6WfXfdbp77jhgzLrse9dO8fOdv5nn/rQ8+mUtvvCePXXd+WrZokST53Z1/zs33P56Hrjk3pdK8X+X9jv95dtl6kxy1T59629ttfNB8517a2rZtk+eefTDHHveT9P/x8Xnp5ddy8slnNvgctQX980Nj+55QFB00SDRINKhoTB2azec9tSFU+3vkp82cPiJ7fvuQDB7856JHaXCN6fXg50g/RxZJg9l00CBpXA1mTh/RoMejet3T7btFj0AV+Nbom4oeYZEU/wn/Ithwww2z0UYbZcMNN5zrttFGG2XfffctesQF1qJFi2y88fp56OEn6m1/6KEn8tUtNy1oqoangwaJBokGFTpokGiQaFChgwaJBhU6aJBokGhQoYMG89KhQ/skyYQJE4sdpAE5D+bWokWL7Lffnrl+4K1Fj1LPOdfcmt6bfCVbbrDOF+77+PMvp9caK+e6ux/KTof1z+5Hn5lfXf/HTJ02vW6fOx4akstuGpxj9++buy/9WY7bv2+uuPne3PPYM4s030vD3s4m665Zt6g6SbbasFfGjP8wI8aMm+djamtrM3nK1HRYts0iHXNpuXTAObn/gUfy6KNDih6lwfmeMJsOGiQaJBpU6DBHNb9HMpvXw9z8HDlHNZ0HGsymgwaJBgDMraboARZFp06dcsEFF2THHXec5/2vvfZadt999899jmnTpmXatGn1tpXL5fledWRp6dx5+dTU1GTM+2PrbR8zZmy6duvSoLMUSQcNEg0SDSp00CDRINGgQgcNEg0qdNAg0SDRoEIHDebll788I0OGPJvXXhtW9CgNxnkwt759d8lyy7XPDTfcXvQodR4Y8kL++fa7ufnCUxdo//feH5e///OttGrRIpecemQmTvo451x9SyZ9/EnOPuZ7SZKrb38g/+/gPbPTlhslSVbs2jlvvzs6d/zlr/nW9lsu9IzjJk5Kjy6d6m3rtFy7uvtW7Np5rscMHPxIpkydnp232mShj7e07LN332y00Xr56lbfLHqUQvieMJsOGiQaJBpU6DBbtb9HMpvXw9z8HDlHNZ0HGsymgwaJBgDMrUkurN5kk00ycuTIfOlLX5rn/RMnTkz5C3590nnnnZezzjqr3rZSs2VTat5+ic25MD47b6lU+sI/w/8iHTRINEg0qNBBg0SDRIMKHTRINKjQQYNEg0SDCh00qLh0wDlZ7ytfzte271f0KIVwHszx/YP3zZ///FhGjXq/6FGSJKPHjs8Fv7s9V/3s2LRq2eKLH5CkXK5NqVTKeSd8P+3atk6SnPz9vfL/fnltfnL4d/LJ1GkZPXZCzrzixpx15ZxfJzlr1qws26Z13df9jv95Rn4w/r/POft82OK7J9bd32OF5XPXgJ/WfV36zC9jn3MKzX1Bjvv/+nyuvPW+XPrjo+oWYBdtxRW756KLzso3v/nduS4sUm18T5hNBw0SDRINKqq5g/dIPquaXw+f5udI54EGs+mgQaIBAHM0yYXVRx55ZCZPnjzf+1deeeVcd911n/sc/fv3z0knnVRvW8dOX/wrKJe0sWPHZ+bMmenabYV621dYoVPGvP9Bg89TFB00SDRINKjQQYNEg0SDCh00SDSo0EGDRINEgwodNPi0X1/y8+y2287ZYcc9M2LEqKLHaVDOg/pWXrlndthhm3znO0cUPUqd198anvEffpR9f3R+3bZZtbUZ+vq/c8sDT+SFWy9N8+bN6j2mc8cO6bL8cnWLqpNktRW7pVwu5/1xE7Nsm2WSJGf8YP+st9Yq9R7brNmc57ritB9m5qxZSZIx4yfmkJ/+Ordf1L/u/prmzev+u9Ny7TN24qR6zzX+w4/+e1/9hdMPDnkhZ15xY3518mHZcoOG/1x5fjbeeP107bpCnnnmgbptNTU16d17i/zwBwdn2Xarpba2tsAJlz7fE2bTQYNEg0SDCh28RzKH18Mcfo6s7vNAg9l00CDRAIC5NfviXRqffv365YADDpjv/R07dsxBBx30uc/RqlWrtG/fvt6tVJr7qiNL24wZM/Liiy9npx23rbd9p522zdPPvNDg8xRFBw0SDRINKnTQINEg0aBCBw0SDSp00CDRINGgQgcNKgb8+hfZY49ds/Mu++Sdd94tepwG5zyo78AD98mYMWNz/wOPFD1KnS3WXyd/vOT03HbRT+pu666+cr657Wa57aKfzLWoOkk2Wmf1fDB+Yj6ZMrVu2/+NHJNmzUrp2mm5dFqufbosv1zee39sVu7epd5txa6d6x7To0unuu3dV+iUJPX27dGlU92+G6y9Woa+/mZmzJhZt+3pf/wzXZbvkJ6f2u/+vz6fn15+Q84/8fvZdtP1lmirxfXoo0Oy0UY7ZrPNdqm7vfDCP3LzzXdls812qYoFY74nzKaDBokGiQYVOniPZA6vh9n8HOk80GA2HTRINKB6ld3cGuDWVDXJK1b/r7lkwDUZeN2ADB36Up55dmgOP/SArLxSz1x19Q1Fj9agdNAg0SDRoEIHDRINEg0qdNAg0aBCBw0SDRINKnTQ4LJLz82+++6RPfc6JB999HG6dp19ZZ0PP/woU6dO/YJH/++o9vOgolQq5cAD98mNN96RWf+9SnNj0Lb1MlnzSz3qbWu9TKt0WLZt3fYBN96d98dNzLnHH5wk6dN701x1+/356eU35If77pYJkz7OxQPvyh47bJVlWrVMkvzgO9/MBb+7LW3bLJNtNl4302fMzOv/Hp5Jkz/JgX13XOg5+/TeLL+97f6cfvmgHLbnNzJ81Jhce+eDOXLvPnUX5bj/r8/n9EsH5pRD9s76a62asRM+TJK0atmy3tW1i/Lxx5Pz2uvD6m2bPHlKxo2fMNf2/2W+J8ymgwaJBokGFdXewXvkbG3btskaa6xa9/Wqq6ycDTZYN+PHT8i7744scLKGVe2vBz9Hzlbt50GiQYUOGiQaAFBfk11YPWXKlAwdOjTLL798evXqVe++qVOn5rbbbsuBBx5Y0HQL5/bbB6fT8h1z+mknpnv3Lnn1tWHZve/3Mnz4iKJHa1A6aJBokGhQoYMGiQaJBhU6aJBoUKGDBokGiQYVOmhw1FEHJUkefeSP9bYfeuiJGXTDbUWMVIhqPw8qdtyxd7608ooZOPDWokdZaB9MmJTRYyfUfd2m9TK5+ozjct61t2W/H52fDu3aZpetNskx3929bp+9vr51lmnVMgPveSiXDLo7rZdpmTVX7pEDdtthkWZo17Z1rjrj2Jx7za3Z75Tz075tm3xv9x3rLdK+4y9DMnNWbc695tace82czn233zK/OLZpfB5dDXxPmE0HDRINEg0qdCBJNt1kgzzy8B11X1/0qzOTJAMH3ZZDDzuxoKkaXrW/HvwcOVu1nweJBhU6aJBoAEB9pXK53OSuuP3GG29k5513zvDhw1MqldK7d+/cfPPN6d69e5Lk/fffT48ePRb6qiw1LXsujXEBAAAAqAKlogdoBJrcB41LSfNmzYoeoXCThl5f9AiFa7fxQUWPULjapvfPDwA0gGYlf3P2HkmFV4OfIwE+a+Z0i7lpGHd3+27RI1AF9hh9U9EjLJIm+Qn/qaeemvXWWy9jxozJsGHD0r59+2y99dYZPnx40aMBAAAAAAAAAAAAAE1Qk1xY/dRTT+Xcc89N586ds8Yaa2Tw4MHZdddd07t377z99ttFjwcAAAAAAAAAAAAANDE1RQ+wKKZMmZKamvqjX3HFFWnWrFm222673HRT07x8OAAAAAAAAAAAAABQjCa5sHqdddbJCy+8kC9/+cv1tl922WUpl8vp27dvQZMBAAAAAAAAAAAAAE1Rs6IHWBT9+vXLzTffPM/7Lr/88uy3334pl8sNPBUAAAAAAAAAAAAA0FSVylYg16lp2bPoEQAAAABookpFD9AI+KBxtubNmuT1LJaoSUOvL3qEwrXb+KCiRyhcrX9+AGAempX8zdl7JBVeDX6OBPismdNHFD0CVeLubt8tegSqwB6jbyp6hEXiE34AAAAAAAAAAAAAoOpZWA0AAAAAAAAAAAAAVL2aogcAAAAAAAAAAAAAoGHUFj0ANGKuWA0AAAAAAAAAAAAAVD0LqwEAAAAAAAAAAACAqmdhNQAAAAAAAAAAAABQ9SysBgAAAAAAAAAAAACqnoXVAAAAAAAAAAAAAEDVs7AaAAAAAAAAAAAAAKh6FlYDAAAAAAAAAAAAAFXPwmoAAAAAAAAAAAAAoOpZWA0AAAAAAAAAAAAAVD0LqwEAAAAAAAAAAACAqmdhNQAAAAAAAAAAAABQ9WqKHgAAAAAAAAAAAACAhlFbKhU9AjRarlgNAAAAAAAAAAAAAFQ9C6sBAAAAAAAAAAAAgKpnYTUAAAAAAAAAAAAAUPUsrAYAAAAAAAAAAAAAqp6F1QAAAAAAAAAAAABA1bOwGgAAAAAAAAAAAACoehZWAwAAAAAAAAAAAABVz8JqAAAAAAAAAAAAAKDqWVgNAAAAAAAAAAAAAFQ9C6sBAAAAAAAAAAAAgKpnYTUAAAAAAAAAAAAAUPVqih4AAAAAAAAAAAAAgIZRLnoAaMRcsRoAAAAAAAAAAAAAqHoWVgMAAAAAAAAAAAAAVa+m6AEak1LRAzQSLvMPAAAAC87nCbP5PEED5phVW1v0CIVru9GBRY9QuI+f+FXRIxRu2e1OLnoEABqh2rK/OUOFVwMAADQ+rlgNAAAAAAAAAAAAAFQ9C6sBAAAAAAAAAAAAgKpnYTUAAAAAAAAAAAAAUPUsrAYAAAAAAAAAAAAAqp6F1QAAAAAAAAAAAABA1bOwGgAAAAAAAAAAAACoehZWAwAAAAAAAAAAAABVz8JqAAAAAAAAAAAAAKDq1RQ9AAAAAAAAAAAAAAANo7boAaARc8VqAAAAAAAAAAAAAKDqWVgNAAAAAAAAAAAAAFQ9C6sBAAAAAAAAAAAAgKpnYTUAAAAAAAAAAAAAUPUsrAYAAAAAAAAAAAAAqp6F1QAAAAAAAAAAAABA1bOwGgAAAAAAAAAAAACoehZWAwAAAAAAAAAAAABVz8JqAAAAAAAAAAAAAKDqWVgNAAAAAAAAAAAAAFQ9C6sBAAAAAAAAAAAAgKpXU/QAAAAAAAAAAAAAADSM2lLRE0Dj5YrVAAAAAAAAAAAAAEDVs7AaAAAAAAAAAAAAAKh6FlYDAAAAAAAAAAAAAFXPwmoAAAAAAAAAAAAAoOpZWA0AAAAAAAAAAAAAVD0LqwEAAAAAAAAAAACAqmdhNQAAAAAAAAAAAABQ9SysBgAAAAAAAAAAAACqnoXVAAAAAAAAAAAAAEDVs7AaAAAAAAAAAAAAAKh6FlYDAAAAAAAAAAAAAFWvpugBAAAAAAAAAAAAAGgYtSkVPQI0Wq5YDQAAAAAAAAAAAABUvSa9sPq9997Lxx9/PNf2GTNm5MknnyxgooV3yinH5Omn7sv4ccMy4r2Xcscdv8taa61e9FiFOerIg/LmsKfz8aS38uwzD2SbrTcveqQG1XubLXL3Xddn+DtDM3P6iPTtu0vRIxXCeeA8qKj2cyHRINEg0aBCBw0SDSp00CDRwN+bfabwadX+ekg08D1hjmo/F5Km0eB39/41Gxx8Zi78wwPz3ef5f/4nGxx85ly3/4z8YKnO9ua77+eQ867L5of/IjudcFF+e8/jKZfLdfc//MLrOfKXg/K1Yy/MVkedm+/9/Nr87ZV/L9WZFpbvCXM0hdfD0qaBBr4nzFHt50KiQaJBhQ4aJBokGlTooEGiAQBzNMmF1aNGjcrmm2+eL33pS1luueVy0EEH1VtgPX78+Gy//fYFTrjgtu29Za68cmC26b17du2zX2qa1+T++25Kmzatix6twe29d99cfNGZOe/8S7Pp5rtkyJDncu+fbsxKK/UoerQG07Ztm7z88us57oTTix6lMM4D50GFc0GDRINEgwodNEg0qNBBg0SDxN+bE58pVHg9aJD4nlDhXGgaDV59e0TueHxo1lqp6wLtf8/5x+SRX/+/utvK3Tot8rFHfDAhGxx85nzv/3jK1Bz5y0FZYbl2+cMZh+fHB+yaQQ88lUEPPl23z4vD/i9brrtaLj9x/9x85pHZ7Mur5Lhf35R//t+oRZ5rSfM9Ybam8HpY2jTQIPE9ocK5oEGiQYUOGiQaJBpU6KBBogEA9ZXKn77URBNx0EEH5Y033shll12WiRMnpn///imXy3nooYfSsWPHvP/+++nevXtqa2sX6nlbtOy5lCZecJ07L59RI1/J9jvsmSFDni1khqJOiKeG/Ckv/v3VHHNs/7ptr7z8eAYPfjCnnX5+QVMVZ+b0Ednz24dk8OA/Fz1Kg3Ie1Fet50HiXEg0SDRINKjQQYNEgwodNEg0+Kyi/95cKuSocyv6MwWfJxRHg/qK/p5QJOdC42rw8RO/mmvbJ1On5TtnXJXTDvxmrhn8ZNZeuVtO2X/XeT7++X/+J4ddMDB/veLUtG87//9p5u6//j3X3/+3jPhgQnp0Xi7f/foW+c6O876q1ogPJqTPjwbkpevPnOf9tz36fC69/eE8eumP0rJFTZLZV9e++eHn8tAlJ6VUmve7Xr+fXJFdtlg3R33ra/W2L7vdyfOdu6H4ntA4Xg9F0UCDz/I9obrPBQ00qNBBg0SDRIMKHTRIGleDmdNHNOjxqF5/6HFA0SNQBfYfeWPRIyySJnnF6ocffjgDBgzIpptump122ilDhgzJiiuumB122CHjx49Pkvl+wNvYdejQPkkyYcLEYgdpYC1atMjGG6+fhx5+ot72hx56Il/dctOCpqKhOQ+ocC5okGiQaFChgwaJBhU6aJBowPxV42cKXg8aMIdzoWk0OPeG+7PtBmtly3VXX+DHfOeMq7Lj8b/K4RcMzHP//E+9+/74+NBc/sdHcsxeO+Su847Jsd/eMVfc+VgGD/nHIs330r/fzSbrrFK3qDpJtlpvjXww8aOMGDtxno+pra3NJ1OnpcPnLP6m4TWF18PSpoEGzOFc0CDRoEIHDRINEg0qdNAg0QCAuTXJhdUffvhhOnbsWPd1q1atcscdd2SVVVbJ9ttvnzFjxnzhc0ybNi2TJk2qd2sMF+/+5S/PyJAhz+a114YVPUqD6tx5+dTU1GTM+2PrbR8zZmy6dutS0FQ0NOcBFc4FDRINEg0qdNAg0aBCBw0SDZi/avxMwetBA+ZwLjT+Bg8880r++X+jcty3d1yg/VdYrl1+dvDuufiYfXLxsd/JKt075YgLB2bosHfq9rl68BP5f/vukp027ZUVV+iYnTbtlQN22TJ3PP7CIs049sOP06l923rbKl+P+/DjeT5m0INPZ8q0Gdl583UX6ZgsHY399dAQNNCAOZwLGiQaVOigQaJBokGFDhokGgAwt5ov3qXxWW211fLyyy9nzTXXrNtWU1OT22+/PXvvvXd22223L3yO8847L2eddVa9baVmy6Z58/ZLfN4FdemAc7LeV76cr23fr7AZivbZxe2lUqlRLHinYTkPqHAuaJBokGhQoYMGiQYVOmiQaEB91f6ZgteDBszhXGicDUaP+zAX3vRgfnvy99KqZYsFeswq3Ttnle6d677eYI2VMnrcpAx84KlssvYqGT9pckaPn5Qzf39PzrpucN1+s2bVZtk2y9R93e8nV2TUuIlJkkqGLY88p+7+7p2Wy13nHj3nwJ/5bZCVcvP6HZEPPPNKrrz78Qw4ft90ar/sAv25aFiN8fXQ0DTQgDmcCxokGlTooEGiQaJBhQ4aJBoAMEeTXFi966675uqrr85ee+1Vb3tlcfVee+2V995773Ofo3///jnppJPqbVu+0zpLfNYF9etLfp7ddts5O+y4Z0aMGFXYHEUZO3Z8Zs6cma7dVqi3fYUVOmXM+x8UNBUNzXlAhXNBg0SDRIMKHTRINKjQQYNEA+ZWzZ8peD1owBzOhcbd4PV3Rmb8pMnZ78yr6rbNqi1n6Bv/l1seeS7PX/vTNG/2xb9gcv3VV8x9T7+cZM4/+P7s4L5Zb/We9fZr9qnnuuKk/TNz1qwkyZgJH+XQ86/PbWcfVXd/TfPmdf/ducOyc12ZevykyUmS5TvUXzj94LOv5szf35Nf/nCfbLnu6l84Ow2rMb8eGooGGjCHc0GDRIMKHTRINEg0qNBBg0QDAOb2xZ/UNkLnnHNObr/99nneV1NTkzvvvDNvv/325z5Hq1at0r59+3q3Umle19xY+gb8+hfZY49ds/Mu++Sdd94tZIaizZgxIy+++HJ22nHbett32mnbPP3Mov3aSpoe5wEVzgUNEg0SDSp00CDRoEIHDRINqK/aP1PwetCAOZwLjbvBFr1Wyx2/+EFuPfuoutu6q/ZIny3Xz61nH7VAi6qT5F/DR6XzcrMXOHfqsGy6dGyX9z6YkJW7dqp3W3GFjnWP6dF5ubrt3Tt1SJJ6+/bovFzdvhussVKGDvu/zJg5s27b06++lRWWa5een9rvgWdeyc+uvTvnHblXtt1wrcUow9LSmF8PDUUDDZjDuaBBokGFDhokGiQaVOigQaIBAHNrklesrqmpSfv27ed7f/PmzfOlL32pASdadJddem723XeP7LnXIfnoo4/Ttevs//vpww8/ytSpUwuermFdMuCaDLxuQIYOfSnPPDs0hx96QFZeqWeuuvqGokdrMG3btskaa6xa9/Wqq6ycDTZYN+PHT8i7744scLKG4zxwHlQ4FzRINEg0qNBBg0SDCh00SDRI/L058ZlChdeDBonvCRXOhcbboG3rVllzxa71trVu2SLLLdu6bvuA2x/OmAmTcs4ReyZJbvzz0+nRebms3rNLZsyalfueejkPv/DPXHTMPnXP8YM9vpYL/vBAlm3dKluvv0ZmzJiV194ZmUmTp+TAb2y10HPuuuV6+e3dj+en196dQ3frneHvj8/v7v1rjui7Xd2FSR545pWcfs1dOeW738j6q6+YsRM/SpK0atki7doss0h9ljTfE2ZrrK+HhqSBBonvCRXOBQ0SDSp00CDRINGgQgcNEg0AqK9JLqxOkilTpmTo0KFZfvnl06tXr3r3TZ06NbfddlsOPPDAgqZbcEcddVCS5NFH/lhv+6GHnphBN9xWxEiFuf32wem0fMecftqJ6d69S159bVh27/u9DB8+oujRGsymm2yQRx6+o+7ri351ZpJk4KDbcuhhJxY0VcNyHjgPKpwLGiQaJBpU6KBBokGFDhokGiT+3pz4TKHC60GDxPeECudC024wduJHGT3uw7qvZ8yalYtv/UvGTPgorVrWZPWeXXL5id9N7w3mXCF6z+02yTItW+T6B57KJbc9lNatWmTNFbtm/523XKQZ2rVZJlf96MCce8N9+e6ZV6d929b53i5fzYHf+GrdPnc89kJmzqrNuTfcn3NvuL9ue9+tN8jPD++3SMdd0nxPmK0pvx6WFA00SHxPqHAuaJBoUKGDBokGiQYVOmiQaABAfaVyuVwueoiF9cYbb2TnnXfO8OHDUyqV0rt379x8883p3r17kuT9999Pjx49MmvWrIV63hYtey6NcZucJndCAAAAQIFKRQ/QSPg8AaC+j5/4VdEjFG7Z7U4uegQAAABoUmZOt5ibhnFjjwOKHoEqcMDIG4seYZE0K3qARXHqqadmvfXWy5gxYzJs2LC0b98+W2+9dYYPH170aAAAAAAAAAAAAABAE9QkF1Y/9dRTOffcc9O5c+esscYaGTx4cHbdddf07t07b7/9dtHjAQAAAAAAAAAAAABNTE3RAyyKKVOmpKam/uhXXHFFmjVrlu222y433XRTQZMBAAAAAAAAAAAAAE1Rk1xYvc466+SFF17Il7/85XrbL7vsspTL5fTt27egyQAAAAAAAAAAAACApqhZ0QMsin79+uXmm2+e532XX3559ttvv5TL5QaeCgAAAAAAAAAAAABoqprkwur+/fvn/vvvn+/9v/nNb1JbW9uAEwEAAAAAAAAAAAAAC+u8887LZpttlnbt2qVLly7ZY489MmzYsHr7lMvlnHnmmenRo0dat26dr33ta3nttdfq7TNt2rQce+yx6dy5c9q2bZu+ffvmvffeW6hZmuTCagAAAAAAAAAAAACg6XviiSdy9NFH55lnnslDDz2UmTNnZuedd87kyZPr9rnwwgtz8cUX5/LLL8/zzz+fbt265etf/3o++uijun1OOOGE3HXXXbnlllsyZMiQfPzxx9ltt90ya9asBZ6lVC6Xy0v0T9eEtWjZs+gRGgUnBAAAACy4UtEDNBI+TwCo7+MnflX0CIVbdruTix4BAAAAmpSZ00cUPQJV4sYeBxQ9AlXggJE3LvJjP/jgg3Tp0iVPPPFEtt1225TL5fTo0SMnnHBCTj311CSzr07dtWvXXHDBBTnyyCPz4YcfZoUVVsgNN9yQ73znO0mSkSNHZqWVVsr999+fXXbZZYGO7YrVAAAAAAAAAAAAAMASM23atEyaNKnebdq0aQv02A8//DBJsvzyyydJ/vOf/2T06NHZeeed6/Zp1apVtttuuzz11FNJkqFDh2bGjBn19unRo0e+8pWv1O2zICysBgAAAAAAAAAAAACWmPPOOy8dOnSodzvvvPO+8HHlcjknnXRSttlmm3zlK19JkowePTpJ0rVr13r7du3ate6+0aNHp2XLlunYseN891kQNQu8JwAAAAAAAAAAAADAF+jfv39OOumkettatWr1hY875phj8vLLL2fIkCFz3Vcqlep9XS6X59r2WQuyz6e5YjUAAAAAAAAAAAAAsMS0atUq7du3r3f7ooXVxx57bAYPHpzHHnssK664Yt32bt26JclcV54eM2ZM3VWsu3XrlunTp2fChAnz3WdBWFgNAAAAAAAAAAAAUCVqS25uS/+2MMrlco455pjceeedefTRR7PqqqvWu3/VVVdNt27d8tBDD9Vtmz59ep544olstdVWSZJNNtkkLVq0qLfPqFGj8uqrr9btsyBqFm50AAAAAAAAAAAAAIAl4+ijj85NN92Ue+65J+3atau7MnWHDh3SunXrlEqlnHDCCTn33HOz5pprZs0118y5556bNm3a5Lvf/W7dvoceemj+3//7f+nUqVOWX375nHzyyVlvvfWy0047LfAsFlYDAAAAAAAAAAAAAIW48sorkyRf+9rX6m2/7rrrcvDBBydJTjnllEyZMiU//OEPM2HChGyxxRb5y1/+knbt2tXtf8kll6Smpib77LNPpkyZkh133DHXX399mjdvvsCzlMrlcnmx/0T/I1q07Fn0CI2CEwIAAAAW3EL+JrP/WT5PAKjv4yd+VfQIhVt2u5OLHgEAAACalJnTRxQ9AlViUM8Dih6BKnDgiBuLHmGRNCt6AAAAAAAAAAAAAACAollYDQAAAAAAAAAAAABUPQurAQAAAAAAAAAAAICqZ2E1AAAAAAAAAAAAAFD1LKwGAAAAAAAAAAAAAKqehdUAAAAAAAAAAAAAQNWzsBoAAAAAAAAAAAAAqHoWVgMAAAAAAAAAAAAAVa+m6AEAAAAAAAAAAAAAaBi1RQ8AjZgrVgMAAAAAAAAAAAAAVc/CagAAAAAAAAAAAACg6llYDQAAAAAAAAAAAABUPQurAQAAAAAAAAAAAICqZ2E1AAAAAAAAAAAAAFD1LKwGAAAAAAAAAAAAAKqehdUAAAAAAAAAAAAAQNWzsBoAAAAAAAAAAAAAqHoWVgMAAAAAAAAAAAAAVc/CagAAAAAAAAAAAACg6tUUPUBjUi56AAAAAKDJ8XkCAPOy7HYnFz1C4T5+5PyiR2gUlt3xx0WPAAAAAAAsIAurAQAAAAAAAAAAAKqEi8bA/DUregAAAAAAAAAAAAAAgKJZWA0AAAAAAAAAAAAAVD0LqwEAAAAAAAAAAACAqmdhNQAAAAAAAAAAAABQ9SysBgAAAAAAAAAAAACqnoXVAAAAAAAAAAAAAEDVs7AaAAAAAAAAAAAAAKh6FlYDAAAAAAAAAAAAAFXPwmoAAAAAAAAAAAAAoOpZWA0AAAAAAAAAAAAAVD0LqwEAAAAAAAAAAACAqldT9AAAAAAAAAAAAAAANIzaUtETQOPlitUAAAAAAAAAAAAAQNWzsBoAAAAAAAAAAAAAqHoWVgMAAAAAAAAAAAAAVc/CagAAAAAAAAAAAACg6llYDQAAAAAAAAAAAABUPQurAQAAAAAAAAAAAICqZ2E1AAAAAAAAAAAAAFD1LKwGAAAAAAAAAAAAAKqehdUAAAAAAAAAAAAAQNWzsBoAAAAAAAAAAAAAqHoWVgMAAAAAAAAAAAAAVa+m6AEAAAAAAAAAAAAAaBi1RQ8AjZgrVgMAAAAAAAAAAAAAVc/CagAAAAAAAAAAAACg6llYDQAAAAAAAAAAAABUPQurAQAAAAAAAAAAAICqZ2E1AAAAAAAAAAAAAFD1LKwGAAAAAAAAAAAAAKqehdUAAAAAAAAAAAAAQNWzsBoAAAAAAAAAAAAAqHoWVgMAAAAAAAAAAAAAVa/JLqweN25cHnvssYwfPz5JMnbs2FxwwQU5++yz889//rPg6RbeUUcelDeHPZ2PJ72VZ595INtsvXnRIxVCBw0SDRINKnTQINEg0aBCBw0SDSp00CDRINGgQgcNEg16b7NF7r7r+gx/Z2hmTh+Rvn13KXqkwlT7uZBokDSdBr+7/2/Z4LBf5MJb/rJA+//9zXez8RHnZJ+zrlnKkyVvvjcmh1w4KJv/4PzsdPKA/PZPT6ZcLtfd//DQf+XIi/6Qr51wcbY65sJ879zr8rdX31rqcy2spnIuLE0aaJBoUKGDBokGFTpokGiQaFChgwY+WwLg05rkwurnnnsuq6++enbcccesscYaGTp0aDbffPP87ne/yw033JBNNtkkL774YtFjLrC99+6biy86M+edf2k23XyXDBnyXO79041ZaaUeRY/WoHTQINEg0aBCBw0SDRINKnTQINGgQgcNEg0SDSp00CDRIEnatm2Tl19+PcedcHrRoxTKuaBB0nQavPqfkbnjyRez1opdFmj/jz6ZmtN/f082//Kqi33sEWMnZoPDfjHf+z+eMi1HXvyHrLDcsvnD6Yfkx/vtkkF/fiaD/vJs3T4vvjk8W/ZaNZcfv29u/ulh2WydL+W4y27NP4ePXuz5lpSmci4sTRpokGhQoYMGiQYVOmiQaJBoUKGDBonPlgCor1T+9CUWmoivf/3rWWWVVXLxxRfnqquuyoABA/KNb3wj11wz+yoVhx12WMaNG5e77rproZ63pmXPpTHuF3pqyJ/y4t9fzTHH9q/b9srLj2fw4Adz2unnFzJTEXTQINEg0aBCBw0SDRINKnTQINGgQgcNEg0SDSp00CDR4LNmTh+RPb99SAYP/nPRozQ454IGSeNq8PEj8z7eJ1On5zs/vzan7f+NXHPvkKy9crecsu/On/tcp1x1Z1buunyal0p57B9v5LYzDq93/91D/pHrH3w6I8ZOTI/Oy+W7O26W72y/6Tyfa8TYienz48vz0rXz/gfz2x4bmkvvfDSPXnxiWraoSTL76to3P/pCHvrlcSmVSvN8XL+f/Ta7bNYrR+2+bb3ty+7448/9sy0tjelcKIoGGiQaVOigQaJBhQ4aJBokGlTooMFnFf3Z0szpIwo5LtXnqhUPKHoEqsCR791Y9AiLpElesXro0KE56aST0q5duxx//PEZOXJkDj98zoeoRx99dJ5//vkCJ1xwLVq0yMYbr5+HHn6i3vaHHnoiX91y3h/6/i/SQYNEg0SDCh00SDRINKjQQYNEgwodNEg0SDSo0EGDRAPmcC5okDSdBuf+4YFsu94a2bLXagu0/91D/pH3Ppgw14Llij8++WIuv+vxHNNv+9z186NybL/tc8XdT2Tw315apPleevu9bLL2l+oWVSfJVl9ZPR9M/Cgjxk6c52Nqa8v5ZOr0dGjbepGOuaQ1lXNhadJAg0SDCh00SDSo0EGDRINEgwodNACAean54l0an+nTp6d169kfTrZo0SJt2rRJ586d6+7v1KlTxo0b97nPMW3atEybNq3etnK5PN8rTSwtnTsvn5qamox5f2y97WPGjE3Xbgv2KxD/F+igQaJBokGFDhokGiQaVOigQaJBhQ4aJBokGlTooEGiAXM4FzRImkaDB557Lf8cPjo3nX7oAu3/f++Pz4A/PpbrTj0wNc3nfa2Yq+8dkv+3z07ZaZN1kiQrrtAxb4/6IHc8+ff03XqDhZ5x7Icfp2fn5ept69S+bZJk3KTJWXGFjnM9ZtBfnsmUaTOy86a9Fvp4S0NTOBeWNg00SDSo0EGDRIMKHTRINEg0qNBBAwCYlya5sHqllVbK22+/nVVWWSVJcsstt6R79+51948aNareQut5Oe+883LWWWfV21ZqtmxKzdsv8XkXRLlcrj9LqTTXtmqggwaJBokGFTpokGiQaFChgwaJBhU6aJBokGhQoYMGiQbM4VzQIGm8DUaP/zAX3vyX/Pak76ZViy/+54lZtbXpf81d+cG3ts0q3TrNc5/xH03O6PGTcubAe3PWoPvmPHZWbZZtvUzd1/1+9tuMGvdhkqSSYsujL6i7v3unDrnr7KPmO0ul37wuzfLAs6/mysFPZsAxe9ctwG4sGuu50JA00CDRoEIHDRINKnTQINEg0aBCBw0A4NOa5MLqfffdN2PGjKn7+pvf/Ga9+wcPHpzNN9/8c5+jf//+Oemkk+pt69hpnSU35AIaO3Z8Zs6cma7dVqi3fYUVOmXM+x80+DxF0UGDRINEgwodNEg0SDSo0EGDRIMKHTRINEg0qNBBg0QD5nAuaJA0/gav/9/ojP9ocvb7+bV122bVljP0zeG55dHn8/xv+6d5szlXpZ48dXpee2dU/jV8dM6/6cEkSW25nHI52fiIc3Llid/NGj1m/1l/duA3s96qPesdr1mzOcugrzh+38ycWZskGTPxoxz6yxty288Or7u/pmbOcTt3WDbjJk2u91zjP/okSbL8ZxZOP/jcazlz4L355VF7Zcteqy18lKWksZ8LDUEDDRINKnTQINGgQgcNEg0SDSp00AAA5mXevzevkTvjjDOy7777zvf+0047LTfddNPnPkerVq3Svn37erdSaV7Xmli6ZsyYkRdffDk77bhtve077bRtnn7mhQafpyg6aJBokGhQoYMGiQaJBhU6aJBoUKGDBokGiQYVOmiQaMAczgUNksbfYIsvr5I7zjoit55xeN1t3VW6p88WX8mtZxxeb1F1kiy7TKu59t97u02ySrdOufWMw7Peaj3TqcOy6dKxXd77YGJW7rp8vduKK3Sse64enZar2969U4ckqbdvj07L1e27wWorZugbwzNj5qy6bU+/9nZWWK5denaes98Dz76an133p5x3eL9su/6aSyfaImrs50JD0ECDRIMKHTRINKjQQYNEg0SDCh00AIB5aZJXrP4ibdq0KXqEhXLJgGsy8LoBGTr0pTzz7NAcfugBWXmlnrnq6huKHq1B6aBBokGiQYUOGiQaJBpU6KBBokGFDhokGiQaVOigQaJBkrRt2yZrrLFq3derrrJyNthg3YwfPyHvvjuywMkalnNBg6RxN2i7TKus2bNLvW2tW7bIcsu2qds+4I+PZszEj3LOod9Ks2alufZfvl2btGpRU2/7D3bfNhfc8ucs27pVtv7K6pkxc1Zee2dkJn0yNQfuvOVCz7nrFuvmt396Mj/9/eAc+s2tM/z98fnd/X/LEbv1rrtAywPPvprTfz84p+y7c9ZfrWfGfvhxkqRVi5q0a7PMQh9zaWjM50JD0UCDRIMKHTRINKjQQYNEg0SDCh00SHy2BEB9TXZh9ZQpUzJ06NAsv/zy6dWrV737pk6dmttuuy0HHnhgQdMtnNtvH5xOy3fM6aedmO7du+TV14Zl977fy/DhI4oerUHpoEGiQaJBhQ4aJBokGlTooEGiQYUOGiQaJBpU6KBBokGSbLrJBnnk4Tvqvr7oV2cmSQYOui2HHnbi/2fvzuO0ruv9/z9nGEBBUAFFQE0TTSmX3A2RTIODKSmmaW4dl7SOerJFJS31uKZZ7kvmvpC7YW65HxGXhBJX9GSKIoqIIiggMPP7Y77X4CSo8JPrc02f+/12m9vN+VzXzLx83N4zDNe8uKagqarPWdAgafsNpkybkTfenrZIbzNsq69mqY7tc9mdj+R3N9ybpTu0z5orr5g9tt10sWbo0mmpXPiTPXLS1Xfke8dfnK6dl85e39wsew/arOU+Nzw4NnPnNeakq+/MSVff2XJ96NfWy/H7Dl2sj/t5a+tn4fOggQaJBhU6aJBoUKGDBokGiQYVOmiQeGwJgNbqmpqamooeYlG98MILGTRoUCZMmJC6uroMGDAgI0aMSK9evZIkb775Znr37p158+Z9yntqraFDnyUxLgAAAAAAlM6Me08peoSasMw2RxY9AgAAAG3E3A/Ls9BOsS5cec+iR6AEDnztqqJHWCz1RQ+wOI444oisu+66mTx5csaPH5+uXbumf//+mTBhQtGjAQAAAAAAAAAAAABtUJtcrB49enROOumk9OjRI3379s3IkSMzZMiQDBgwIC+99FLR4wEAAAAAAAAAAAAAbUxD0QMsjpkzZ6ahofXo5557burr6zNw4MBcc801BU0GAAAAAAAAAAAAALRFbXKxeu21184TTzyRddZZp9X1s88+O01NTRk6dGhBkwEAAAAAAAAAAADUrqa6oieA2lVf9ACLY6eddsqIESMWeNs555yT3XffPU1NTVWeCgAAAAAAAAAAAABoq9rkYvXw4cNz++23L/T28847L42NjVWcCAAAAAAAAAAAAABoy9rkYjUAAAAAAAAAAAAAwOfJYjUAAAAAAAAAAAAAUHoWqwEAAAAAAAAAAACA0rNYDQAAAAAAAAAAAACUnsVqAAAAAAAAAAAAAKD0LFYDAAAAAAAAAAAAAKVnsRoAAAAAAAAAAAAAKD2L1QAAAAAAAAAAAABA6VmsBgAAAAAAAAAAAABKr6HoAQAAAAAAAAAAAACojsaiB4Aa5hmrAQAAAAAAAAAAAIDSs1gNAAAAAAAAAAAAAJSexWoAAAAAAAAAAAAAoPQsVgMAAAAAAAAAAAAApWexGgAAAAAAAAAAAAAoPYvVAAAAAAAAAAAAAEDpWawGAAAAAAAAAAAAAErPYjUAAAAAAAAAAAAAUHoWqwEAAAAAAAAAAACA0rNYDQAAAAAAAAAAAACUnsVqAAAAAAAAAAAAAKD0GooeAAAAAAAAAAAAAIDqaCx6AKhhnrEaAAAAAAAAAAAAACg9i9UAAAAAAAAAAAAAQOlZrAYAAAAAAAAAAAAASs9iNQAAAAAAAAAAAABQeharAQAAAAAAAAAAAIDSs1gNAAAAAAAAAAAAAJSexWoAAAAAAAAAAAAAoPQaih4AqE31dXVFj1C4xqamokegRvhsSHw2AMCC+T7B9wlAaw317YoeoSbMbZxX9AjUAN8nJF22ObLoEWrCBy/eWvQIheu05g5FjwAAAAAAn4lnrAYAAAAAAAAAAAAASs9iNQAAAAAAAAAAAABQeharAQAAAAAAAAAAAIDSayh6AAAAAAAAAAAAAACqo6noAaCGecZqAAAAAAAAAAAAAKD0LFYDAAAAAAAAAAAAAKVnsRoAAAAAAAAAAAAAKD2L1QAAAAAAAAAAAABA6VmsBgAAAAAAAAAAAABKz2I1AAAAAAAAAAAAAFB6FqsBAAAAAAAAAAAAgNKzWA0AAAAAAAAAAAAAlJ7FagAAAAAAAAAAAACg9CxWAwAAAAAAAAAAAAClZ7EaAAAAAAAAAAAAACi9hqIHAAAAAAAAAAAAAKA6GuuKngBql2esBgAAAAAAAAAAAABKz2I1AAAAAAAAAAAAAFB6FqsBAAAAAAAAAAAAgNKzWA0AAAAAAAAAAAAAlJ7FagAAAAAAAAAAAACg9CxWAwAAAAAAAAAAAAClZ7EaAAAAAAAAAAAAACg9i9UAAAAAAAAAAAAAQOlZrAYAAAAAAAAAAAAASs9iNQAAAAAAAAAAAABQeharAQAAAAAAAAAAAIDSayh6AAAAAAAAAAAAAACqo7HoAaCGecZqAAAAAAAAAAAAAKD0LFYDAAAAAAAAAAAAAKVnsRoAAAAAAAAAAAAAKD2L1QAAAAAAAAAAAABA6VmsBgAAAAAAAAAAAABKz2I1AAAAAAAAAAAAAFB6/1aL1V/84hfz4osvFj3GYjnowH3y4vhHMuO9f+SxR+/Ilv03LXqkQuhQ7ga/PPon+XD2a61eJrwytuixClHmc/BRZe5w4A/2ztgxd+ftKc/n7SnP56H/HZnBg7cueqxClPkcVGjQTAcNEg0qdCh3g8MPPziPjL4tU98en4mvPZkbbrg4a621RtFjFaLM5+CjdNAgKXeDdu3a5dhjf5bnnx+Vd955Ic89Nyq/+MV/p66urujRClHms1BR5ga+T2jWljr8YcQtWXfQ7vn1+Zd/4v3+fO+o7HzQEdlkh32y9W4/zNG/uSDvvjd9ic72wj8n5Ps/PS4bb793ttn9Rzn/qhvT1NTUcvs9ox7PAUecmK12+UE233Hf7PHfv8rDTzy5RGdaHGX+mlChgQYDttwst9x8WSa8PCZzP5yYoUMHFz1SYcp+FhINKnTQINEg0aBCBw0SDQCYr00uVp911lkLfJkwYUIuvfTSltfbil12GZrfnn5sTj7lrGy86eCMGvV4/nzrVVllld5Fj1ZVOmiQJM8883xWWfWrLS8bbrRt0SNVnXPQrOwdXps4Kb846uRsvsV22XyL7XL/Aw/nphsvSb9+axU9WlWV/RwkGlTooEGiQYUOGmw1YPOcf/7l2XLADhmy3e5paNeQ22+7Jp06LV30aFVV9nNQoYMGiQY/+9kPs//+e+bHP/5VNtjgG/nFL07KYYcdmB/96D+LHq3qyn4WEg18n9CsrXR4evw/csPt92WtL676ifcb+/TzOeq08zJs8Na5+fen5fSj/zvPjP9Hjvnt7xf7Y098462sO2j3hd4+4/0P8oMjT8qK3ZfPiLNPzPD/+n4uv+G2XHHjbS33GfPUc9lio3Vz3glH5NpzT8ym6/fLwb86Lc/93z8Xe67PW9m/JiQaJBokSefOnTJu3LM59MdHFz1KoZwFDSp00CDRINGgQgcNEg0AaK2u6aNPL9BG1NfXp0+fPmloaGh1/ZVXXknv3r3Tvn371NXV5aWXXlqk99vQoc/nOeZnNnrUrRn7t6dz8CHDW649Ne6BjBx5Z446+pRCZiqCDrXVoL6AZ3X65dE/ydChg7PJprXxTAmNBX15rKVzUKRa6lArz3H25htP58gjT8ill/2x6h+7qG8WaukcFEWDZjpokGhQoUNtNaiF7xN69OiWSa8/la2/MSyjRj1W9Y/v+4Ri6aBBUlsNGurbVfXjJclNN12ayZPfykEHHd5ybcSICzJz5qzsu++Pqz5PksxtnFfIx62ls1CUWmrg+4TaUXSH91+89WPXPpg5K7v+aHiOOmTf/P6am7P2Gl/IET/cZ4Fvf9n1f861f747d1x+Zsu1q2+5M5ded2vuuebclms33/VALr3u1kx846307rlC9thxcHYbOmiB73PiG2/lP/Y+NE/9ZcQCb7/21rtz5iV/zAPXXpAOHdonSf7wxz9lxJ/uyj3XnLvQ3wqw4wE/y+CBW+SHe+7c6nqnNXdY4P2XtFr6mlAUDTT4V3M/nJhh39k3I0feVfQoVecsaFChgwaJBokGFTpokNRWg7kfTqzqx6O8frfqnkWPQAkcNuGqokdYLG3yGasPOOCA9OjRI7fffnv++c9/try0a9cuf/nLX/LPf/5zkZeqi9K+fftsuOF6ufueB1tdv/vuB7PF5hsXNFX16aBBRd++q+flfz6R8eNH56orz83qq3/ys7X8u3EOmunQWn19fXbddWg6d+6URx8bU/Q4VeMcaFChgwaJBhU6aLAgyy7bNUnyzjvvFjtIFTkHzXTQINEgSUaP/mu23rp/+vZdPUmy7rrr5Gtf2yR33nlfwZNVl7OgwYKU8fuEBanFDieefUkGbPrVbLHhup963w36rZU3p0zN/z7+tzQ1NWXKO+/m7ocey1abfbXlPjfcfm/OvvTaHPqf382f/vCb/Pe+3805l1+fP/3lwU94zwv35HMvZqP11mlZqk6S/huvl8lvv5OJb7y1wLdpbGzM+x/MyrJdllmsj/l58zVBg0QD5nMWNKjQQYNEg0SDCh00SDQA4OMaPv0utefCCy/MLbfcksGDB+fwww/PwQcfXPRIi61Hj25paGjI5DentLo+efKU9FxpxYKmqj4dNEiSx//6t+y774/z4osvZcWePTL8yP/Ogw/ckg2++o1Mnfpu0eNVhXPQTIdmX/nK2nnof0dmqaU6ZsaM9/OdXfbPc8+9WPRYVeMcaFChgwaJBhU6aLAgp512TEaNeizPPDO+6FGqxjlopoMGiQZJ8pvfnJdll+2ScePuz7x589KuXbscc8xpue66kUWPVlXOggYLUsbvExak1jrccf/oPPt/L+eP55zwme6/wZfXyilHHJyfn3hWPvxwTubOm5evb7FRhv/X91vuc+HVN+dnB+6ZbbfcNEmycq8V849XXsv1t9+bbw8auMgzTpn6bnr3XKHVte7LL9t82zvvZuVeH/+cuvyG2zJz1uwM3mrzRf54S4KvCRokGjCfs6BBhQ4aJBokGlTooEGiAQAf1yYXq5Nkxx13zCabbJK99947t912Wy699NJFevvZs2dn9uzZra41NTUt9NfXLWlNTa1/eXJdXd3HrpWBDuVucNdd989/5Znk0UfH5PnnHs5ee+2SM8+8qLjBClDmc/BRZe8wfvw/svEmg7Lcsl2z07DtcsnFZ2SbbXcu1XJ14hwkGlTooEGiQYUOGlScdeaJWfcr6+TrW+9U9CiFcA6a6aBBUu4Gu+yyQ3bffafss88hefbZF7L++l/Oaacdk0mT3sxVV91Q9HhVV+azUKFBs7J/n1BRax3emPx2Tjn/8vz+5F+kY4cOn+lt/vHKaznlvMty0B7D8rWN18uUqe/m9IuuzvFnXpz/+emBmfrue3njrbdzzG9/n2N/N/9x1HnzGrNM56VbXt/xgJ/l9cqiwP/7lNh06Pdbbu/ds0duueg3La//689LKp9GC/o5yu33P5zzr7wxZx7305YF7Frha4IGiQbM5yxoUKGDBokGiQYVOmiQaED5NBY9ANSwNrtYnSR9+vTJPffck1NOOSVf/epXF+kPs5NPPjnHHXdcq2t19cukrl3Xz3vMTzRlytTMnTs3PVdq/cwPK6zQPZPfXPCv0/t3pIMGC/LBBzPz9DPPt/wq3zJwDprp0GzOnDn5xz9eTpKMGTsuG2+0QQ45eP/86L+OKHawKnEONKjQQYNEgwodNPioM353fLbfflC+sc2wTJw4qehxqso5aKaDBokGSXLyyUfltNPOy/XX35okeeaZ8Vl11T75+c9/VKrFamdBg48q8/cJH1WLHZ558aVMffe9fPe/ftFybV5jY8Y89XxG/OkvGXPblWnXrr7V2/zhj3/KBl/+Uv5z1x2SJF/64hey9FIds89Pjssh3981dfXNi87H/PiArLd231ZvW18//32dd8IRmTt3XpLkzbenZt+fHZ8bzj+l5faGhnYt/92j23KZ8s67rd7X1HenJUm6L9d6cfrOBx7JMb/9fU4/+r+zxYbrLlKPJcnXBA0SDZjPWdCgQgcNEg0SDSp00CDRAICPq//0u9S2urq6DB8+PH/+859z+umnp1evXp/p7YYPH55p06a1eqmr77KEp/24OXPmZOzYcdl2m61aXd92263yyKNPVH2eouigwYJ06NAha39pzbwxaXLRo1SNc9BMhwWrq6tLx46f7ZmM/h04BxpU6KBBokGFDhpUnHnGCdlxxyEZNHjXvPzyq0WPU3XOQTMdNEg0SJKll146jY2tn19l3rzGVsuEZeAsaFBR9u8TKmq1w+Zf/UpuuvDUXH/+KS0vX17ri/nWN/rn+vNP+dhSdZLMmv1h6utbP0t05WtcU5rSY/nlsmKPbnlt0uSs2melVi8r95r/a6t791yh5XrvFZsXBj5639495y8RrL/Omhnz1POZM2duy7XRY57Kit2XT5+PLBvcfv/DOfo35+eUIw/OVptt+PlE+pz4mqBBogHzOQsaVOigQaJBokGFDhokGgDwcW36Gas/aqONNspGG230me/fsWPHdOzYsdW1Bf36umr43ZkX5fJLz8yYMU/m0cfG5ID99syqq/TJhb+/spB5iqKDBqeccnRuu+2evPrqxKywQo/8Yvih6dp1mVx51fVFj1ZVZT8HFWXvcPzxR+bOO+/La6+9ni5dlsmuu347AwdukW9tv0fRo1VV2c9BokGFDhokGlTooMHZZ52U3XbbMcN23jfTp89Iz/+3ADNt2vTMmjWr4Omqp+znoEIHDRINbr/9nhxxxCF59dXX89xzL2T99b+cQw/dP5dffl3Ro1Vd2c9CooHvE5rVcofOnZbOmquv0ura0kt1zHJdl2m5fsbFIzL57Xdy0uE/SpIM3HzDHPe7i3LtrXfnaxuvlylT382vz78i635pjazYvVuS5Ed77ZxTzrs8y3ReOltuskE+nDMnz7zwUt6b/n72+c63FnnO7b7RP+dfdWOO+s35OWC3HTNh4hv5w4hbctCew1p+lnL7/Q/nqFPPzxE/3Dvrr7Nmpkx9N0nSsWOHdOncaXETfa7K/jUh0SDRIEk6d+7U6reDrr7aqll//S9n6tR38uqrrxc4WXU5CxpU6KBBokGiQYUOGiQaANBam12snjlzZsaMGZNu3bqlX79+rW6bNWtWrrvuuuy9994FTbdorr9+ZLp3Wz5HH3VYevVaMU8/Mz47DN0rEyZMLHq0qtJBg5X79MqVV5yTHj265a23pubxx8dmwIChpfn/ryj7Oagoe4eeK/bIZZeelV69Vsy0adPz1FPP5Vvb75F7732o6NGqquznINGgQgcNEg0qdNDgoIP2SZLcd++Nra7vt99hueLK8iwRlv0cVOigQaLBYYf9Kscc87OcddYJWWGFHpk06c1cfPHVOfHEM4sererKfhYSDXyf0Kytd3hr6ruZNHlKy+s7DhqY9z+YmREj78pvfn9VunTulE03+HIO2/97LffZecg3slTHjrns+lvz2z9ck6WX6pg1V1sle+203WLN0KVzp/z+lF/kxLMvzW4HH5WuXTpn7523y947z1/Svv62ezN33ryceM6lOfGcS1uuD/3mVjnx5z9crI/7eSv714REg0SDJNl4o/Vz7z03tLx++m+OTZJcfsV12W//wwqaqvqcBQ0qdNAg0SDRoEIHDRINAGitrhvvHGgAAQAASURBVKmpqanoIRbVCy+8kEGDBmXChAmpq6vLgAEDMmLEiPTq1StJ8uabb6Z3796ZN2/eIr3fhg59lsS40CbVF/QM7rWkse19eWQJ8dmQ+GwAgAXzfYLvE4DWGurbFT1CTZjbuGiPS/LvyfcJVLz/4q1Fj1C4TmvuUPQIAAAAbcLcDy1zUx2nr7pn0SNQAj+dcFXRIyyW+qIHWBxHHHFE1l133UyePDnjx49P165d079//0yYMKHo0QAAAAAAAAAAAACANqhNLlaPHj06J510Unr06JG+fftm5MiRGTJkSAYMGJCXXnqp6PEAAAAAAAAAAAAAgDamoegBFsfMmTPT0NB69HPPPTf19fUZOHBgrrnmmoImAwAAAAAAAAAAAADaoja5WL322mvniSeeyDrrrNPq+tlnn52mpqYMHTq0oMkAAAAAAAAAAAAAgLaovugBFsdOO+2UESNGLPC2c845J7vvvnuampqqPBUAAAAAAAAAAAAA0FbVNdlAbtHQoU/RI0DNqK+rK3qEwjX68sj/47Mh8dkAAAvm+wTfJwCtNdS3K3qEmjC3cV7RI1ADfJ9Axfsv3lr0CIXrtOYORY8AAADQJsz9cGLRI1ASp6+6Z9EjUAI/nXBV0SMsloaiBwAAAAAAAAAAAACgOjxxDixcfdEDAAAAAAAAAAAAAAAUzWI1AAAAAAAAAAAAAFB6FqsBAAAAAAAAAAAAgNKzWA0AAAAAAAAAAAAAlJ7FagAAAAAAAAAAAACg9CxWAwAAAAAAAAAAAAClZ7EaAAAAAAAAAAAAACg9i9UAAAAAAAAAAAAAQOlZrAYAAAAAAAAAAAAASs9iNQAAAAAAAAAAAABQeharAQAAAAAAAAAAAIDSayh6AAAAAAAAAAAAAACqo7Gu6AmgdnnGagAAAAAAAAAAAACg9CxWAwAAAAAAAAAAAAClZ7EaAAAAAAAAAAAAACg9i9UAAAAAAAAAAAAAQOlZrAYAAAAAAAAAAAAASs9iNQAAAAAAAAAAAABQeharAQAAAAAAAAAAAIDSs1gNAAAAAAAAAAAAAJSexWoAAAAAAAAAAAAAoPQsVgMAAAAAAAAAAAAApWexGgAAAAAAAAAAAAAovYaiBwAAAAAAAAAAAACgOhqLHgBqmGesBgAAAAAAAAAAAABKz2I1AAAAAAAAAAAAAFB6FqsBAAAAAAAAAAAAgNKzWA0AAAAAAAAAAAAAlF5D0QMAtamxqanoEaBm+GwAABbG9wkArc1rnFf0CFAzfJ+Q1NfVFT1CTei05g5Fj1C46Tf9tOgRCtdl2OlFjwAAAADAZ+AZqwEAAAAAAAAAAACA0rNYDQAAAAAAAAAAAACUnsVqAAAAAAAAAAAAAKD0LFYDAAAAAAAAAAAAAKVnsRoAAAAAAAAAAAAAKD2L1QAAAAAAAAAAAABA6TUUPQAAAAAAAAAAAAAA1dFU9ABQwzxjNQAAAAAAAAAAAABQeharAQAAAAAAAAAAAIDSs1gNAAAAAAAAAAAAAJSexWoAAAAAAAAAAAAAoPQsVgMAAAAAAAAAAAAApWexGgAAAAAAAAAAAAAoPYvVAAAAAAAAAAAAAEDpWawGAAAAAAAAAAAAAErPYjUAAAAAAAAAAAAAUHoWqwEAAAAAAAAAAACA0rNYDQAAAAAAAAAAAACUXkPRAwAAAAAAAAAAAABQHY1pKnoEqFmesRoAAAAAAAAAAAAAKD2L1QAAAAAAAAAAAABA6VmsBgAAAAAAAAAAAABKz2I1AAAAAAAAAAAAAFB6FqsBAAAAAAAAAAAAgNKzWA0AAAAAAAAAAAAAlJ7FagAAAAAAAAAAAACg9CxWAwAAAAAAAAAAAAClZ7EaAAAAAAAAAAAAACg9i9UAAAAAAAAAAAAAQOlZrAYAAAAAAAAAAAAASq+h6AEAAAAAAAAAAAAAqI7GogeAGuYZqwEAAAAAAAAAAACA0rNYDQAAAAAAAAAAAACUnsVqAAAAAAAAAAAAAKD0/i0Wq+fMmZNbbrklp512Wq666qq8//77RY+0yA46cJ+8OP6RzHjvH3ns0TuyZf9Nix6pEDpokGiQaDBgy81yy82XZcLLYzL3w4kZOnRw0SMVpuxnIdEg0aCi7B18bWxW9nNQoYMGiQaJBhU6aJCUu8Hhhx+cR0bflqlvj8/E157MDTdcnLXWWqPosQpT5rNQoYEGvzz6J/lw9mutXia8MrbosQrRFs7Cxff+LRv89MKcesvDC73PveNeyoEX/Dlb/+ry9P/FJdn7rJsz+vlXl/hsL056O/udOzKbHfGHfPO4K3PhX8akqamp8LkWhccTmrWFz4UlyTmYr+xnIdGgQgcNEg0SDSp00CDRAID52uRi9de+9rW8++67SZK33norG220Ub773e/moosuygEHHJB+/fpl4sSJxQ65CHbZZWh+e/qxOfmUs7LxpoMzatTj+fOtV2WVVXoXPVpV6aBBokGiQZJ07twp48Y9m0N/fHTRoxTKWdAg0aBCB18bE+egQgcNEg0SDSp00CDRYKsBm+f88y/PlgN2yJDtdk9Du4bcfts16dRp6aJHq7qyn4VEg0SDimeeeT6rrPrVlpcNN9q26JGqri2chacnTM6Njz6XtXp1+8T7jXlpUjZfa+Wcvf+QXHPYztm4b+8cesmdef61KYv9sSdOnZ4NfnrhQm+fMevDHHThbVmha6dc/eNhOXKn/rnigSdz5YPjluhcnzePJ7SNz4UlzTlo5ixoUKGDBokGiQYVOmiQaABAa3VNH/2n9W1EfX193njjjay44or5wQ9+kL/+9a+54447stJKK+Xtt9/O0KFDs/baa+fiiy9epPfb0KHPEpr4k40edWvG/u3pHHzI8JZrT417ICNH3pmjjj6lkJmKoIMGiQaJBv9q7ocTM+w7+2bkyLuKHqXqnAUNEg0qdGitrF8bnYNmOmiQaJBoUKGDBkltNair6kdbsB49umXS609l628My6hRjxUyQ1EPuNbSWSiKBrXVoL6umK8Kvzz6Jxk6dHA22bQ2npG1saAfw9TSWZh+008/du2D2XOy229vzC923jIX3TM2X+rdPYfv2P8zv89hp16XwRuskQMHbdRy7ZbHn8/l9z+ZiVOnp/fyXbL7gK/ku/2/vMC3nzh1er514jX5++kHLvD260Y/k7Nuezz3Hbd3OjS0S5Jccu/fMmLU0/nLr/ZM3ULO94LmSpIuw07/zP9vS4rHE4r/XKgFZT0HibOQaFChgwaJBokGFTpokNRWg7kftp0nE6VtO/4LexQ9AiXwy1euLnqExdImn7H6ox588MGccMIJWWmllZIk3bt3z4knnpj77ruv4Mk+m/bt22fDDdfL3fc82Or63Xc/mC0237igqapPBw0SDRINmM9Z0CDRoEIHEuegQgcNEg0SDSp00CDRYEGWXbZrkuSdd94tdpAqcxY0SDT4qL59V8/L/3wi48ePzlVXnpvVV1+16JGqqi2chZNuGpUB/VbN5mutvMhv29jYlA9mz8mynTq2XLvx0edy7h1/zcFDNsnNh++aQ7bbJOfd+deM/Ov4xZpv3MtvZuM1erUsVSfJ1760St5674O8PnX6Z56LYrWFzwWqw1nQoEIHDRINEg0qdNAg0QCAj2uzi9WVZwJ49913s/rqq7e6bfXVV8+kSZOKGGuR9ejRLQ0NDZn8ZutfCzd58pT0XGnFgqaqPh00SDRINGA+Z0GDRIMKHUicgwodNEg0SDSo0EGDRIMFOe20YzJq1GN55pnFW6Rrq5wFDRINKh7/69+y774/zvbb75kf/vDw9Oy5Yh584JZ067Zc0aNVTa2fhTv/9n95/rUpOXS7TRfr7a948MnM/HBOBq2/Rsu1i+4em5/ssEW2We+L6dO9a7ZZ74vZc6v1csMjzy3Wx5gyfWa6dVm61bXK61Omf/CZ56JYtf65QPU4CxpU6KBBokGiQYUOGiQaAPBxDUUPsLi+//3vp2PHjpkzZ05eeeWV9OvXr+W2SZMmZbnllvvEt589e3Zmz57d6lpTU9NCf3Xbktb0L78KsK6u7mPXykAHDRINEg2Yz1nQINGgQgcS56BCBw0SDRINKnTQINGg4qwzT8y6X1knX996p6JHKYyzoEGiwV133T//lWeSRx8dk+efezh77bVLzjzzouIGK0AtnoU33pmRU28ZnfMP/FY6tl/0H1PdMfb/csFfxuSM/xzcsug8dcbMvPHujBx33YP5n+vnP8vcvMamLLNUh5bXh516XSa90/xs05UKWwy/uOX2Xst3yU2H79ryel1a/8yo8jYL+lnSguaidtTi5wLFcBY0qNBBg0SDRIMKHTRINABgvja5WL3PPvu0/Pe3v/3tzJgxo9XtN954YzbYYINPfB8nn3xyjjvuuFbX6uqXSV27rp/bnJ/FlClTM3fu3PRcaYVW11dYoXsmv/lWVWcpkg4aJBokGjCfs6BBokGFDiTOQYUOGiQaJBpU6KBBosFHnfG747P99oPyjW2GZeLEtvHb7D5PzoIGiQYL88EHM/P0M8+nb9/VP/3O/yZq+Sw8+9pbmTpjZr73uxtbrs1rbMrYlybl2oefyeO/3j/t6hf8C1fv+tv/5bjrHsype2+bzddaueV6Zdnhl7tslXW/0PoZ5dp9ZAn6nP2HZG5jY5Jk8rT3s/95t+ban36n5faGj3zcHl2Wztv/8szU70yfmSTpvkzrxemFzUXxavlzgepyFjSo0EGDRINEgwodNEg0AODjFvzIVI279NJLW73ssssurW4/9thjc8stt3zi+xg+fHimTZvW6qWuvssSnHrB5syZk7Fjx2XbbbZqdX3bbbfKI48+UfV5iqKDBokGiQbM5yxokGhQoQOJc1ChgwaJBokGFTpokGhQceYZJ2THHYdk0OBd8/LLrxY9TiGcBQ0SDRamQ4cOWftLa+aNSZOLHqVqavksbLZmn9zws11y7U++0/LSb5UVst2Ga+ban3xnoUvVd4z9v/zqjw/kpD2+ka36faHVbd27dMqKy3bOxKnvZdUey7Z66dN9/hPq9O7WpeV6r+Wbfyb00fv27jb/50TrrdYzY16alDlz57Vce+SF17JC106t7vdJc1G8Wv5coLqcBQ0qdNAg0SDRoEIHDRINAPi4NvmM1Z+mc+fOn3qfjh07pmPHjq2uLehXt1XD7868KJdfembGjHkyjz42Jgfst2dWXaVPLvz9lYXMUxQdNEg0SDRIks6dO7V6BqHVV1s166//5Uyd+k5effX1AierLmdBg0SDCh18bUycgwodNEg0SDSo0EGDRIOzzzopu+22Y4btvG+mT5+Rnj2bn11o2rTpmTVrVsHTVVfZz0KiQaJBkpxyytG57bZ78uqrE7PCCj3yi+GHpmvXZXLlVdcXPVpV1epZ6LxUh/Tt1a3VtaU7NGTZTh1brp9122OZPO39nPC9byRpXl7+5Yj78/Mdv5b1vtAzU95rfibpju3bpcvSzT/rOWjQRjn1ltHp3LFDtlxnlXw4d16eefWtTJ/5YfYauN4izznkq31z4V/G5Jd/fCD7b/PVTJgyLRff+7f84Jsbtvw86bPMVTSPJ9Tu50I1OQfNnAUNKnTQINEg0aBCBw0SDSinpqIHgBrWZherZ86cmTFjxqRbt27p169fq9tmzZqV6667LnvvvXdB0y2a668fme7dls/RRx2WXr1WzNPPjM8OQ/fKhAkTix6tqnTQINEg0SBJNt5o/dx7zw0tr5/+m2OTJJdfcV322/+wgqaqPmdBg0SDCh18bUycgwodNEg0SDSo0EGDRIODDtonSXLfvTe2ur7ffofliiuvK2KkwpT9LCQaJBokycp9euXKK85Jjx7d8tZbU/P442MzYMDQUjVI2vZZeOu9DzLp3Rktr9/w6LOZ29iYk28alZNvGtVyfYeN18rxu2+dJBm2+TpZqkNDLr//yZzx50ezdIf2WbNXt+yx1bqLNUOXpTvmggO/lZNvGpXvnXFTui7dMXtutW6rJe3PMlfRPJ7Qtj8XPi/OQTNnQYMKHTRINEg0qNBBg0QDAFqra2pqanP/+OCFF17IoEGDMmHChNTV1WXAgAEZMWJEevXqlSR5880307t378ybN+9T3lNrDR36LIlxAQAAAKAUivl9cLWnzT3gCktIfUG/JbLWNLa9H8N87qbf9NOiRyhcl2GnFz0CAADQBsz90DI31fE/X9ij6BEogV+9cnXRIyyW+qIHWBxHHHFE1l133UyePDnjx49P165d079//0yYMKHo0QAAAAAAAAAAAACANqhNLlaPHj06J510Unr06JG+fftm5MiRGTJkSAYMGJCXXnqp6PEAAAAAAAAAAAAAgDamoegBFsfMmTPT0NB69HPPPTf19fUZOHBgrrnmmoImAwAAAAAAAAAAAADaoja5WL322mvniSeeyDrrrNPq+tlnn52mpqYMHTq0oMkAAAAAAAAAAAAAgLaovugBFsdOO+2UESNGLPC2c845J7vvvnuampqqPBUAAAAAAAAAAAAA0Fa1ycXq4cOH5/bbb1/o7eedd14aGxurOBEAAAAAAAAAAAAA0Ja1ycVqAAAAAAAAAAAAAIDPk8VqAAAAAAAAAAAAAKD0LFYDAAAAAAAAAAAAAKXXUPQAAAAAAAAAAAAAAFRHY9EDQA3zjNUAAAAAAAAAAAAAQOlZrAYAAAAAAAAAAAAASs9iNQAAAAAAAAAAAABQeharAQAAAAAAAAAAAIDSs1gNAAAAAAAAAAAAAJSexWoAAAAAAAAAAAAAoPQsVgMAAAAAAAAAAAAApWexGgAAAAAAAAAAAAAoPYvVAAAAAAAAAAAAAEDpWawGAAAAAAAAAAAAAErPYjUAAAAAAAAAAAAAUHoNRQ8AAAAAAAAAAAAAQHU01hU9AdQuz1gNAAAAAAAAAAAAAJSexWoAAAAAAAAAAAAAoPQsVgMAAAAAAAAAAAAApWexGgAAAAAAAAAAAAAoPYvVAAAAAAAAAAAAAEDpWawGAAAAAAAAAAAAAErPYjUAAAAAAAAAAAAAUHoWqwEAAAAAAAAAAACA0rNYDQAAAAAAAAAAAACUnsVqAAAAAAAAAAAAAKD0LFYDAAAAAAAAAAAAAKXXUPQAAAAAAAAAAAAAAFRHY5qKHgFqlmesBgAAAAAAAAAAAABKzzNWAwCfqq7oAWqAf6sJAMCnqa/znXNjk++cgfl8TaCi67DTix6hcNNv/nnRIxSu606nFT0CNcKfDjCfv0X6mgAAQO3xjNUAAAAAAAAAAAAAQOlZrAYAAAAAAAAAAAAASs9iNQAAAAAAAAAAAABQeharAQAAAAAAAAAAAIDSs1gNAAAAAAAAAAAAAJSexWoAAAAAAAAAAAAAoPQsVgMAAAAAAAAAAAAApWexGgAAAAAAAAAAAAAoPYvVAAAAAAAAAAAAAEDpNRQ9AAAAAAAAAAAAAADV0VT0AFDDPGM1AAAAAAAAAAAAAFB6FqsBAAAAAAAAAAAAgNKzWA0AAAAAAAAAAAAAlJ7FagAAAAAAAAAAAACg9CxWAwAAAAAAAAAAAAClZ7EaAAAAAAAAAAAAACg9i9UAAAAAAAAAAAAAQOlZrAYAAAAAAAAAAAAASs9iNQAAAAAAAAAAAABQeharAQAAAAAAAAAAAIDSs1gNAAAAAAAAAAAAAJReQ9EDAAAAAAAAAAAAAFAdjUUPADXMM1YDAAAAAAAAAAAAAKVnsRoAAAAAAAAAAAAAKD2L1QAAAAAAAAAAAABA6VmsBgAAAAAAAAAAAABKz2I1AAAAAAAAAAAAAFB6FqsBAAAAAAAAAAAAgNKzWA0AAAAAAAAAAAAAlJ7FagAAAAAAAAAAAACg9CxWAwAAAAAAAAAAAAClZ7EaAAAAAAAAAAAAACg9i9UAAAAAAAAAAAAAQOk1FD0AAAAAAAAAAAAAANXRmKaiR4Ca1Safsfq1117LlClTWl5/6KGHsscee2TAgAHZc88988gjjxQ43eI56MB98uL4RzLjvX/ksUfvyJb9Ny16pELooEGiQaJBhQ7lbnDgD/bO2DF35+0pz+ftKc/nof8dmcGDty56rEKU+RwkyYAtN8stN1+WCS+PydwPJ2bo0MFFj1SYsp+FRIOKMnfwNWG+Mp+DCg2a6aDBRx3+8//Kh7Nfy29+c2zRo1Sdc9BMBw0SDRINKsrc4fDDD84jo2/L1LfHZ+JrT+aGGy7OWmutUfRYC3TxPWOzwU/Oz6k3j1rofe4d91IOvODWbP3LS9N/+B+y95k3ZfTzE5b4bC++/nb2O+eWbHb47/PNY6/IhXc9kaam+T98L2quRdGWzsKSokEzjyk0K/OfDR9V5g5+/jJfmc9BhQbNdNAg0QCA+drkYvWuu+6av/71r0mSP/3pT/n617+eGTNmpH///vnggw8ycODA/PnPfy54ys9ul12G5renH5uTTzkrG286OKNGPZ4/33pVVlmld9GjVZUOGiQaJBpU6KDBaxMn5RdHnZzNt9gum2+xXe5/4OHcdOMl6ddvraJHq6qyn4Mk6dy5U8aNezaH/vjookcplLOgQUXZO/ia0Kzs5yDRoEIHDT5qo43Wz37775Fx454tepSqcw6a6aBBokGiQUXZO2w1YPOcf/7l2XLADhmy3e5paNeQ22+7Jp06LV30aK08PWFybnz02azVq/sn3m/MP17P5mutnLMP+Fau+cl3snHf3jn04jvy/GtvLfbHnjj1vWzwk/MXevuMWR/moAtvzQrLds7Vh+2cI4dtmSse+HuufPDJJTrX562tnIUlSYNmHlPwZ0NF2Tv4+Uuzsp+DRIMKHTRINACgtbqmj/6z8jaia9euGTduXFZbbbVsvvnm2WmnnXLEEUe03H7OOefkkksuydixYxfp/TZ06PN5j/qZjB51a8b+7ekcfMjwlmtPjXsgI0femaOOPqWQmYqggwaJBokGFTrUVoO6qn60hXvzjadz5JEn5NLL/lj1j13UN0y1dA5qwdwPJ2bYd/bNyJF3FT1K1TkLGlToMJ+vCeU+Bxo006G2GtTXFfedc+fOnfL4Y3fmkEN/keFH/neeHPdMfvazY6s+R2NBDzXW0jkokg4aJBokGlTUUodaeGypR49umfT6U9n6G8MyatRjVf/47938849d+2D2nOz22+vzi523ykV3j8mXenfP4Ttt+Znf57Bf/zGDN+ibAwdv3HLtlsefz+X3/S0Tp05P725dsvuAdfPd/l9Z4NtPnPpevnXC1fn7b3+4wNuve/jpnHXbY7nvf76fDg3tkiSX3Ds2Ix56On85Zq/ULeR7nwXNlSRddzrtM/+/LUlFn4VaUHSDWvjhdFkfU6ilPxuKVEsdauHPyMTPXyrK9vmgQTMdNEhqq8HcDydW9eNRXkestnvRI1ACv355RNEjLJY2+YzV9fX1ee+995Ik//znPzNkyJBWtw8ZMiTjx48vYrRF1r59+2y44Xq5+54HW12/++4Hs8XmGy/krf796KBBokGiQYUOGvyr+vr67Lrr0HTu3CmPPjam6HGqxjmgwlnQoEIHEucg0aBCBw0+6qwzT8ztd9yb++4bVfQoVeccNNNBg0SDRIMKHT5u2WW7JkneeefdYgf5iJNu/N8MWOcL2XytlRf5bRsbm/LB7DlZtlPHlms3PvJszr39sRy83Wa5+Yjdcsh2m+W8Ox7PyL8+v1jzjXvlzWy8Ru+Wpeok+dqXVslb772f16dO/8xz1ZpaPAvVpkE5+bOhmQ6t+flLec+BBs100CDRAICPayh6gMUxcODAjBgxIuutt16++tWv5oEHHsh6663Xcvv999+fPn2KefbpRdWjR7c0NDRk8ptTWl2fPHlKeq60YkFTVZ8OGiQaJBpU6KBBxVe+snYe+t+RWWqpjpkx4/18Z5f989xzLxY9VtU4B1Q4CxpU6EDiHCQaVOigQcWuuwzNV7+6brb42reKHqUQzkEzHTRINEg0qNDh40477ZiMGvVYnnmmNp6Y586/vZjnX5uSqw/bebHe/ooH/p6ZH87JoA3WaLl20d1j8pOhX8s2630xSdKne9e89OY7ueGRZzN0k7UX+WNMee+D9O7WpdW1bl06Nd82/YP06d71M81Va2rtLBRBg3LyZ0MzHZr5+YtzoEEzHTRINADg49rkYvUpp5ySAQMG5PXXX8+WW26Zo446Kn/961+zzjrrZPz48bn22mtzwQUXfOL7mD17dmbPnt3qWlNT00J/bdmS1vQvvya1rq7uY9fKQAcNEg0SDSp00GD8+H9k400GZbllu2anYdvlkovPyDbb7lyqB/cS54D5nAUNKnQgcQ4SDSp0KHeDlVfuldNPPy7f+tb3PvZYV9mU+Rx8lA4aJBokGlTo0OysM0/Mul9ZJ1/feqeiR0mSvPHOjJx688M5/8Dt07H9ov+o7o6xL+aCvzyRM/Yd0rLoPHXGzLzx7owcd+0D+Z/rHmi577zGpiyzVIeW14f9+o+Z9E7zs01XTsIWR17Ucnuv5bvkpiN2a3m9Lq1/blY5Pwv6adqC5qo1tXYWiqAB/mxoVvYOfv7SrOznINGgQgcNEg0AmK9NLlavs846eeyxx3L00Ufn1FNPzfvvv5+rr746DQ0N2WSTTfLHP/4xO+644ye+j5NPPjnHHXdcq2t19cukrt3H/3X9kjRlytTMnTs3PVdaodX1FVbonslvvlXVWYqkgwaJBokGFTpoUDFnzpz84x8vJ0nGjB2XjTfaIIccvH9+9F9HFDtYlTgHVDgLGlToQOIcJBpU6KBBkmy44Xrp2XOFPProHS3XGhoaMmDAZvnRD7+fZbp8MY2NjQVOuOQ5B8100CDRINGgQof5zvjd8dl++0H5xjbDMnHipKLHSZI8+9pbmTpjZr73uxtars1rbMrYl17PtQ8/ncdP/UHa1dcv8G3v+tv/5bhrH8ip+wzK5mut3HK9svDxy10HZt1Ve7Z6m3b189egzzngW5k7r/l7g8nT3s/+5/0p1/5015bbG9rN/7g9unbK29M/aPW+3pkxM0nS/V8Wpxc2Vy2pxbNQbRqUmz8bmunQzM9fnAMNmumgQaIBAB+34Edl2oA11lgjI0aMyLRp0zJp0qRMnDgx77//fh5++OFPXapOkuHDh2fatGmtXurqu3zq233e5syZk7Fjx2XbbbZqdX3bbbfKI48+UfV5iqKDBokGiQYVOmiwMHV1denYscOn3/HfhHNAhbOgQYUOJM5BokGFDhokyX33jcpXv7pNNtlkcMvLE0/8PSNG3JxNNhn8b79UnTgHFTpokGiQaFChQ7MzzzghO+44JIMG75qXX3616HFabLZmn9zw811z7U93aXnpt8oK2W7DtXLtT3dZ6FL1HWNfzK9G3JeT9tw2W/X7QqvbunfplBWX7ZyJb7+XVVdYttVLn+7zn1Sod7cuLdd7dVsmSVrdt3e3+T8rW+8LPTPmpdczZ+68lmuPjH8tK3Tt3Op+nzRXrajVs1BNGuDPhmY6LJifvzQr0znQoJkOGiQaAPBxbfIZqz+qrq4uPXv2/PQ7/ouOHTumY8eOH3tfRfjdmRfl8kvPzJgxT+bRx8bkgP32zKqr9MmFv7+ykHmKooMGiQaJBhU6aHD88Ufmzjvvy2uvvZ4uXZbJrrt+OwMHbpFvbb9H0aNVVdnPQZJ07twpffuu3vL66qutmvXX/3KmTn0nr776eoGTVZezoEFF2Tv4mtCs7Ocg0aBCBw1mzHg/zzw7vtW199+fmbenvvOx6//Oyn4OKnTQINEg0aCi7B3OPuuk7Lbbjhm2876ZPn1GevZsfva5adOmZ9asWYXO1nmpDunbq3ura0t3aJ9lO3VsuX7Wnx/N5Pfezwnf2yZJ8/LyL6+5Lz/fqX/W+0LPTHmv+ZmkO7Zvly5LN/+866DBG+fUmx9O56U6ZMu1V82Hc+flmdfeyvQPZmevr6+/yHMO2XDNXPiXJ/LLEfdl/203zIS3puXie8fmB4M2avmZ2meZq2i1fBaqRYNmHlPwZ0NF2Tv4+Uuzsp+DRIMKHTRINACgtTa7WD1z5syMGTMm3bp1S79+/VrdNmvWrFx33XXZe++9C5pu0Vx//ch077Z8jj7qsPTqtWKefmZ8dhi6VyZMmFj0aFWlgwaJBokGFTpo0HPFHrns0rPSq9eKmTZtep566rl8a/s9cu+9DxU9WlWV/RwkycYbrZ9775n/q3FP/82xSZLLr7gu++1/WEFTVZ+zoEFF2Tv4mtCs7Ocg0aBCBw1o5hw000GDRINEg4qydzjooH2SJPfde2Or6/vtd1iuuPK6IkZaJG9N/yCT3pnR8voNjzybuY2NOfnGh3LyjfMfH9thky/l+N2/kSQZtnm/LNW+IZc/8GTOuPWRLN2hfdbs1S17bLXeYs3QZemOueDAHXLyTQ/le7+7MV2X7pg9B66XvQbOX9L+LHMVra2fhc+DBs08puDPhoqyd/Dzl2ZlPweJBhU6aJBoAEBrdU1NTU1FD7GoXnjhhQwaNCgTJkxIXV1dBgwYkBEjRqRXr15JkjfffDO9e/fOvHnzPuU9tdbQoc+SGBcA2rxifqdDbWlz3zABAFB19QX9NrRa0tj2HmoEoAr8CZm8d/PPix6hcF13Oq3oEagRvmOE+fwZ6WsCwL+a+6FlbqrjiNV2L3oESuDXL48oeoTFUl/0AIvjiCOOyLrrrpvJkydn/Pjx6dq1a/r3758JEyYUPRoAAAAAAAAAAABAzWry4qUKL21Vm1ysHj16dE466aT06NEjffv2zciRIzNkyJAMGDAgL730UtHjAQAAAAAAAAAAAABtTEPRAyyOmTNnpqGh9ejnnntu6uvrM3DgwFxzzTUFTQYAAAAAAAAAAAAAtEVtcrF67bXXzhNPPJF11lmn1fWzzz47TU1NGTp0aEGTAQAAAAAAAAAAAABtUX3RAyyOnXbaKSNGjFjgbeecc0523333NDU1VXkqAAAAAAAAAAAAAKCtapOL1cOHD8/tt9++0NvPO++8NDY2VnEiAAAAAAAAAAAAAKAta5OL1QAAAAAAAAAAAAAAnyeL1QAAAAAAAAAAAABA6VmsBgAAAAAAAAAAAABKz2I1AAAAAAAAAAAAAFB6FqsBAAAAAAAAAAAAgNKzWA0AAAAAAAAAAAAAlF5D0QMAAAAAAAAAAAAAUB2NRQ8ANcwzVgMAAAAAAAAAAAAApWexGgAAAAAAAAAAAAAoPYvVAAAAAAAAAAAAAEDpWawGAAAAAAAAAAAAAErPYjUAAAAAAAAAAAAAUHoWqwEAAAAAAAAAAACA0rNYDQAAAAAAAAAAAACUnsVqAAAAAAAAAAAAAKD0LFYDAAAAAAAAAAAAAKVnsRoAAAAAAAAAAAAAKD2L1QAAAAAAAAAAAABA6TUUPQAAAAAAAAAAAAAA1dGYpqJHgJrlGasBAAAAAAAAAAAAgNKzWA0AAAAAAAAAAAAAlJ7FagAAAAAAAAAAAACg9CxWAwAAAAAAAAAAAAClZ7EaAAAAAAAAAAAAACg9i9UAAAAAAAAAAAAAQOlZrAYAAAAAAAAAAAAASs9iNQAAAAAAAAAAAABQeharAQAAAAAAAAAAAIDSs1gNAAAAAAAAAAAAAJReQ9ED1JK6ogeoEU1FDwA1wteEZr4mkDgHAADwWTQ2+c4ZmM9jSx5PYD5nIemy02lFj1C4GQ/+pugRasIyA39W9AhADfFnJAAA1B6L1QAAAAAAAAAAAAAl4R94wcLVFz0AAAAAAAAAAAAAAEDRLFYDAAAAAAAAAAAAAKVnsRoAAAAAAAAAAAAAKD2L1QAAAAAAAAAAAABA6VmsBgAAAAAAAAAAAABKz2I1AAAAAAAAAAAAAFB6FqsBAAAAAAAAAAAAgNKzWA0AAAAAAAAAAAAAlJ7FagAAAAAAAAAAAACg9CxWAwAAAAAAAAAAAAClZ7EaAAAAAAAAAAAAACi9hqIHAAAAAAAAAAAAAKA6GoseAGqYZ6wGAAAAAAAAAAAAAErPYjUAAAAAAAAAAAAAUHoWqwEAAAAAAAAAAACA0rNYDQAAAAAAAAAAAACUnsVqAAAAAAAAAAAAAKD0LFYDAAAAAAAAAAAAAKVnsRoAAAAAAAAAAAAAKD2L1QAAAAAAAAAAAABA6VmsBgAAAAAAAAAAAABKz2I1AAAAAAAAAAAAAFB6FqsBAAAAAAAAAAAAgNJrKHoAAAAAAAAAAAAAAKqjKU1FjwA1yzNWAwAAAAAAAAAAAAClZ7EaAAAAAAAAAAAAACg9i9UAAAAAAAAAAAAAQOlZrAYAAAAAAAAAAAAASs9iNQAAAAAAAAAAAABQeharAQAAAAAAAAAAAIDSs1gNAAAAAAAAAAAAAJSexWoAAAAAAAAAAAAAoPQsVgMAAAAAAAAAAAAApdcmF6tPP/30vPLKK0WP8bk4/PCD88jo2zL17fGZ+NqTueGGi7PWWmsUPVZhDjpwn7w4/pHMeO8feezRO7Jl/02LHqnqNNDgwB/snbFj7s7bU57P21Oez0P/OzKDB29d9FiFKPtZSDRINEg0qNBBg0SDCh00SDRINKjQQYNEgwFbbpZbbr4sE14ek7kfTszQoYOLHqkwZT8LSbkbeFypma8J85X586FCg7bT4OI/P5T1v39sTr36joXe56/P/TPrf//Yj7388/W3luhsL776ZvY9+dJsesAJ2fbHp+eCPz2QpqamltvveeLZHHjaFfn6IafmawedlL2O/0Mefur/luhMi6OtnIUlSQMNKnTQINEg0aBCBw0SDQCYr00uVv/85z/PGmuskW9+85u59tpr8+GHHxY90mLbasDmOf/8y7PlgB0yZLvd09CuIbffdk06dVq66NGqbpddhua3px+bk085KxtvOjijRj2eP996VVZZpXfRo1WNBhokyWsTJ+UXR52czbfYLptvsV3uf+Dh3HTjJenXb62iR6sqZ0GDRINEgwodNEg0qNBBg0SDRIMKHTRINEiSzp07Zdy4Z3Poj48uepRCOQsaeFypma8Jzcr++ZBokLSdBk+/NDE3PDAma63S8zPd/0+nHJx7z/hpy8uqK3Vf7I898a13sv73j13o7TNmzsqBp12RFZbrkquPOSBH7jkkV9wxOlfc+UjLfcaOfyWbf/mLOeewPTLi2AOzyTqr5dAzrslzr0xa7Lk+b23lLCxJGmhQoYMGiQaJBhU6aJBoAEBrdU0f/efUbUR9fX0uueSS3HLLLbn99tvTtWvX7Lnnntl///3zla98ZbHfb/sOfT7HKRdPjx7dMun1p7L1N4Zl1KjHCpmhqAMxetStGfu3p3PwIcNbrj017oGMHHlnjjr6lIKmqi4NaqtBXVU/2id7842nc+SRJ+TSy/5Y9Y/ta0JxNNAg0aBCBw0SDSp00CDRINGgQgcNEg3+1dwPJ2bYd/bNyJF3FT1K1TkLtdWgVh5bKuPjSh/la0JtfD4URYPaajDjwd8s8PoHs2bnu8dcmKP2/lYuGvm/+dKqK+XwPYYs8L5/fe6f2f/Xl+ehc49I184Lf5KiWx76Wy67/eFMfOud9O6xXL73zc3y3W0W/IyDE996J9v9/Mw8edmxC7z9uvv+mrOuvyf3nfXzdGjfkKT52bVH3PN47v7dT1JXt+Cv+Dv94twM3uzLOejbX291fZmBP1vo3EtSLZ2FomigQYUOGiQaJBpU6KBBUlsN5n44saofj/I6dLXvFj0CJXDWy9cWPcJiaZPPWJ0k2223XW655Za89tprOfzww3PXXXdl/fXXz6abbpqLLroo06dPL3rExbLssl2TJO+8826xg1RZ+/bts+GG6+Xuex5sdf3uux/MFptvXNBU1aWBBgtSX1+fXXcdms6dO+XRx8YUPU7VOAsaJBokGlTooEGiQYUOGiQaJBpU6KBBogHzOQsa/KuyPq5EM58PGiRtp8FJV96erdZfK5t/eY3P/DbfPebCbPPfv8kBv748jz/3z1a33fjAmJxz4705eOdv5OaTD84h39km5950f0aO+vtizffk/72ajdZerWWpOkm+tm7fvPXu9Eyc8u4C36axsTEfzJqdZT9h+bua2spZWJI00KBCBw0SDRINKnTQINGA8mr04qUKL21Vm12srlhxxRVz+OGH57nnnssDDzyQfv365bDDDkuvXr2KHm2xnHbaMRk16rE888z4okepqh49uqWhoSGT35zS6vrkyVPSc6UVC5qqujTQ4KO+8pW1887UF/L+jH/m3HNOyXd22T/PPfdi0WNVjbOgQaJBokGFDhokGlTooEGiQaJBhQ4aJBown7OgQUXZH1eimc8HDZK20eCOR5/Kc69MyqHf2eYz3X+F5brkV9/fIb89eNf89pDvZrVe3fODUy/PmPEvt9zn9yMfzE93G5xtN+6XlVdYPttu3C97Dt48NzzwxGLNOGXajHTv2rnVtcrrb0+bscC3ueLORzJz9pwM2vTLi/UxP29t4SwsaRpoUKGDBokGiQYVOmiQaADAxzV8+l1qz8J+pdaAAQMyYMCAnHXWWbn22k9+CvHZs2dn9uzZra41NTUt9H1Xw1lnnph1v7JOvr71ToXNULSmpta/HLKuru5j1/7daaBBkowf/49svMmgLLds1+w0bLtccvEZ2WbbnUv3QzBnQYNEg0SDCh00SDSo0EGDRINEgwodNEg0YD5nQQOPK/FRZf98SDRIarfBG29Py6nX3JkLfrZXOnZo/5neZrVePbJarx4tr6/fd5W88fZ7ufyO0dnoS6tl6nvv542p7+XYS/6U4y4d2XK/efMas0ynpVpe3+kX52bS2+8mSSopNj/wxJbbe3VfLjef9F/zP/C//PywUm9BP1W849Gncv4tD+TM/94t3bsu85n+v6qlVs9CNWmgQYUOGiQaJBpU6KBBogEA87XJxepP+0Ora9euOeCAAz7xPieffHKOO+64Vtfq6pdJu3Zd/3/PtzjO+N3x2X77QfnGNsMyceKkQmYo0pQpUzN37tz0XGmFVtdXWKF7Jr/5VkFTVZcGGnzUnDlz8o9/vJwkGTN2XDbeaIMccvD++dF/HVHsYFXiLGiQaJBoUKGDBokGFTpokGiQaFChgwaJBsznLGhQUfbHlWjm80GDpPYbPPvy65n63vvZ/dgLW67Na2zKmBdeyR/vfTx//cMv067+03/57nprrJzbHhmXZP7PEH/1/aFZd40+re5X/5H3de5P9sjcefOSJJPfmZ79Trks1/3PQS23N7Rr1/LfPZZd5mPPTD31vfeTJN2Wbb04fedjT+fYS/6U0360azb/8hqfOnu11PpZqAYNNKjQQYNEg0SDCh00SDQA4OM+/dGIGtTY2JgVV/z/96sWhg8fnmnTprV6qa/v8jlNuGjOPOOE7LjjkAwavGtefvnVQmYo2pw5czJ27Lhsu81Wra5vu+1WeeTRxfvVbG2NBhp8krq6unTs2KHoMarGWdAg0SDRoEIHDRINKnTQINEg0aBCBw0SDZjPWdBgYcr2uBLNfD5okNR+g836fTE3nPDDXPs/B7W8fHn13tlu8/Vy7f8c9JmWqpPk+QmT0mO55gXn7ssukxWX75LX3nonq/bs3upl5RWWb3mb3j2Wa7neq/uySdLqvr17LNdy3/X7rpIx41/JnLlzW6498vQ/ssJyXdLnI/e749Gn8qs/3JKTD9w5W22w1v+PMp+/Wj8L1aCBBhU6aJBokGhQoYMGiQYAfFybfMbqz0PHjh3TsWPHVtfq6hb0C7uWrLPPOim77bZjhu28b6ZPn5GePZv/9dO0adMza9asqs9TpN+deVEuv/TMjBnzZB59bEwO2G/PrLpKn1z4+yuLHq1qNNAgSY4//sjceed9ee2119OlyzLZdddvZ+DALfKt7fcoerSqchY0SDRINKjQQYNEgwodNEg0SDSo0EGDRIMk6dy5U/r2Xb3l9dVXWzXrr//lTJ36Tl599fUCJ6suZ0EDjys18zWhWdk/HxINktpu0Hnpjllz5Z6tri3doX2WW2bplutnXn9PJr/zXk78wbAkyVV3PZLePZbLGn1WzJx583Lb6HG554nncvrBu7a8jx/u+PX8+uo7sszSHdN/vb6ZM2dennn59bz3/szs/R9fW+Q5h2y+bi645YH88g+3ZL/tB2TCm1Nz8Z8fyg+GDmz52eIdjz6Voy+6OYd/7z+y3horZ8q705MkHTu0T5dOSy1Wn89bLZ+FatFAgwodNEg0SDSo0EGDRAMAWmuzi9UzZ87MmDFj0q1bt/Tr16/VbbNmzcp1112Xvffeu6DpPruDDtonSXLfvTe2ur7ffofliiuvK2Kkwlx//ch077Z8jj7qsPTqtWKefmZ8dhi6VyZMmFj0aFWjgQZJ0nPFHrns0rPSq9eKmTZtep566rl8a/s9cu+9DxU9WlU5CxokGiQaVOigQaJBhQ4aJBokGlTooEGiQZJsvNH6ufeeG1peP/03xyZJLr/iuuy3/2EFTVV9zoIGHldq5mtCs7J/PiQaJG2/wZR3p+eNt6e1vD5n3rz89tq/ZPI709OxQ0PW6LNizjnsexmw/vxniB42cKMs1aF9LrtjdH533d1ZumP7rLlyz+wxaPPFmqFLp6Vy4c/3zklX3pbvHfv7dO28dPYavEX2/o8tWu5zw/1PZO68xpx05e056crbW64P7b9+jj9gp8X6uJ+3tn4WPg8aaFChgwaJBokGFTpokGgAQGt1TU1NTUUPsaheeOGFDBo0KBMmTEhdXV0GDBiQESNGpFevXkmSN998M7179868efMW6f2279BnSYzb5rS5AwFLSPWfw742+ZoAAAAAsOg8tuRxJaC1GQ/+pugRasIyA39W9AgAANSwuR9a5qY6Dl7tu0WPQAmc8/K1RY+wWOqLHmBxHHHEEVl33XUzefLkjB8/Pl27dk3//v0zYcKEokcDAAAAAAAAAAAAANqgNrlYPXr06Jx00knp0aNH+vbtm5EjR2bIkCEZMGBAXnrppaLHAwAAAAAAAAAAAADamIaiB1gcM2fOTEND69HPPffc1NfXZ+DAgbnmmmsKmgwAAAAAAAAAAAAAaIva5GL12muvnSeeeCLrrLNOq+tnn312mpqaMnTo0IImAwAAAAAAAAAAAADaoja5WL3TTjtlxIgR2WuvvT522znnnJPGxsZccMEFBUwGAAAAAAAAAAAAULsa01T0CFCz6oseYHEMHz48t99++0JvP++889LY2FjFiQAAAAAAAAAAAACAtqxNLlYDAAAAAAAAAAAAAHyeLFYDAAAAAAAAAAAAAKVnsRoAAAAAAAAAAAAAKD2L1QAAAAAAAAAAAABA6VmsBgAAAAAAAAAAAABKz2I1AAAAAAAAAAAAAFB6FqsBAAAAAAAAAAAAgNKzWA0AAAAAAAAAAAAAlJ7FagAAAAAAAAAAAACg9CxWAwAAAAAAAAAAAACl11D0AAAAAAAAAAAAAABUR1PRA0AN84zVAAAAAAAAAAAAAEDpWawGAAAAAAAAAAAAAErPYjUAAAAAAAAAAAAAUHoWqwEAAAAAAAAAAACA0rNYDQAAAAAAAAAAAACUnsVqAAAAAAAAAAAAAKD0LFYDAAAAAAAAAAAAAKVnsRoAAAAAAAAAAAAAKD2L1QAAAAAAAAAAAABA6VmsBgAAAAAAAAAAAABKz2I1AAAAAAAAAAAAAFB6DUUPAAAAAAAAAAAAAEB1NKap6BGgZnnGagAAAAAAAAAAAACg9CxWAwAAAAAAAAAAAAClZ7EaAAAAAAAAAAAAACg9i9UAAAAAAAAAAAAAQOlZrAYAAAAAAAAAAAAASs9iNQAAAAAAAAAAAABQeg1FD1BLmooeAKgpviYAAMCnqyt6gBrg7w4ALIg/HwBaW2bgz4oeoSZMv/aQokcoXJfvnl30CAAAALBQnrEaAAAAAAAAAAAAACg9i9UAAAAAAAAAAAAAQOlZrAYAAAAAAAAAAAAASs9iNQAAAAAAAAAAAABQeg1FDwAAAAAAAAAAAABAdTQWPQDUMM9YDQAAAAAAAAAAAACUnsVqAAAAAAAAAAAAAKD0LFYDAAAAAAAAAAAAAKVnsRoAAAAAAAAAAAAAKD2L1QAAAAAAAAAAAABA6VmsBgAAAAAAAAAAAABKz2I1AAAAAAAAAAAAAFB6FqsBAAAAAAAAAAAAgNKzWA0AAAAAAAAAAAAAlJ7FagAAAAAAAAAAAACg9CxWAwAAAAAAAAAAAACl11D0AAAAAAAAAAAAAABUR1Oaih4BapZnrAYAAAAAAAAAAAAASs9iNQAAAAAAAAAAAABQeharAQAAAAAAAAAAAIDSs1gNAAAAAAAAAAAAAJSexWoAAAAAAAAAAAAAoPQsVgMAAAAAAAAAAAAApWexGgAAAAAAAAAAAAAoPYvVAAAAAAAAAAAAAEDpWawGAAAAAAAAAAAAAErPYjUAAAAAAAAAAAAAUHoWqwEAAAAAAAAAAACA0msoegAAAAAAAAAAAAAAqqOx6AGghnnGagAAAAAAAAAAAACg9CxWAwAAAAAAAAAAAAClZ7EaAAAAAAAAAAAAACg9i9UAAAAAAAAAAAAAQOlZrAYAAAAAAAAAAAAASq/NLlbfeuutOeaYY/LII48kSe67775st912+Y//+I/8/ve/L3i6RTNgy81yy82XZcLLYzL3w4kZOnRw0SMV5qAD98mL4x/JjPf+kccevSNb9t+06JGqylloVvZzkGhQoYMGiQaJBhU6aJBoUKGDBkm5Gxx++MF5ZPRtmfr2+Ex87cnccMPFWWutNYoeq+r8HXK+Mn8+VGigQYUOGiQaJBpU6KBBokHSdhpcfP+4bHDkpTn11scWep97n345B/7hrmx9/DXpf8xV2fu8P2f0CxOX+GwvvjE1+114ezY7+op886Rrc+E9f09TU1Phcy2qtnIWliQNmpW5g8cT5ivzOagoewOfD/OV/SwkGgAwX5tcrL7gggsybNiw3HbbbfmP//iPXH311dlxxx3Tp0+frLbaavnxj3+cM888s+gxP7POnTtl3Lhnc+iPjy56lELtssvQ/Pb0Y3PyKWdl400HZ9Sox/PnW6/KKqv0Lnq0qnEWnINEgwodNEg0SDSo0EGDRIMKHTRINNhqwOY5//zLs+WAHTJku93T0K4ht992TTp1Wrro0arK3yGblf3zIdEg0aBCBw0SDRINKnTQINEgaTsNnn71rdz4+PistdLyn3i/Mf98M5uv2Ttnf/+bueaQHbLxF3vl0MvvyfMT317sjz1x6vRscOSlC719xqwPc9Af/pIVunbK1QfvkCOHbpYrHno6Vz70zBKd6/PWVs7CkqRBs7J38HhCs7Kfg0SDxOdDhbOgAQCt1TV99J8StxH9+vXLYYcdlgMOOCD3339/tttuu5x++un50Y9+lCS57LLLcuqpp+bZZ59dpPfb0KHPkhh3kcz9cGKGfWffjBx5V9GjVN3oUbdm7N+ezsGHDG+59tS4BzJy5J056uhTCpysGGU9C86BBhU6aJBokGhQoYMGiQYVOmiQ1FaDuqp+tAXr0aNbJr3+VLb+xrCMGrXwZ3ZbUmrhgZWy/h0yqa3Ph6JooEGFDhokGiQaVOigQaJBUnsNpl97yMeufTB7TnY7e2R+8e0tctF9T+ZLvbvl8B02+8zvc9hvb87g9VbPgdtu0HLtlidezOUPPpWJ78xI7+WXye5fWyff3WKdBb79xKnT861Tb8jfT/nPBd5+3aPP56w7x+S+o3dLh4Z2SZJLHhiXEaOfy1+G75q6ugX/zXBBcyVJl++e/Zn/3z5PtXYWiqBBMx3m83hCuc+BBq35fCj3WailBnM/rL3f+sG/p31X+07RI1ACl7x8Q9EjLJY2+YzVL7/8cgYPbv71G1tvvXXmzZuXrbbaquX2r3/963nllVeKGo/F0L59+2y44Xq5+54HW12/++4Hs8XmGxc0FdXmHGhQoYMGiQaJBhU6aJBoUKGDBokGC7Lssl2TJO+8826xg1B1Ph80SDSo0EGDRINEgwodNEg0SNpOg5P+9EgGfGnlbL7moj8jYmNjUz6YPSfLdurQcu3Gx8fn3LvG5ODBG+bmn+yUQwZvmPPu/ltGjnlxseYb98rkbLx6z5al6iT52pp98tZ7H+T1d2Z85rmK1FbOwpKkQTMdSJyDRAPmcxY0AODj2uRidffu3VsWp19//fXMnTs3EyZMaLn9lVdeSbdu3Yoaj8XQo0e3NDQ0ZPKbU1pdnzx5SnqutGJBU1FtzoEGFTpokGiQaFChgwaJBhU6aJBosCCnnXZMRo16LM88M77oUagynw8aJBpU6KBBokGiQYUOGiQaJG2jwZ1PvpTnJ76dQ/9jo8V6+yseejoz58zNoPVWb7l20b1P5iff2jTbfGW19OnWJdt8ZbXs2b9fbnhs8f7ONGXGzHTrsnSra5XXp0yf+ZnnKlJbOAtLmgbNdCBxDhINmM9Z0ACAj2soeoDF8e1vfzv77bdf9tlnn4wcOTJ77713fvrTn6a+vj51dXX5+c9/nkGDBn3i+5g9e3Zmz57d6lpTU9NCf1UV1dHU1PoXKNfV1X3sGv/+nAMNKnTQINEg0aBCBw0SDSp00CDRoOKsM0/Mul9ZJ1/feqeiR6FAPh80SDSo0EGDRINEgwodNEg0SGq3wRvvzsiptz6W8/cdnI7tF/3Htnf8/aVccM/fc8be26TbMs2LzlNnzMob097PcTeOyv/c9HDLfec1NmWZpdq3vD7stzdn0rvNzzZdSbHFr65sub3Xcsvkpp/M/3vWv/4EtdJvQT9aXdBctaJWz0I1adBMBxLnINGA+ZwFDQCYr00uVv/617/O7Nmz88c//jFbbrllzjrrrJx55pn59re/nTlz5mTgwIE5+eSTP/F9nHzyyTnuuONaXaurXyZ17bouydFZiClTpmbu3LnpudIKra6vsEL3TH7zrYKmotqcAw0qdNAg0SDRoEIHDRINKnTQINHgo8743fHZfvtB+cY2wzJx4qSix6EAPh80SDSo0EGDRINEgwodNEg0SGq/wbMT387UGbPyvXNGtlyb19iUsS+/kWsfeS6Pn7B32tUv+BcQ3/XkSznuxlE5dY+ts/mavVuuV5Z/fjmsf9ZdpfX/d7v6+VvQ5/znNzN3XmOSZPJ7H2T/39+Raw/9dsvtDe3mf9weyyydt//lmanfmTErSdL9XxanFzZX0Wr9LFSDBs10IHEOEg2Yz1nQgPJqin84AAuz4L+J17jOnTvnoosuylNPPZXzzz8/7du3z89+9rNMmzYt06ZNy/33358VV/zkX8UwfPjwlvtXXurqu1Tp/4B/NWfOnIwdOy7bbrNVq+vbbrtVHnn0iYKmotqcAw0qdNAg0SDRoEIHDRINKnTQINGg4swzTsiOOw7JoMG75uWXXy16HAri80GDRIMKHTRINEg0qNBBg0SDpPYbbNa3d2748Y659tBvt7z0W7lHtttgjVx76LcXulR9x99fyq+uH5WTdhuYrdZepdVt3bssnRW7dsrEqdOzao+urV76dJv/s9Deyy/Tcr3Xcp2TpNV9ey+/TMt91/vCihnzzzczZ+68lmuPvDgxK3Tt1Op+nzRX0Wr9LFSDBs10IHEOEg2Yz1nQAICPa5PPWL0wSy21VJZaaqnPdN+OHTumY8eOra7VLeh3VVVB586d0rfv6i2vr77aqll//S9n6tR38uqrrxcyUxF+d+ZFufzSMzNmzJN59LExOWC/PbPqKn1y4e+v/PQ3/jfhLDgHiQYVOmiQaJBoUKGDBokGFTpokGhw9lknZbfddsywnffN9Okz0rNn8zOJTJs2PbNmzSp4uurxd8hmZf98SDRINKjQQYNEg0SDCh00SDRIartB547t03el5VtdW7p9Q5bt1LHl+ll3PpHJ0z7ICd9tXvS54+8v5ZfX/W9+vsNmWW/VFTJl+gdJko7tG9JlqQ5JkoO2/WpOvfXRdO7YPlt+aeV8OG9ennnt7UyfOTt7DfjKIs85ZIMv5sJ7/p5fXj8q+2+9XiZMeS8X3z8uP9hmg5afr36WuYpWy2ehWjRoVvYOHk9oVvZzkGiQ+HyocBY0AKC1NrtYPXPmzIwZMybdunVLv379Wt02a9asXHfdddl7770Lmm7RbLzR+rn3nhtaXj/9N8cmSS6/4rrst/9hBU1VfddfPzLduy2fo486LL16rZinnxmfHYbulQkTJhY9WtU4C85BokGFDhokGiQaVOigQaJBhQ4aJBocdNA+SZL77r2x1fX99jssV1x5XREjFcLfIZuV/fMh0SDRoEIHDRINEg0qdNAg0SBp+w3eem9mJr37fsvrNzw2PnMbm3Lynx7NyX96tOX6Dhv2zfG7DkiSDNt0rSzVoV0uf/DpnHHHE1m6Q0PWXGn57NH/y4s1Q5elOuSC/Qfl5FsezffOuTVdl+6QPQd8OXsNmP/+PstcRWvrZ+HzoEGzsnfweEKzsp+DRIPE50OFs6ABAK3VNTU1NRU9xKJ64YUXMmjQoEyYMCF1dXUZMGBARowYkV69eiVJ3nzzzfTu3Tvz5s37lPfUWkOHPktiXAAAAPi3Vczvfqotbe6BFQAAoDDTrz2k6BEK1+W7Zxc9AgBAzZr7oWVuquM/V9u56BEogUtfvvHT71SD6oseYHEcccQRWXfddTN58uSMHz8+Xbt2Tf/+/TNhwoSiRwMAAAAAAAAAAAAA2qA2uVg9evTonHTSSenRo0f69u2bkSNHZsiQIRkwYEBeeumloscDAAAAAAAAAAAAANqYhqIHWBwzZ85MQ0Pr0c8999zU19dn4MCBueaaawqaDAAAAAAAAAAAAABoi9rkYvXaa6+dJ554Iuuss06r62effXaampoydOjQgiYDAAAAAAAAAAAAANqi+qIHWBw77bRTRowYscDbzjnnnOy+++5pamqq8lQAAAAAAAAAAAAAQFvVJherhw8fnttvv32ht5933nlpbGys4kQAAAAAAAAAAAAAQFvWJherAQAAAAAAAAAAAAA+Tw1FDwAAAAAAAAAAAABAdTQWPQDUMM9YDQAAAAAAAAAAAACUnsVqAAAAAAAAAAAAAKD0LFYDAAAAAAAAAAAAAKVnsRoAAAAAAAAAAAAAKD2L1QAAAAAAAAAAAABA6VmsBgAAAAAAAAAAAABKz2I1AAAAAAAAAAAAAFB6FqsBAAAA4P9j787D5ZrvP4C/783NIpEgEhFLUEtbte9bqDU/RBSVllpaS22laKmtqlpLtRSlm9rVUmupNXYpsYQKIbHLIhFZRCJku/f3x+3c5EqipM2cG+f16jPPY845M+eTd7/fM3NmPvcMAAAAAAAApaexGgAAAAAAAAAAAAAoPY3VAAAAAAAAAAAAAEDpaawGAAAAAAAAAAAAAEqvrugCAAAAAAAAAAAAAKiO+oaGokuAFssVqwEAAAAAAAAAAACA0tNYDQAAAAAAAAAAAACUnsZqAAAAAAAAAAAAAKD0NFYDAAAAAAAAAAAAAKWnsRoAAAAAAAAAAAAAKD2N1QAAAAAAAAAAAABA6WmsBgAAAAAAAAAAAABKT2M1AAAAAAAAAAAAAFB6GqsBAAAAAAAAAAAAgNLTWA0AAAAAAAAAAAAAlJ7GagAAAAAAAAAAAACg9OqKLgAAAAAAAAAAAACA6mgougBowVyxGgAAAAAAAAAAAAAoPY3VAAAAAAAAAAAAAEDpaawGAAAAAAAAAAAAAEqvrugCAAAAgIVXQ9EFtAA1RRfQQhgLSbu6NkWXULipM6YVXUKLYD4AAPPS9Tt/KrqEwk36+0+KLqFwnXb9VdElFM57ZpiltsanSw0NjgqJYyMAtBSuWA0AAAAAAAAAAAAAlJ7GagAAAAAAAAAAAACg9DRWAwAAAAAAAAAAAAClp7EaAAAAAAAAAAAAACg9jdUAAAAAAAAAAAAAQOlprAYAAAAAAAAAAAAASk9jNQAAAAAAAAAAAABQenVFFwAAAAAAAAAAAABAddSnoegSoMVyxWoAAAAAAAAAAAAAoPQ0VgMAAAAAAAAAAAAApaexGgAAAAAAAAAAAAAoPY3VAAAAAAAAAAAAAEDpaawGAAAAAAAAAAAAAEpPYzUAAAAAAAAAAAAAUHoaqwEAAAAAAAAAAACA0tNYDQAAAAAAAAAAAACUnsZqAAAAAAAAAAAAAKD0NFYDAAAAAAAAAAAAAKWnsRoAAAAAAAAAAAAAKL26ogsAAAAAAAAAAAAAoDoa0lB0CdBiuWI1AAAAAAAAAAAAAFB6GqsBAAAAAAAAAAAAgNLTWA0AAAAAAAAAAAAAlJ7GagAAAAAAAAAAAACg9DRWAwAAAAAAAAAAAAClp7EaAAAAAAAAAAAAACg9jdUAAAAAAAAAAAAAQOlprAYAAAAAAAAAAAAASk9jNQAAAAAAAAAAAABQehqrAQAAAAAAAAAAAIDS01gNAAAAAAAAAAAAAJReXdEFAAAAAAAAAAAAAFAd9UUXAC2YK1YDAAAAAAAAAAAAAKWnsRoAAAAAAAAAAAAAKL2FtrH6o48+ymWXXZYDDjggO+64Y3r37p0jjzwyDzzwQNGlzZdDD9k/rw59IpM/eD1PDrg7W2y+UdElFaLsOfTcYuPcdusVGfbWwMyYNjJ9+vQquqSqk0Gjss+FCjnIwDGhUdnHQYUcZOCYIIPZlX0+JDIwH5Ljj/9Bnnj8zowfNzQjRzyfm266NKuttnLRZRWiTPNh8803yt9u+ktefX1AJk95M7132b7Z+j/+6deZPOXNZrcHH76loGqrw1xorkzzYW68PjQq+zhIZFAhBxkkMkjKl8F/es84uwt/d0YmT3kzhx/xvSpWOG+X9huYdY6+OOfc8tg8t3nujXey/wU3Z6uT/pKNj/tjvnHmX3P1w/9a4LW9+s64HPi7W7PxcX/M9j+7In+65+k0NDQ0rX/g+ddzyO//nq1PvjSb/+TP2e+3N+Xxl4ct8Lo+q0O+v1+eHdgv48YOybixQ/LYo7enV6+tiy6rMGU7LszOe+ZZyjwOfnrKsZk2dUSz27C3ny26rKpzbJylzPOhQgYAVCyUjdWvvfZavvrVr+b444/PPffck3vvvTdJ8vTTT6dXr17p27dvZsyYUXCVn92ee/bJeeeelrPOvjAbbNQr/fs/lX/ccU2WX36ZokurKjkkHTq0z6BBL+Woo08pupTCyMBcqJCDDBLHhMQ4qJCDDBLHhEQGFeaDDBLzIUm27LlJ/vCHK7NFz12y4057pa5VXe6689q0b79I0aVVVdnmQ/sOi+TFF17Oj4792Ty3ue++h/OllTZsuu2xW8tokllQzIVZyjYf5sbrg3GQyKBCDjJIZJCUM4PP8p4xSXrvsn022HCdvPPO6CpV9uleHPZubn5icFZbZslP3W6RNq3z7S3WzKVH7pZbTtg7B++wQS6+68nc9Pjg+d73yHEfZJ2jL57n+skfT8uhf/h7unbqkL8eu2dO2L1nrnrouWYN3QNffyebfHn5/O6Q3rn2x32zwarL5qi/3JkhI96b77r+l0aMHJWTTj4rm2y6UzbZdKc89PA/c8vNl2X11VcrurSqK+NxYXbeMzcq+zhIksGDh2T5Hus23dZbf7uiS6o6x8ZG5oMMAGiupmH2P6NdSOy0007p0aNHfv/736e2tjZnn312Hn300dx111159dVXs8MOO2T//ffPaaed9rmet67Nsgum4P/g8f535NnnXswPjjyxadkLgx7O7bffk5NPObuQmoogh+ZmTBuZ3b95QG6//d6iSylMWTMwFxrJQQaf5JhQ7nEgBxl8UlmPCbMrcwbmgww+qej5UFPIXufUpUvnjHrnhWy9ze7p3//Jqu+/qA+YWtJ8aFfXpqr7mzzlzXz7W9/PP+7o17Tsj3/6dRZbvFP2+tYhVa2lYuqMaYXsd3ZFz4XEfGgpin59KIpxIIMKOcggkUHS8jJoCe8Zk6T7Mt3y8CO35ht99s9Nt1yWiy+6LL+/+PKq1PTezcfMsWzK1Gn59m/+lpO+uVUuue+ZfHnZLjl+956f+TmPvezuLNKmLmfsM+vq3Lc9+XKufOC5jBz/QZbp3DF7bblWvrXFmnN9/MhxH2TnX1ydf51/xFzX/63/i7nwH0/kwV8ekDZ1rZIkl90/MNc99kLuO23/1NTM/cxw97OvTa91Vs0h/7dhs+Wddv3VZ/63LUjvjn4xJ5zwy1x+xfVV33eRTQot7bhQpLK+Z05a1jionccxZEH66SnHpk+fXtlwo5ZxxfKW1LpUxmNjS5oPRWlJGcyYNrKq+6O8vrXCN4ougRK44e3bii5hviyUV6x+5JFH8qMf/Si1tY3lH3vssbn//vszbty4rLrqqjn//PNz5ZVXFlzlZ9O6deust95a6Xf/I82W9+v3SDbdZIOCqqo+OUAjc6GRHGRAI+OgkRxkALMzH2TAvC22WKckyYQJ7xdbSBWZD3PXs+cmefOtp/Pc8w/mdxefla5dP/2Kf180ZZwLiflAI+NABhVykEEig0QG81JTU5O//OW8XPDbP+fll18tupwkyZk3PZqeq6+YTb68/Od+7JAR7+X5N0dl/ZVnXUTr5icG5+I7B+QHO2+cW0/cO0fuvEl+f9eTuf2pIfNV36C3RmeDVZZpaqpOks2+0iPvTfww74yfNNfH1Nc3ZMrH07NYh7bztc8Fqba2Nn379kmHDu0z4MmBRZdTVY4LJMZBxSqrrJS33nwmQ4c+nmuuvjgrrdSj6JIKVdZjo/kgAwDmVFd0AfNj8cUXz6RJs05Qp0yZkhkzZqRNm8a/8F5rrbUyatSoosr7XLp06Zy6urqMeXdss+VjxoxNt6WXKqiq6pMDNDIXGslBBjQyDhrJQQYwO/NBBszbr3/9s/Tv/2QGDx5adClVYz7Mqd99D+fWW+/K8GEjs8KKy+enpx6bO+/6a7bYvE+mTSv+atLVUMa5kJgPNDIOZFAhBxkkMkhkMC/H/ujQzJgxM7///RVFl5IkuefZVzNkxHv567F7fq7H7fCzKzJh8keZWd+QQ/9vw+y+6epN6y6595kcu+vm2XbtlZMkyy7ZKW+8OyE3PT44fTb6yueuceykKVmmc8dmyzp3bN+47oMpWXbJTnM85qqHn8tH06Znh3VW+dz7W1DWWOMreezR29OuXdtMnvxhvrnnQS2mub5aHBdIjIMkeerp53LAAUfn1VffyFLduuTEE36YRx6+Leusu03Gj3+/6PKqquzHRvNBBgDMaaFsrN5+++1z7LHH5o9//GPatm2bE088Meuss046dmw8mR02bFiWWurTX9imTp2aqVOnNlvW0NAwz59pWtA++bMmNTU1LeqnTqpFDtDIXGgkBxnQyDhoJAcZwOzMBxnQ3IUXnJE11/hqvr71bkWXUgjzYZabb76z6b9feumVPPvsoLw8pH/+b8etc/vfv/g/7Vz2uZCYDzQyDmRQIQcZJDJIZDC7ddZdI4cf8b1svlnvoktJkoyeMCnn3PJY/nBYn7Rt/fm+ur78qN0zZer0DHp7dC6844ks32Wx7Lj+ahk/+aOMfn9yfn79Qzn9hoeatp9Z35BF27Vpur/72ddm1L+vNl0ZDZse/6em9d07d8wtJ+zddP+T3yJXxtDcvl6+e+Ar+eM9T+f8A3dqasBuCYYOfT0bbLhDFl+sU3bbfadcdun52Xa7PUrVQFjhuEBS7nFw772zjo8ZnAwYMDBDXv5n9t13z1xwwSXFFVYAx8ZGZZ4PFTIAoGKhbKw+55xzsuuuu2b11VdPTU1NevTokVtuuaVp/XvvvZfjjjvuU5/jrLPOys9//vNmy2pqF01Nqzn/mnhBGjt2fGbMmJFuS3dttrxr1yUz5t33qlpLkeQAjcyFRnKQAY2Mg0ZykAHMznyQAXM6/7e/SO/eO2SbbXfPyJELxy94/a+YD//Zu6Pfy7BhI7PyyisWXcoCV+a5kJgPNDIOZFAhBxkkMkhkMDebbbZhunZdMkOG/rNpWV1dXc46++Qc8YMD8rWv9qxqPS8Nfy/jJ3+Uvc/9W9OymfUNefaNd3JD/xfy1G8OTava2rk+tnKV6FWXWTLjJ32UP97zdHZcf7WmBqiffuvrWXOFbs0eM/tzXfT93pkxsz5JMmbihznoottyw3Hfalpf12rWtl06ts+4SVOaPdeEyR8lSZb8ROP0vc++mp9f/1DO+W6vbPLl5T9bEFUyffr0vP76W0mSgc8Oygbrr5Mjf3BQDj/iJ8UWVkWOCyTGwdxMmfJRXhw8JKusslLRpVRd2Y+N5oMMAJjT3M9CW7illloqTzzxRIYOHZrnn38+r776atZdd92m9d/85jdz5JFHfupznHjiiZk4cWKzW01tx099zIIwffr0PPvsoGy37ZbNlm+33ZZ5YsAzVa+nKHKARuZCIznIgEbGQSM5yABmZz7IgOYuOP+X+cY3dswOvfrmrbeGF11O1ZkP/1nnzotnueWWyejRX+wvgco+FxLzgUbGgQwq5CCDRAaJDObm+utuzSYb7ZjNNtm56fbOO6Nz/m//nG/02b/q9Wy82nK56Sffzg3HfavptvryS2Wn9VfLDcd9a55N1Z/U0NCQaTNmJmlsdF5qsQ4ZOe6D9Oi6eLNbpRk7SZbp3KlpefclGr8nnn3bZTrP2natFZfOwNdHZfq/95EkTwwZnq6LdcgynWd9x3z3wFdy6nUP5Mx9t8+WX1vxv4mmKmpqatK2bZv/vOEXiOMCiXEwN23atMlXvrxqRo8aU3QphSvbsdF8kAEAc1oor1hdseqqq873Y9u2bZu2bds2W1Yzt99pqoLfXnBJrrz8ggwc+HwGPDkwBx+4T3osv2z+9OerC6mnKHJIOnRo3+wvQFdasUfWXvtrGT9+QoYPf6fAyqpHBuZChRxkkDgmJMZBhRxkkDgmJDKoMB9kkJgPSfK7C8/Mt7/9jey+xwGZNGlyunVrvKLKxImT8vHHHxdcXfWUbT506NA+X1p5hab7K6ywfNZc66uZMH5iJkx4PyedfHT+ftvdGT16TFZYYbn87OfHZdy48bnj9nsLrHrBMhdmKdt8mBuvD8ZBIoMKOcggkUFSzgw+7T3jiBHvZPz495ttP336jLz77nt59dU3qlxp0qFdm6zSfclmyxZpU5fF2rdrWn7hHU9kzMQP88t9tkuSXP/YC+m+xKJZsdsSSZLn3hiVqx76V77dc82m5zj0/zbKObc8lg7t2mSLr66QaTNmZvDwMZk0ZWr23Xqdz13njuuvmj/d+1R+eu0DOWj79TPsvYm59P6B+X6vDZq+Y7574Cv56V8fyHG7b5G1VuyWsR98mCRp27ouHRdp+2lPXxW/+MUJueeeBzNixDvp2HHR9O27a7baatPs3Ps7RZdWdWU8LszOe+ZGZR8HZ599Su688/4MHz4yXbt2yUknHpVOnRbN1dfcWHRpVeXY2Kjs8yGRAQDNLbSN1R999FEGDhyYzp07Z/XVV2+27uOPP87f/va37LfffgVV9/nceOPtWbLzEjnl5GPSvftSeXHw0OzSZ98MGzay6NKqSg7JBuuvnQfuv6np/rm/OS1JcuVVf8uBBx1TUFXVJQNzoUIOMkgcExLjoEIOMkgcExIZVJgPMkjMhyQ59NDGq8k9+MDNzZYfeOAxuerqv83tIV9IZZsP6623Zu6+9/qm+78656dJkmuuvilH//CUfO1rX87ee++WxRbvlNGj38ujjzyR/fc9MpMnf1hUyQucuTBL2ebD3Hh9MA4SGVTIQQaJDJJyZvBp7xkPPeS4osqab+99MCWjJkxqut/Q0JAL/zEgI8d/kLra2izXpVOO6r1pvrnZ15q22X3T1dOuTV2ufPC5nH/741mkbeus2n3JfGerteerho6LtM0fD9s1Z930SPY+98Z0at82+3x97ez79XWatrnp8cGZUV+fs256NGfd9GjT8l02/Ep+8Z1t52u//0vdluqSKy6/MN27L5WJEyflhRdezs69v5MHHnis6NKqrozHhdl5z9yo7ONguWW75+qrLkqXLp3z3nvj89RTz6Znzz6l+fdXODY2Kvt8SGRAOdWnoegSoMWqaWhoWOhmyCuvvJIddtghw4YNS01NTXr27Jnrrrsu3bt3T5K8++67WWaZZTJz5sz/8EzN1bVZdkGUCwAAAHyBFfP7Vy3PQvcB0wLQrq48PxM7L1NnTCu6hBbBfAAA5sV7xuS9m8vTuDkvnXb9VdElFM57ZpiltqBfV29JFsLWpQVCCiTJjGmauamOPVfYtegSKIEb3/570SXMl9qiC5gfP/nJT7LmmmtmzJgxGTp0aDp16pTNN988w4YNK7o0AAAAAAAAAAAAAGAhtFA2Vj/++OM588wz06VLl6yyyiq5/fbbs+OOO6Znz5554403ii4PAAAAAAAAAAAAAFjI1BVdwPz46KOPUlfXvPSLL744tbW12WqrrXLttdcWVBkAAAAAAAAAAAAAsDBaKBurv/KVr+SZZ57JV7/61WbLf/e736WhoSF9+vQpqDIAAAAAAAAAAAAAYGFUW3QB82O33XbLddddN9d1F110Ufbaa680NDRUuSoAAAAAAAAAAAAAYGG1UDZWn3jiibnrrrvmuf73v/996uvrq1gRAAAAAAAAAAAAALAwWygbqwEAAAAAAAAAAAAA/pc0VgMAAAAAAAAAAAAApaexGgAAAAAAAAAAAAAoPY3VAAAAAAAAAAAAAEDp1RVdAAAAAAAAAAAAAADV0ZCGokuAFssVqwEAAAAAAAAAAACA0tNYDQAAAAAAAAAAAACUnsZqAAAAAAAAAAAAAKD0NFYDAAAAAAAAAAAAAKWnsRoAAAAAAAAAAAAAKD2N1QAAAAAAAAAAAABA6WmsBgAAAAAAAAAAAABKT2M1AAAAAAAAAAAAAFB6GqsBAAAAAAAAAAAAgNLTWA0AAAAAAAAAAAAAlJ7GagAAAAAAAAAAAACg9OqKLgAAAAAAAAAAAACA6qgvugBowVyxGgAAAAAAAAAAAAAoPY3VAAAAAAAAAAAAAEDpaawGAAAAAAAAAAAAAEpPYzUAAAAAAAAAAAAAUHoaqwEAAAAAAAAAAACA0tNYDQAAAAAAAAAAAACUnsZqAAAAAAAAAAAAAKD0NFYDAAAAAAAAAAAAAKWnsRoAAAAAAAAAAAAAKD2N1QAAAAAAAAAAAABA6WmsBgAAAAAAAAAAAABKr67oAgAAAAAAAAAAAACojoaGhqJLgBZLYzUAAJ9ZTdEF0CI4xQZorrbWD4Ilycz6+qJLKNyM+plFl1A47xMa1dZ459yurk3RJRRuyvSpRZcAQAs0dca0oksoXI9vX1x0CYWb+Otdii6hcJ2Ou6PoEloE5w5JvaYujW3xeQIA0LL45g8AAAAAAAAAAAAAKD2N1QAAAAAAAAAAAABA6WmsBgAAAAAAAAAAAABKT2M1AAAAAAAAAAAAAFB6GqsBAAAAAAAAAAAAgNLTWA0AAAAAAAAAAAAAlJ7GagAAAAAAAAAAAACg9DRWAwAAAAAAAAAAAAClp7EaAAAAAAAAAAAAACg9jdUAAAAAAAAAAAAAQOnVFV0AAAAAAAAAAAAAANVRn4aiS4AWyxWrAQAAAAAAAAAAAIDS01gNAAAAAAAAAAAAAJSexmoAAAAAAAAAAAAAoPQ0VgMAAAAAAAAAAAAApaexGgAAAAAAAAAAAAAoPY3VAAAAAAAAAAAAAEDpaawGAAAAAAAAAAAAAEpPYzUAAAAAAAAAAAAAUHoaqwEAAAAAAAAAAACA0tNYDQAAAAAAAAAAAACUnsZqAAAAAAAAAAAAAKD06oouAAAAAAAAAAAAAIDqqC+6AGjBXLEaAAAAAAAAAAAAACjMo48+ml122SXLLLNMampqcttttzVb39DQkNNOOy3LLLNMFllkkXz961/P4MGDm20zderUHHnkkenSpUs6dOiQPn36ZMSIEZ+rDo3VAAAAAAAAAAAAAEBhPvzww6y99tq56KKL5rr+nHPOyXnnnZeLLrooTz/9dJZeeulsv/32mTRpUtM2Rx99dG699dZcf/316d+/fyZPnpzevXtn5syZn7mOuv/6XwIAAAAAAAAAAAAAMJ923HHH7LjjjnNd19DQkPPPPz8nn3xydt999yTJlVdemW7duuXaa6/NIYcckokTJ+bSSy/N1Vdfne222y5Jcs0112T55ZfP/fffn169en2mOlyxGgAAAAAAAAAAAAD4n5k6dWo++OCDZrepU6fO13O9+eabGT16dHbYYYemZW3bts1WW22Vxx9/PEkycODATJ8+vdk2yyyzTNZYY42mbT4LjdUAAAAAAAAAAAAAwP/MWWedlcUWW6zZ7ayzzpqv5xo9enSSpFu3bs2Wd+vWrWnd6NGj06ZNmyyxxBLz3OazqJuvCgEAAAAAAAAAAAAA5uLEE0/Mscce22xZ27Zt/6vnrKmpaXa/oaFhjmWf9Fm2mZ0rVgMAAAAAAAAAAAAA/zNt27ZNp06dmt3mt7F66aWXTpI5rjw9ZsyYpqtYL7300pk2bVomTJgwz20+C43VAAAAAAAAAAAAAECLtNJKK2XppZdOv379mpZNmzYtjzzySDbbbLMkyfrrr5/WrVs322bUqFF58cUXm7b5LOr+d2UDAAAAAAAAAAAAAHw+kydPzmuvvdZ0/80338y//vWvdO7cOT169MjRRx+dM888M6uuumpWXXXVnHnmmWnfvn323nvvJMliiy2WAw88MD/60Y+y5JJLpnPnzvnxj3+cNddcM9ttt91nrkNjNQAAAAAAAAAAAABQmGeeeSZbb7110/1jjz02SbL//vvniiuuyPHHH5+PPvoohx9+eCZMmJCNN9449913Xzp27Nj0mN/+9repq6tL375989FHH2XbbbfNFVdckVatWn3mOmoaGhoa/nf/rIVbXZtliy4BAKBFqym6AFoEJxAAzbWqrS26hBZhZn190SUUrq72s38o90U1o35m0SW0CLU13jm3q2tTdAmFmzJ9atElANACeZeQLL7IokWXULi3T9/6P2/0BdfpuDuKLqFFcO6Q1GtZ8doQ3zvA7GZMG1l0CZTELj16F10CJXDHsH8UXcJ88c1fC3HoIfvn1aFPZPIHr+fJAXdni803Krqkquq5xca57dYrMuytgZkxbWT69OlVdEmFkEOjss+HRAYVcpBBIgOvDcnxx/8gTzx+Z8aPG5qRI57PTTddmtVWW7nosqrqkO/vl2cH9su4sUMybuyQPPbo7enVq5xfvpT9mFAhBxkkMkhkMHTo45n68fA5bhec/8uiS6u6Mo+FVq1a5bTTfpwhQ/pnwoRX8vLL/XPSST9MTQm/nC/zOPik4487ItOmjshvfnNa0aUsUJttvmFuuPGSDH3tiXzw4RvZuff2c2yz2pdXzvV/+3OGv/N8Ro4elAceujnLLbdMAdVWl/kggwo5yCCRQSKDMn629MNjv5/7Hropb454Ni+99niu/OvFWXmVlebYbtXVvpSrr/tDXh/2TN4c8Wzuvv+GLLtc96rXW7fmlmn3nVOyyKG/zSKH/jZt+x6f2hW+9qmPafXljdJu71OyyOEXZpGDfpU22++XtOuwQOusWXKZtN3j2CxyxIVpd+DZqdtop+Y1rbxO2u72wyxy8K9n/Tt6rL5Aa5pfZT4u/PSUYzNt6ohmt2FvP1t0WYUo8zjw3UtzZR4LFWXPwHeylFGD//lfFf63sFpoG6s//PDDXHLJJfne976XHXfcMTvttFO+973v5S9/+Us+/PDDosv7XPbcs0/OO/e0nHX2hdlgo17p3/+p/OOOa7L88l/8D/grOnRon0GDXspRR59SdCmFkoP5kMigQg4ySGSQeG1Iki17bpI//OHKbNFzl+y4016pa1WXu+68Nu3bL1J0aVUzYuSonHTyWdlk052yyaY75aGH/5lbbr4sq6++WtGlVZVjQiM5yCCRQSKDJNl8897pscJ6Tbcdd9orSXLzLQvnX//Pr7KPhR//+LAcdNA+OfroU7POOtvkpJPOzDHHHJLDD/9e0aVVVdnHwezWX3/tHHjQdzJo0EtFl7LAdejQPi++8HJ+fOxpc12/0ko9cl+/v+WVV17Pzjvulc032TnnnH1RPp76xb6StPkggwo5yCCRQSKDpJyfLW22+Ua57JK/5v+265s9v/G91NW1yo23XtrsM8UVV1o+/7j32rz66hv5Ru998/Ut+uS8c36fqR9X/71Cw+QJmfbP2/Lx9Wfl4+vPSv3woWm7y2Gp6Tz3Ju/aZVZOmx2+mxmD/5mPr/l5pt7159QutULabLvvfNdQ03HJtP/hH+e9QZt2abfbD9Pw4cR8fP3Zmf7w9Wm93vapW3e7WXUtu2pmDns5U2+/qPHfMWJo2vY5PDVdl5/vuhYEx4Vk8OAhWb7Huk239dbf7j8/6Aum7OPAdy+zlH0sJDJIfCcLQHM1DQ0L3++qvPTSS9l+++0zZcqUbLXVVunWrVsaGhoyZsyYPPLII+nQoUPuu+++rL765/vr17o2yy6gij/d4/3vyLPPvZgfHHli07IXBj2c22+/JyefcnYhNRVpxrSR2f2bB+T22+8tupRClTUH80EGFXKQQSKDT2oJrw0t4bqHXbp0zqh3XsjW2+ye/v2fLLqcwrw7+sWccMIvc/kV11d930WdQDgmNJKDDBIZJC0rg1a1LePv1n/z659lp522y+pf61nI/mfW1xey35Y0FupqW1V1f0lyyy2XZ8yY93Loocc3Lbvuuj/mo48+zgEHHF31embUz6z6PpOWNQ6S4n7Ou0OH9nnqyXty5FEn5cQTfpjnBw3Oj398WiG1tKtrU9X9ffDhG9nrW4fkzn/0a1p2+RUXZPqMGfn+QT+qai0VU6YX08Dd0uZDEWTQSA4ySGSQtLwMWsLna0mxny0tvsiiVd/nkksukSFvDEifHb+TJx5/Jkny58vOy/TpM3LEIcf/h0f/7719+n++Yvgih5ybaf1vzszBj8+xrm697VO35pb5+Mqfzlq29tdTt/4O+fiyk5qWtVp907Ref4fUdOqShg/GZcbzD2XGoEfmur+ajktmkQPOyJQLDp3r+ro1t0zrzb+Rjy45Ppk5o3HZBr1St/bW+fjSE+b572i3z6mZ8cozmfHUXc2Wdzrujnn/4xewlnRcKOLc4aenHJs+fXplw41axtVY6wtqWWlJ46AlvDYU/d1LkY1LLWksFEUGzRX9neyMaSML2S/l07vHzkWXQAn8Y9idRZcwX1rGN3+f0xFHHJEtt9wy7777bm677bb86U9/yp///Ofcdttteffdd7PlllvmiCOOKLrMz6R169ZZb7210u/+5iew/fo9kk032aCgqqAY5oMMKuQgg0QGzNtii3VKkkyY8H6xhRSktrY2ffv2SYcO7TPgyYFFl1M1jgmN5CCDRAaJDOamdevW2Wuv3XPFlTcUXUpVGQvJ448/na233jyr/Ptnzddc86vZbLMNc889DxZcWfUYB7NceMEZuevuB/Lgg/2LLqVwNTU12eH/ts5rr76ZW/9+RV5/66k8+PAt2bn39kWXtkCZDzKokIMMEhkkMpibsn621GmxjkmSCRMmJml8r7D9Dl/P66+9lb/d8pe89NrjueeBv2XHnbctssz8u7i0Wm2DpK5N6ke9OddN6ke9nppFF0/tims0LmjfMa1WWS8z33qxaZtWX9sirTfdNdMf/3s+vvq0TH/8trTeZJe0+uom81VWbfcvZeaIV5uaqpNk5tsvpXbRxVPTacl5/WOSNu2Sj6fM1z4XBMeFRqusslLeevOZDB36eK65+uKstFKPokuqKuNgTmX97sVYkAEAzE1d0QXMjyeffDLPPPNM2rSZ86onbdq0yUknnZSNNtqogMo+vy5dOqeuri5j3h3bbPmYMWPTbemlCqoKimE+yKBCDjJIZMC8/frXP0v//k9m8OChRZdSVWus8ZU89ujtadeubSZP/jDf3POgvPzyq0WXVTWOCY3kIINEBokM5qZPn15ZfPFOufrqG4supaqMheQ3v/l9FlusYwYNeigzZ85Mq1at8rOf/Tp/+9vtRZdWNcZBo7579sm6666ZTTdzpZkk6brUkunYcdEc86ND88vTz8upP/1Vttt+q/z1uj9k5x33zj/7P1V0iQuE+SCDCjnIIJFBIoPZlf2zpdPPODEDHn8mQ/79b+7adcks2rFDjjrm4Jz1y/Nz+s9+k22265krrrkou/XeL4//8+mq11iz5DJp1/f4pK51Mn1qpt75pzSMHzXXbetHvZFp916etjselLRqnZpWrTLj9ecz/eFZVyBvvfFOmf7YTZn5+r+SJDM/GJfpnbunbo2emfnygM9fX/tOafhgXPOFUz6Y97okdettl5q6Npnxastp4ndcSJ56+rkccMDRefXVN7JUty458YQf5pGHb8s6626T8ePfL7q8qjAO5lTW716MBRkAwNwslI3VSyyxRF599dWsvvrqc13/2muvZYkllvjU55g6dWqmTm3+U4wNDQ2pKehnOhs+8fM2NTU1cyyDsjAfZFAhBxkkMqC5Cy84I2uu8dV8fevdii6l6oYOfT0bbLhDFl+sU3bbfadcdun52Xa7PUr1BVjimFAhBxkkMkhkMLvvfffbuffehzJq1LtFl1KIMo+FPffcJXvttVv23//IvPTSK1l77a/l17/+WUaNejfXXHNT0eVVVZnHwXLLdc+55/48O++89xyfeZZVbU3jjzXedef9ufiiy5IkLwx6ORtvvF4OPOg7X9jG6ooyz4cKGTSSgwwSGSQySMr92dKvfnNqVv/aaun9f3s3LaupbXyvcM9dD+RPv78ySfLiC0Oy4UbrZf8Dvl1IY3XDhHfz8bVnpKbtImm1ynppu/3++fjm8+baXF3TuXtab9U305+8MzOHvZSa9oulTc/d02ab72Ta/Vcniyya2o6d02a7/ZJt95n1wNpWybSPmu622+fU1HTs/O8nbfyefJHDzp9V06Tx+fia02fdzyfnzby/W2+12gZpvUnvTL3jD8lHkz57EFVS5uPCvfc+NOvO4GTAgIEZ8vI/s+++e+aCCy4prrAClHkczK7M371UGAsyAIDZLZSN1QcffHD233//nHLKKdl+++3TrVu31NTUZPTo0enXr1/OPPPMHH300Z/6HGeddVZ+/vOfN1tWU7toalp1WoCVz2ns2PGZMWNGui3dtdnyrl2XzJh336tqLVA080EGFXKQQSID5nT+b3+R3r13yDbb7p6RI+d+pZYvsunTp+f1199Kkgx8dlA2WH+dHPmDg3L4ET8ptrAqcUxoJAcZJDJIZPBJPXosm2222SLf+tb3iy6l6oyF5KyzTs6vf/373HjjHUmSwYOHpkePZXPccYeXprHaOEjWW2+tdOvWNQMG3N20rK6uLj17bpzDD/tuFu34pdTX1xdYYfWNGzch06dPb7oqZcXQoa9n003XL6iqBc98kEGFHGSQyCCRwezK+tnSWeeckl47bpM+O+2TUe/M+kPU8f9+r/DKkNebbf/KK69nk00Keq9QPzMNE99LQ5L6McNS222F1K2zdaY/eO0cm7beoFfqR72eGc/2S5I0ZGSmPTQ17fY8LtMe/3vy7wboaQ9ck/rRbzZ/cMOs94VT/35RY7N1kppFF0+7b/4oH197RrOamh425YPUtF+s+XO179i0bnatVl0/bbbbL1Pv+nPqhw/5PCkscI4Lc5oy5aO8OHhIVlllpaJLqRrjYJayf/diLMgAAOamtugC5sdpp52WE088Meedd17WXXfdLLvssllmmWWy7rrr5rzzzssJJ5yQU0899VOf48QTT8zEiROb3WpqO1bpXzDL9OnT8+yzg7Ldtls2W77ddlvmiQHPVL0eKJL5IIMKOcggkQHNXXD+L/ONb+yYHXr1zVtvDS+6nBahpqYmbdu2KbqMqnFMaCQHGSQySGTwSfvt1zdjxozNXXc/UHQpVWcsJIssssgcDbMzZ9antnah/NhvvhgHyYMP9s+6626bDTfs1XR75pl/5brrbs2GG/YqXVN18u9xMXBQVl3tS82Wr7LKihk+/J2CqlrwzAcZVMhBBokMEhl8mjJ8tnT2r3+anXfZIbvvsn+GvT2i2brp06fnuWdfyMqrNm8kXXnlFTN8+MhqljlvNTWpadV67utat0k+eRXRf7/nq6mpSaZMSv2kCalZrEtjs/bstw/GNT2kYdL42ZaPb1w2+7aTxs96+lFvpNWyqzQ1YidJqx5fTf3k95s9Z6vVNkibHfbPtHsuTf1bL/63KfzPOS7MqU2bNvnKl1fN6FFjii6laoyDRr57MRYSGQDA3CyUV6xOkp/85Cf5yU9+kjfffDOjR49Okiy99NJZaaXP9leUbdu2Tdu2bZstq6mZ908VLUi/veCSXHn5BRk48PkMeHJgDj5wn/RYftn86c9XF1JPETp0aN/sL2BXWrFH1l77axk/fsIX+ouOT5KD+ZDIoEIOMkhkkHhtSJLfXXhmvv3tb2T3PQ7IpEmT061b41/MT5w4KR9//HHB1VXHL35xQu6558GMGPFOOnZcNH377pqttto0O/f+TtGlVZVjQiM5yCCRQSKDipqamuy3X99cc81NmTlz5n9+wBdQ2cfCXXfdn5/85MgMH/5OXn75lay99tdy1FEH5cor/1Z0aVVV9nEwefKHGfzS0GbLPvzwo4wbP2GO5V8kHTq0z5dWXqHp/oorLp811/pqJoyfmBEj3skF51+SK666MP/s/1Qee3RAttt+y+y407bZ6f/2LrDqBa/s8yGRQYUcZJDIIJFBUs7Pln517s+yxzd7Z7+9D8/kyR9mqaW6JEk++GBSPv54apLk4gsvzSWX/zZPPP50/vnYk9lm257ptePW+cbO+1W93tab7ZqZbw1Ow6QJSZu2qVttw9Quu1qm/v13/17/jdQsunim3XdFkmTmGy+kzbb7pG7NLTPz7ZdS02GxtN5qz8wc/WYaPpyYJJn+5D/SZqtvJdM+zsy3Xkxa1aW22wqpads+M577/H+YO2PoU2m98c5ps8P+mf70PaldfKm03nDHTH/yzqZtGpuqv5fpj/4tM0e/mbT/969Fz5iWTGs5n+WW/bhw9tmn5M4778/w4SPTtWuXnHTiUenUadFcfc2NRZdWVWUfB757maXsYyGRQeI7WQCaW2gbq19++eUMGDAgm222WTbddNMMGTIk55xzTqZOnZp99tkn22yzTdElfmY33nh7luy8RE45+Zh0775UXhw8NLv02TfDhrWQv4augg3WXzsP3D/r52nP/c1pSZIrr/pbDjzomIKqqj45mA+JDCrkIINEBonXhiQ59ND9kyQPPnBzs+UHHnhMrrq6HA1D3ZbqkisuvzDduy+ViRMn5YUXXs7Ovb+TBx54rOjSqsoxoZEcZJDIIJFBxbbb9swKPZbLlVfeUHQphSn7WDjmmFPzs5/9OBde+Mt07dolo0a9m0sv/WvOOOOCokurqrKPg7Jad701c9c91zXdP+tXpyRJ/nrNTTnskOPzjzvuy9E//Gl+9KPDcs5vfpZXX30j++x9eAY88cW+4pb5IIMKOcggkUEig6Scny0dcFDjH1L9/a5rmi0/8rATcv21tyZJ7vrH/TnumNPyw2O/nzN/dUpef/XNfG/fo/LkgIFVr7emfae06fW91LTvlEz7KPVjR2bq33+X+mEvN67vsFhqOnZu2n7my09kepu2qVv762nd85tpmDol9SOGZnr/W2dtM/ifmTZjWlqvt31ab75bMmNa6seOzIx/PTh/RU77OB/fekHabL1X2n37xGTqlEx/7v7MeO7+pk3q1twyNa1apc3We6XN1ns1LZ/x0hOZ1u/K+dvvAlD248Jyy3bP1VddlC5dOue998bnqaeeTc+efUrz768o+zjw3cssZR8LiQwS38kC0FxNQ8MnfyOo5bvnnnuy6667ZtFFF82UKVNy6623Zr/99svaa6+dhoaGPPLII7n33ns/d3N1XZtlF1DFAABfDMX8vgctzUJ3AgGwgLWqrS26hBZh5r9/drrM6mb7SeyymlFfziunf1JtQb+M15K0q2tTdAmFmzJ9atElANACeZeQLL7IokWXULi3T9+66BIK1+m4O4ouoUVw7pDUL3wtK/9zRoHvHWB2M6aVp6GdYvXusXPRJVAC/xh253/eqAVaKL/5O/3003Pcccdl3Lhxufzyy7P33nvn4IMPTr9+/XL//ffn+OOPz9lnn110mQAAAAAAAAAAAADAQqKu6ALmx+DBg3PVVVclSfr27Zt99903e+yxR9P6vfbaK5deemlR5QEAAAAAAAAAAAC0SPV+LwDmaaG8YvXsamtr065duyy++OJNyzp27JiJEycWVxQAAAAAAAAAAAAAsFBZKBurV1xxxbz22mtN95944on06NGj6f7w4cPTvXv3IkoDAAAAAAAAAAAAABZCdUUXMD8OO+ywzJw5s+n+Gmus0Wz93XffnW222abaZQEAAAAAAAAAAAAAC6mFsrH60EMP/dT1Z5xxRpUqAQAAAAAAAAAAAAC+CGqLLgAAAAAAAAAAAAAAoGgaqwEAAAAAAAAAAACA0tNYDQAAAAAAAAAAAACUnsZqAAAAAAAAAAAAAKD0NFYDAAAAAAAAAAAAAKWnsRoAAAAAAAAAAAAAKD2N1QAAAAAAAAAAAABA6dUVXQAAAAAAAAAAAAAA1dHQ0FB0CdBiuWI1AAAAAAAAAAAAAFB6GqsBAAAAAAAAAAAAgNLTWA0AAAAAAAAAAAAAlJ7GagAAAAAAAAAAAACg9DRWAwAAAAAAAAAAAAClp7EaAAAAAAAAAAAAACg9jdUAAAAAAAAAAAAAQOlprAYAAAAAAAAAAAAASk9jNQAAAAAAAAAAAABQehqrAQAAAAAAAAAAAIDS01gNAAAAAAAAAAAAAJReXdEFAAAAAAAAAAAAAFAd9UUXAC2YK1YDAAAAAAAAAAAAAKWnsRoAAAAAAAAAAAAAKD2N1QAAAAAAAAAAAABA6WmsBgAAAAAAAAAAAABKT2M1AAAAAAAAAAAAAFB6GqsBAAAAAAAAAAAAgNLTWA0AAAAAAAAAAAAAlJ7GagAAAAAAAAAAAACg9DRWAwAAAAAAAAAAAAClV1d0AS1JTdEFtBANRRdAi1BbY0bUN5gNAJ/kyAgAc2pw7sC/1TfUF10CLYTPFJIp06cWXQIAtEjeJSQTPppcdAmF63TcHUWXULhJ959RdAktQudePyu6hMLVz5xRdAmF89oAANCyuGI1AAAAAAAAAAAAAFB6rlgNAAAAAAAAAAAAUBINfjMB5skVqwEAAAAAAAAAAACA0tNYDQAAAAAAAAAAAACUnsZqAAAAAAAAAAAAAKD0NFYDAAAAAAAAAAAAAKWnsRoAAAAAAAAAAAAAKD2N1QAAAAAAAAAAAABA6WmsBgAAAAAAAAAAAABKT2M1AAAAAAAAAAAAAFB6GqsBAAAAAAAAAAAAgNLTWA0AAAAAAAAAAAAAlJ7GagAAAAAAAAAAAACg9OqKLgAAAAAAAAAAAACA6qhPQ9ElQIvlitUAAAAAAAAAAAAAQOlprAYAAAAAAAAAAAAASk9jNQAAAAAAAAAAAABQehqrAQAAAAAAAAAAAIDS01gNAAAAAAAAAAAAAJSexmoAAAAAAAAAAAAAoPQ0VgMAAAAAAAAAAAAApaexGgAAAAAAAAAAAAAoPY3VAAAAAAAAAAAAAEDpaawGAAAAAAAAAAAAAEpPYzUAAAAAAAAAAAAAUHp1RRcAAAAAAAAAAAAAQHU0NDQUXQK0WK5YDQAAAAAAAAAAAACUnsZqAAAAAAAAAAAAAKD0NFYDAAAAAAAAAAAAAKWnsRoAAAAAAAAAAAAAKD2N1QAAAAAAAAAAAABA6WmsBgAAAAAAAAAAAABKT2M1AAAAAAAAAAAAAFB6GqsBAAAAAAAAAAAAgNLTWN0CHPL9/fLswH4ZN3ZIxo0dkscevT29em1ddFmFOPSQ/fPq0Ccy+YPX8+SAu7PF5hsVXVLVyWCW4487ItOmjshvfnNa0aVUnXHQSA4ySGSQyKBCDjJIZFAhBxkkMkhk8NNTjs20qSOa3Ya9/WzRZVVdzy02zm23XpFhbw3MjGkj06dPr6JLqirjYJayHxMq5CCDRAaJDCrkIINEBokMKsqeQ9nPHSoWlnFw6V2PZ52Dz8o51/f7TNs/99qIrH/I2en780sXcGXJqyPG5MBfX5OND/91tj/ud/nTHf3T0NDQtP6BZ4fmkPOuy9bHnJ/Njzw3+511ZR5/8Y0FXte8bL75RrnppkvzxhtP5aOP3s4uu+wwxzYnn3x03njjqYwfPzT33nt9vvrVVQuotPoWlvmwoDguzlL2sZDIIJEBALN8IRur33333Zx++ulFl/GZjRg5KiedfFY22XSnbLLpTnno4X/mlpsvy+qrr1Z0aVW15559ct65p+Wssy/MBhv1Sv/+T+Ufd1yT5ZdfpujSqkYGs6y//to58KDvZNCgl4oupeqMg0ZykEEig0QGFXKQQSKDCjnIIJFBIoOKwYOHZPke6zbd1lt/u6JLqroOHdpn0KCXctTRpxRdSmGMA8eECjnIIJFBIoMKOcggkUEigwo5OHdIFp5x8OKb7+TmR/+V1ZZb6jNtP2nKx/npZXdko6+s+F/ve+TY97POwWfNc/3kj6bm0N9en66LLZq/nvzdnLDXDrnqvidzdb+nmrYZ+MqwbLL6SvndUX1z7SnfywZfXiFHXXRjhgwb/V/XNz86dGifF154Occcc+pc1//oR4fmqKMOyjHHnJotttgl7777Xu68869ZdNEOVa60uhaW+bAgOS42MhZkkMgAgOZqGmb/08kviOeffz7rrbdeZs6c+bke17rNsguoos/v3dEv5oQTfpnLr7i+6vsuakA83v+OPPvci/nBkSc2LXth0MO5/fZ7cvIpZxdUVXW1pAxqa2qqur/ZdejQPk89eU+OPOqknHjCD/P8oMH58Y9Pq3od9QUdHlvSOCiSHGSQyCCRQYUcZJDIoEIOMkhkkLSsDIo6f/rpKcemT59e2XCjlnE1oaLOoWY3Y9rI7P7NA3L77fcWsv8ixoJx0KglHROKJAcZJDJIZFAhBxkkMkhkUCGH5oo+dyhKSxoHk+4/Y67Lp3w8Ld/+xWU56Tu9csmdj+fLyy+V47+9/ac+10/+fFt6LLVEamtr89Bzr+RvPzuw2frb/jkoV94zICPHvp9luiyWvbbZIN/aev25PtfIse9n5xP/kH9dcuJc1//t4Wdz4S0P58Fzj0qb1nVJksvufiLXPfhM7jvnB6mZx3nh7qdekl4bfjWH7LJFs+Wde/3sU/9t/2sfffR2+vY9OHfccV/TsjfeeDoXX3xpzj33j0mSNm3a5O23n8kpp5ydSy+9doHXNH3mjAW+j7lpSfOhJSjrcTExFhIZJC0rgxnTRlZ1f5TXtsvN+SsW8L/2wIj7/vNGLdBCecXqQYMGfept6NChRZc432pra9O3b5906NA+A54cWHQ5VdO6deust95a6Xf/I82W9+v3SDbdZIOCqqouGcxy4QVn5K67H8iDD/YvupSqMw4ayUEGiQwSGVTIQQaJDCrkIINEBokMZrfKKivlrTefydChj+eaqy/OSiv1KLokClD2ceCY0EgOMkhkkMigQg4ySGSQyKBCDiQLzzg489p703OtVbLJ6it9pu1v++egDB8zIYfs0nOu629+9F+5+NZH8oPdtsqtp38/R+729fz+74/m9scHzVd9g14fmQ1W69HUVJ0km31tpbz3/uS8M3biXB9TX9+QKVOnZbEO7eZrnwvSiisun+7dl8r99z/WtGzatGl57LEns8kmc28+/yJYWOYDC56xIINEBpRXfRrc3Bb4bWFV9583aXnWWWed1NTUZG4X264sn9dfgrZUa6zxlTz26O1p165tJk/+MN/c86C8/PKrRZdVNV26dE5dXV3GvDu22fIxY8am29Kf7SeeFnYyaNR3zz5Zd901s+lmOxddSiGMg0ZykEEig0QGFXKQQSKDCjnIIJFBIoOKp55+LgcccHReffWNLNWtS0484Yd55OHbss6622T8+PeLLo8qMQ4cEyrkIINEBokMKuQgg0QGiQwq5ECycIyDe556KUOGvZu/nvzdz7T92++Oz4U3P5TLj98nda3mfk25S+78Z47dc5tsu96XkyTLdl08b7wzNjc9+q/02Wytz13j2A8mZ5klF2+2rHOnDk3rlu26+ByPuarfk/lo6rTssMFXP/f+FrSl//3//Zgx7zVbPmbM2PTo0XJ+8ft/bWGYD1SHsSCDRAYAzGmhbKxecskl86tf/SrbbrvtXNcPHjw4u+yyy6c+x9SpUzN16tRmy4psyB469PVssOEOWXyxTtlt951y2aXnZ9vt9ihVc3WSOZrl59VA/0VW5gyWW657zj3359l5573nmJ9lU+ZxMDs5yCCRQSKDCjnIIJFBhRxkkMggkcG99z40687gZMCAgRny8j+z77575oILLimuMKrKOJil7MeECjnIIJFBIoMKOcggkUEigwo5kLTccTB6/Ac55/p++cMx307b1v+5jWFmfX1OvOTvOaxPz6yw9JJz3Wb8pCkZPf6D/Pyqu3L61XfPeuzM+iy6SNum+7ufeklGjW+82nQlik1/8Jum9d07L5ZbTj+46f4nWwoqj6nJnL0Gdz85OH+8vX/OP2KPpgbsluiTQ6CljIsFraXOB6rPWJBBIgMAZlkoG6vXX3/9vPPOO1lhhRXmuv7999//jy9sZ511Vn7+8583W1ZTu2hater0P6vz85g+fXpef/2tJMnAZwdlg/XXyZE/OCiHH/GTQuqptrFjx2fGjBnptnTXZsu7dl0yY959bx6P+mKRQbLeemulW7euGTBg1gcbdXV16dlz4xx+2HezaMcvpb6+vsAKFzzjoJEcZJDIIJFBhRxkkMigQg4ySGSQyGBepkz5KC8OHpJVVvlsP5fMF1MZx4FjQiM5yCCRQSKDCjnIIJFBIoMKOZC0/HHw0tujM37SlOz9y8ubls2sb8izrw7LDQ8NzFN/OD6tamddlfrDj6flpbdHZ+jwd3P2dfclSeobGtLQkKx/yNn5w9HfzsrLNv5bf7rvjlnzS8s021+rmlnPddEP+2bGzJlJkjETJueg3/w1N5x6QNP6ulatmv67S6dFM27ih82ea8KkxvtLfqJx+t6nX8rPr7or5xyyWzZZvWWeo40ePSZJ0q1b16b/Tv49LsaMndfDFnotfT5QPcaCDBIZADCnuf8eTgt3yCGHZMUVV5zn+h49euTyyy+f5/okOfHEEzNx4sRmt9rajv/jSudfTU1N2rZtU3QZVTN9+vQ8++ygbLftls2Wb7fdlnliwDMFVVVdMkgefLB/1l1322y4Ya+m2zPP/CvXXXdrNtyw1xe+qToxDirkIINEBokMKuQgg0QGFXKQQSKDRAbz0qZNm3zly6tm9Kgx/3ljvrDKOA4cExrJQQaJDBIZVMhBBokMEhlUyIGk5Y+Djb+6Qm467aDccOqBTbfVV1g6O238tdxw6oHNmqqTZNF2befY/ptbrZsVl+6cG049MGt+aZks2alDllq8Y0aOfT89lurc7LZs18WbnmuZJRdrWt59ycYLsc2+7TJLLta07VorL5uBrw7P9Bkzm5Y9MfjNdF180SzTZdZ2dz85OKdefmfOPGjXbLnWKgsotf/eW28Nz6hRY7Lttls0LWvdunV69tw4AwYMLLCyBaulzweqx1iQQSIDAOa0UF6xerfddvvU9UsssUT233//T92mbdu2adu2bbNlNZ/8zZ4q+cUvTsg99zyYESPeSceOi6Zv312z1VabZufe3ymknqL89oJLcuXlF2TgwOcz4MmBOfjAfdJj+WXzpz9fXXRpVVP2DCZP/jCDXxrabNmHH36UceMnzLH8i6zs46BCDjJIZJDIoEIOMkhkUCEHGSQySGSQJGeffUruvPP+DB8+Ml27dslJJx6VTp0WzdXX3Fh0aVXVoUP7ZldnXmnFHll77a9l/PgJGT78nQIrqw7joJFjQiM5yCCRQSKDCjnIIJFBIoMKOTh3SFr2OOjQrm1WWbb5lUIXadsmi3VYpGn5hbc8nDETJuWXB+6S2tqaObbv3LFD2tTVNVt+aJ8tcs71/dKhXdtsscaXMm3GzAx+e3Qmffhx9t1ho89d544brZ4/3dE/P738Hzlop80y7N3xufTuJ/L93ps39Rvc/eTg/PTyf+S4b22Xtb60TMZOnJwkadu6Lh3bt/vc+/xvdejQPiuvvGLT/RVXXD5rrbV6Jkx4P8OHv5OLL740xx13RF577a289tqbOf74H+Sjjz7ODTf8veq1VlNLng/V4rjYyFiQQSIDAJpbKBurk+Tll1/OgAEDsummm+YrX/lKhgwZkgsuuCBTp07NPvvsk2222aboEj+zbkt1yRWXX5ju3ZfKxImT8sILL2fn3t/JAw88VnRpVXXjjbdnyc5L5JSTj0n37kvlxcFDs0uffTNs2MiiS6saGZAYBxVykEEig0QGFXKQQSKDCjnIIJFBIoMkWW7Z7rn6qovSpUvnvPfe+Dz11LPp2bNPqTJIkg3WXzsP3H9T0/1zf3NakuTKq/6WAw86pqCqqsc4aOSY0EgOMkhkkMigQg4ySGSQyKBCDs4dkoV/HLz3/uSMGv/B53rM7j3XSbs2rXPlvU/m/JsfyiJtWmfV5brmO9tuOF81dGzfLn885ts569r7svcvL0+nDu2yz3YbZt/tZzVp3/TovzJjZn3Ouva+nHXtfU3Ld9l0zfzigN7ztd//xnrrrZX77ruh6f4555yaJLn66hvz/e//OOee+8e0a9cu55//yyyxRKc8/fS/0rv3Ppk8+cOq11pNC/t8+F9wXGxkLMggkQEAzdU0NDQ0FF3E53XPPfdk1113zaKLLpopU6bk1ltvzX777Ze11147DQ0NeeSRR3Lvvfd+7ubq1m2WXUAVL1wWugHBAlFb0BXcW5L6he/wCAAAFMD5UyPnUMZCYhwAAACfzaT7zyi6hBahc6+fFV1C4abPnFF0CQAtyoxpmrmpjq2X277oEiiBh0b0K7qE+VJbdAHz4/TTT89xxx2XcePG5fLLL8/ee++dgw8+OP369cv999+f448/PmeffXbRZQIAAAAAAAAAAAAAC4mFsrF68ODB+e53v5sk6du3byZNmpQ99tijaf1ee+2VQYMGFVQdAAAAAAAAAAAAALCwWSgbq2dXW1ubdu3aZfHFF29a1rFjx0ycOLG4ogAAAAAAAAAAAACAhcpC2Vi94oor5rXXXmu6/8QTT6RHjx5N94cPH57u3bsXURoAAAAAAAAAAAAAsBCqK7qA+XHYYYdl5syZTffXWGONZuvvvvvubLPNNtUuCwAAAAAAAAAAAKBFa0hD0SVAi7VQNlYfeuihn7r+jDPOqFIlAAAAAAAAAAAAAMAXQW3RBQAAAAAAAAAAAAAAFE1jNQAAAAAAAAAAAABQehqrAQAAAAAAAAAAAIDS01gNAAAAAAAAAAAAAJSexmoAAAAAAAAAAAAAoPQ0VgMAAAAAAAAAAAAApaexGgAAAAAAAAAAAAAoPY3VAAAAAAAAAAAAAEDpaawGAAAAAAAAAAAAAEpPYzUAAAAAAAAAAAAAUHp1RRcAAAAAAAAAAAAAQHXUNzQUXQK0WK5YDQAAAAAAAAAAAACUnsZqAAAAAAAAAAAAAKD0NFYDAAAAAAAAAAAAAKWnsRoAAAAAAAAAAAAAKD2N1QAAAAAAAAAAAABA6WmsBgAAAAAAAAAAAABKT2M1AAAAAAAAAAAAAFB6GqsBAAAAAAAAAAAAgNLTWA0AAAAAAAAAAAAAlJ7GagAAAAAAAAAAAACg9DRWAwAAAAAAAAAAAAClV1d0AQAAAAAAAAAAAABUR0PRBUAL5orVAAAAAAAAAAAAAEDpaawGAAAAAAAAAAAAAEpPYzUAAAAAAAAAAAAAUHoaqwEAAAAAAAAAAACA0tNYDQAAAAAAAAAAAACUnsZqAAAAAAAAAAAAAKD06oouoCVpKLqAFqKm6AJaAGMhqW+QAgAAwGfR4PyJf6up8alKzIckSa2x4LMlAJgH7xKS2lrX/ppZX190CYXruN3JRZfQIkz6w15Fl1C4joddV3QJhWvluOi4CAC0KN6dAQAAAAAAAAAAAAClp7EaAAAAAAAAAAAAACg9jdUAAAAAAAAAAAAAQOlprAYAAAAAAAAAAAAASq+u6AIAAAAAAAAAAAAAqI76NBRdArRYrlgNAAAAAAAAAAAAAJSexmoAAAAAAAAAAAAAoPQ0VgMAAAAAAAAAAAAApaexGgAAAAAAAAAAAAAoPY3VAAAAAAAAAAAAAEDpaawGAAAAAAAAAAAAAEpPYzUAAAAAAAAAAAAAUHoaqwEAAAAAAAAAAACA0tNYDQAAAAAAAAAAAACUnsZqAAAAAAAAAAAAAKD0NFYDAAAAAAAAAAAAAKWnsRoAAAAAAAAAAAAAKL26ogsAAAAAAAAAAAAAoDrq01B0CdBiuWI1AAAAAAAAAAAAAFB6GqsBAAAAAAAAAAAAgNLTWA0AAAAAAAAAAAAAlJ7GagAAAAAAAAAAAACg9DRWAwAAAAAAAAAAAAClp7EaAAAAAAAAAAAAACg9jdUAAAAAAAAAAAAAQOlprAYAAAAAAAAAAAAASk9jNQAAAAAAAAAAAABQehqrAQAAAAAAAAAAAIDS01gNAAAAAAAAAAAAAJReXdEFAAAAAAAAAAAAAFAdDQ0NRZcALZYrVgMAAAAAAAAAAAAApaexGgAAAAAAAAAAAAAoPY3VAAAAAAAAAAAAAEDpaawGAAAAAAAAAAAAAEpPYzUAAAAAAAAAAAAAUHoLdWP1iBEjMnny5DmWT58+PY8++mgBFc2/Qw/ZP68OfSKTP3g9Tw64O1tsvlHRJVXVId/fL88O7JdxY4dk3NgheezR29Or19ZFl1V1PbfYOLfdekWGvTUwM6aNTJ8+vYouqRBlnw+JDCrkIINEBokMKuQgg0QGFXKQQSKDRAbOpRs5l06WWWbpXH75BXln5KBMGP9Knnrynqy77ppFl1VVxkHy01OOzbSpI5rdhr39bNFlFaLsrw+JDBIZVMhBBokMEhk4d0iGDn08Uz8ePsftgvN/WXRpVeV98xcng0sHvJp1zrkj5zzw4gLdz/1D38nulz6UDc+9M7tf+lAefGXUHHXsfdWj2ey3d2Xri+7N0bc8lbfGzdnD0VKV/fXB5wmzlH0sfFGOjf+tso8DAGZZKBurR40alY022igrrLBCFl988ey///7NGqzHjx+frbdeeD4M2HPPPjnv3NNy1tkXZoONeqV//6fyjzuuyfLLL1N0aVUzYuSonHTyWdlk052yyaY75aGH/5lbbr4sq6++WtGlVVWHDu0zaNBLOeroU4oupTDmgwwq5CCDRAaJDCrkIINEBhVykEEig0QGiXPpirKfSy+++GJ56KFbMn36jPTZdb+ss+42+ckJv8jEiR8UXVpVlX0cVAwePCTL91i36bbe+tsVXVLVeX2QQSKDCjnIIJFBIoPEuUOSbL557/RYYb2m24477ZUkufmWfxRcWXV53/zFyODFUe/n5uffzmpdO/1Xz/P3F4bnwOsen+f650eOz09ufzY7f225/O27W2bnry2X428fmBfemdC0zcDh4/KtdVfKVfv2zB/7bpKZ9Q057MYB+WjajP+qtmoo++uDzxNmKftYSL4Yx8b/lnEAwOxqGhoaGoou4vPaf//988orr+R3v/td3n///Zx44olpaGhIv379ssQSS+Tdd99N9+7dU19f/7met67Nsguo4k/3eP878uxzL+YHR57YtOyFQQ/n9tvvycmnnF31emqqvse5e3f0iznhhF/m8iuur/q+W8KkmDFtZHb/5gG5/fZ7iy6lqlrafCiCDBrJQQaJDBIZVMhBBokMKuQgg0QGScvKoKWcRyfOpYs+l25VW/1rGPzyFydk0802zLbb7lH1fc/NzM/5edyCUPQ4SJLamuofGX56yrHp06dXNtyoZVxVqr6gj51b0utDUWQggwo5yCCRQdLyMmgp5w9FnjvUFvC++ZN+8+ufZaedtsvqX+tZyP69b24ZWkIGk/6w1+fafsq0Gfn2lY/mpO3XzCVPvJovL9Upx2+7RpJk+sz6XPTYkNz10shMmjo9q3TpmB9u9dVs2KPLXJ/r7y8Mz+0vDs+le2021/XH/31gPpw2PRfvuUnTssNvHJBObVvn7D7rz/Ux46dMzTYX3ZdL99os6y+/5Gf6N3U87LrPtN3/Wkt6ffB5QrHHxZY0FlqClnBsLEJLGgczpo2s6v4or02W+XrRJVACA955uOgS5kvxZ63z4f77788FF1yQDTbYINttt1369++f5ZZbLttss03Gjx+fJKkp4MuL+dG6deust95a6Xf/I82W9+v3SDbdZIOCqipWbW1t+vbtkw4d2mfAkwOLLocqMh9kUCEHGSQySGRQIQcZJDKokIMMEhkkMpgb59Ll1bv39nl24KBc+9c/ZPiw5/LkgLtzwAGf74t5vjhWWWWlvPXmMxk69PFcc/XFWWmlHkWXVFVeH2SQyKBCDjJIZJDIYG6cOzSOi7322j1XXHlD0aXA53ZmvxfS80tLZZMVu86x7tS7/pV/jRyfX+2yXm787lbZ/svL5Igbn8zb4yfP5Zn+s0HvjJ9jP5uu2DXPz3bF6k+aPLXxStWLtWs9X/usFq8PPk+oMBZIjAMA5rRQNlZPnDgxSyyxRNP9tm3b5qabbsqKK66YrbfeOmPGjPmPzzF16tR88MEHzW5FXLy7S5fOqaury5h3xzZbPmbM2HRbeqmq11OkNdb4SiaMfyUfTn4zF190dr6550F5+eVXiy6LKjIfZFAhBxkkMkhkUCEHGSQyqJCDDBIZJDKYnXNpVlqpR77//X3y2utvpfcu++SSv1yT8849Pd/5Tsu44hTV89TTz+WAA45O79775LDDjk+3bkvlkYdvS+fOixddWtV4fZBBIoMKOcggkUEig9k5d5ilT59eWXzxTrn66huLLgU+l3teHpkh707MUVt9dY51wyd8mHteHplf99kg6y2/ZJZfokP232jlrLtc5/z9xeHztb+xH07Nkh3aNlu2ZIe2Gfvh1Llu39DQkHMfHJx1l+ucVbp2mq99VovXB58nVBgLJMYBAHOqK7qA+fGlL30pgwYNyqqrrtq0rK6uLjfeeGP23HPP9O7d+z8+x1lnnZWf//znzZbV1C6amlbFvMH/ZFN3TU1NIY3eRRo69PVssOEOWXyxTtlt951y2aXnZ9vt9ijthzplZj7IoEIOMkhkkMigQg4ySGRQIQcZJDJIZJA4l6bxioMDBw7Kqaf+Kkny/PODs/pXV8v3D943f/3rzQVXRzXde+9Ds+4MTgYMGJghL/8z++67Zy644JLiCiuA1wcZJDKokIMMEhkkMkicO8zue9/9du6996GMGvVu0aXAZzb6g49yzgMv5g99N0nbulZzrH/53YlpSLLrXx5stnz6zPos1q5NkmTUB1Oy+6UPN62bWd+QGfX12fS3dzUt23n15XJKr7Wa7tek+S+FNzQk8/rt8LPufzGvvPdBrvjO5p/vH1egMr8++DyhuTKPBWYxDgCoWCgbq3fcccf8+c9/zh57NP9LuUpz9R577JERI0Z86nOceOKJOfbYY5stW2LJr/zPa/1Pxo4dnxkzZqTb0s1/Qqdr1yUz5t33ql5PkaZPn57XX38rSTLw2UHZYP11cuQPDsrhR/yk2MKoGvNBBhVykEEig0QGFXKQQSKDCjnIIJFBIoPZOZdm1OgxeXlI82aYIUNeyze+sVNBFdFSTJnyUV4cPCSrrLJS0aVUjdcHGSQyqJCDDBIZJDKYnXOHRj16LJttttki3/rW94suBT6Xl959P+OnTMveVz7WtGxmQ0OeHT4uNzz7Vs7svW5a1dTkuv22TG1t89bn9q0bG7G7LtouN3x3q6blD7wyKg+8Mipn9l6vadmibWa1kHTp0DZjP/y42XONnzLnVayT5Oz7X8gjr43OZXttnm4dF/nv/rFV4PXB5wkVxgKJcUB51ccfDsC81BZdwPw444wzcuONc/9pprq6utxyyy154403PvU52rZtm06dOjW71dTM628rF5zp06fn2WcHZbttt2y2fLvttswTA56pej0tSU1NTdq2bVN0GVSR+SCDCjnIIJFBIoMKOcggkUGFHGSQyCCRwadxLl0+TzzxTFZbbeVmy1Zd9UsZNuzTLzrAF1+bNm3ylS+vmtGjxhRdStV4fZBBIoMKOcggkUEig09T1nOH/fbrmzFjxuauux8ouhT4XDbu0TU3fW+r3PDdLZtuqy+9WHZafdnc8N0t85Vui2VmQ0PGT5maHkt0aHbrsmi7JEldbW2z5Z3bt03bulbNl83WNL3WMp0z4O2xzeoY8NZ7WXuZJZruNzQ05Kx+L+SBV0bnz9/aNMsu3r46gfyXvD74PKHCWCAxDgCY00J5xeq6urqMHDkyN998czbddNN85StfyZAhQ3LBBRdk6tSp2WeffbLNNtsUXeZn9tsLLsmVl1+QgQOfz4AnB+bgA/dJj+WXzZ/+fHXRpVXNL35xQu6558GMGPFOOnZcNH377pqttto0O/f+TtGlVVWHDu2bXUVopRV7ZO21v5bx4ydk+PB3CqyseswHGVTIQQaJDBIZVMhBBokMKuQgg0QGiQwS59IVZT+XvvDCv+SRh2/N8cf/IDff9I9ssOE6OfDAvUt35cGyj4MkOfvsU3Lnnfdn+PCR6dq1S0468ah06rRorr5m7heo+KLy+iCDRAYVcpBBIoNEBolzh4qamprst1/fXHPNTZk5c2bR5RTC++aFN4MObeuyStdOzZYt0rouiy3Spmn5Tqsvm1Puei4/2vpr+cpSi2XCR9Py9LCxWaVLx/Rcudvn3ufeG6yUA699PJc/+Vq+vkq3PPzau3ny7bG5fO/Nm7Y5s98LufvlkTl/tw3ToU1dxk5uvML1om1bp92/r5TdUpX99cHnCbOUfSwkC++x8X/JOABgdgtlY/U999yTXXfdNYsuumimTJmSW2+9Nfvtt1/WXnvtNDQ0pFevXrn33nsXmubqG2+8PUt2XiKnnHxMundfKi8OHppd+uybYcNGFl1a1XRbqkuuuPzCdO++VCZOnJQXXng5O/f+Th544LH//OAvkA3WXzsP3H9T0/1zf3NakuTKq/6WAw86pqCqqst8kEGFHGSQyCCRQYUcZJDIoEIOMkhkkMggcS5dUfZz6YEDn0/fvgfnF784ISef9MO89dbw/Pi403L99bcVXVpVlX0cJMlyy3bP1VddlC5dOue998bnqaeeTc+efUp1XEy8PiQySGRQIQcZJDJIZJA4d6jYdtueWaHHcrnyyhuKLqUw3jd/sTP4+Y7r5JInXs25Dw3OmEkfZ/FF2mStZZbIFl9aar6eb51lO+fsPuvl4seG5OLHhmT5xTvkV33Wz5qzXbH6xn+9nSQ56Pon5qhl1zWXn/9/TBWU/fXB5wmzlH0sJF/sY+NnZRwAMLuahoaGhqKL+Lw222yzbLPNNvnlL3+Z66+/PocffngOO+ywnHHGGUmSk08+OU8//XTuu+++z/W8dW2WXRDlLnRqii6gBVjoJgUAAACFcR7dyLl00qq2tugSCjezvr7oElqE2hpHhvqF72NnAKgK7xKSWu+bvW+myaQ/7FV0CYXreNh1RZdQOJ8nOC7C7GZM08xNdWy0zFZFl0AJPPXOI0WXMF8WyndngwcPzne/+90kSd++fTNp0qTsscceTev32muvDBo0qKDqAAAAAAAAAAAAAICFzULZWD272tratGvXLosvvnjTso4dO2bixInFFQUAAAAAAAAAAAAALFQWysbqFVdcMa+99lrT/SeeeCI9evRouj98+PB07969iNIAAAAAAAAAAAAAgIVQXdEFzI/DDjssM2fObLq/xhprNFt/9913Z5tttql2WQAAAAAAAAAAAADAQmqhbKw+9NBDP3X9GWecUaVKAAAAAAAAAAAAAIAvgtqiCwAAAAAAAAAAAAAAKJrGagAAAAAAAAAAAACg9OqKLgAAAAAAAAAAAACA6mhIQ9ElQIvlitUAAAAAAAAAAAAAQOlprAYAAAAAAAAAAAAASk9jNQAAAAAAAAAAAABQehqrAQAAAAAAAAAAAIDS01gNAAAAAAAAAAAAAJSexmoAAAAAAAAAAAAAoPQ0VgMAAAAAAAAAAAAApaexGgAAAAAAAAAAAAAoPY3VAAAAAAAAAAAAAEDpaawGAAAAAAAAAAAAAEpPYzUAAAAAAAAAAAAAUHp1RRcAAAAAAAAAAAAAQHU0NDQUXQK0WK5YDQAAAAAAAAAAAACUnsZqAAAAAAAAAAAAAKD0NFYDAAAAAAAAAAAAAKWnsRoAAAAAAAAAAAAAKD2N1QAAAAAAAAAAAABA6WmsBgAAAAAAAAAAAABKT2M1AAAAAAAAAAAAAFB6GqsBAAAAAAAAAAAAgNLTWA0AAAAAAAAAAAAAlJ7GagAAAAAAAAAAAACg9DRWAwAAAAAAAAAAAAClV1d0AQAAAAAAAAAAAABUR30aii4BWixXrAYAAAAAAAAAAAAASk9jNQAAAAAAAAAAAABQenVFF0DL4yL/AAAA8Nk5j6aivr6+6BJoIeobHBkAgLnzLiGZ6X0zNOl42HVFl1C4SZd9t+gSCrf84TcWXULhJn78YdEltAjeJwBAy+CK1QAAAAAAAAAAAABA6WmsBgAAAAAAAAAAAABKT2M1AAAAAAAAAAAAAFB6GqsBAAAAAAAAAAAAgNLTWA0AAAAAAAAAAAAAlJ7GagAAAAAAAAAAAACg9DRWAwAAAAAAAAAAAAClp7EaAAAAAAAAAAAAACi9uqILAAAAAAAAAAAAAKA6Ghoaii4BWixXrAYAAAAAAAAAAAAASk9jNQAAAAAAAAAAAABQehqrAQAAAAAAAAAAAIDS01gNAAAAAAAAAAAAAJSexmoAAAAAAAAAAAAAoPQ0VgMAAAAAAAAAAAAApaexGgAAAAAAAAAAAAAoPY3VAAAAAAAAAAAAAEDpaawGAAAAAAAAAAAAAEpPYzUAAAAAAAAAAAAAUHoaqwEAAAAAAAAAAACA0qsrugAAAAAAAAAAAAAAqqM+DUWXAC2WK1YDAAAAAAAAAAAAAKWnsRoAAAAAAAAAAAAAKD2N1QAAAAAAAAAAAABA6WmsBgAAAAAAAAAAAABKT2M1AAAAAAAAAAAAAFB6GqsBAAAAAAAAAAAAgNLTWA0AAAAAAAAAAAAAlJ7GagAAAAAAAAAAAACg9DRWAwAAAAAAAAAAAAClp7EaAAAAAAAAAAAAACg9jdUAAAAAAAAAAAAAQOnVFV0AAAAAAAAAAAAAANXRkIaiS4AWyxWrAQAAAAAAAAAAAIDS01gNAAAAAAAAAAAAAJTeQttYPW7cuDz00EMZP358kmTs2LH51a9+ldNPPz0vv/xywdV9focesn9eHfpEJn/wep4ccHe22HyjoksqhBxkkMggkUGFHGSQyCCRQYUcZJDIoEIOMkhkkMigQg7lzuD443+QJx6/M+PHDc3IEc/nppsuzWqrrVx0WYUo8ziYnRxkkMig5xYb57Zbr8iwtwZmxrSR6dOnV9ElFabsYyGRQSKDRAYVZc/B60Ojso+DijLn8EWZC5f2H5J1fnFTzrn3Xwt0P/e/PCK7/+HebHjmLdn9D/fmwSEj56hj7788kM1+dVu2PveOHH3D43lr7KQFWtP8+OGxh6TfwzfnrZHP5uXXn8hV1/4+q6yy0jy3P/f80zP2g1dyyOH7V7HK6vO5SqMvynHhv1Xm1wYAmlsoG6ufeuqprLzyytl2222zyiqrZODAgdloo41y6aWX5uqrr87666+fZ599tugyP7M99+yT8849LWedfWE22KhX+vd/Kv+445osv/wyRZdWVXKQQSKDRAYVcpBBIoNEBhVykEEigwo5yCCRQSKDCjnIYMuem+QPf7gyW/TcJTvutFfqWtXlrjuvTfv2ixRdWlWVfRxUyEEGiQySpEOH9hk06KUcdfQpRZdSKGNBBokMEhlUyMHrQ2IcVJQ9hy/CXHjxnfG5+bk3stpSi/1Xz/P359/KgVc9PM/1z48Yl5/c/GR2XnOF/O3722XnNVfI8TcPyAsjxzVtM3DYe/nWhivnqu9tnT9+p2dmNtTnsGsfy0fTZvxXtf2vbbbFhrn0z9ek17Z9881dv5e6ula58bbL5vr5wY47b5f1Nlg7o955t4BKq8vnKo2+CMeF/1bZXxsAaK6moaGhoegiPq/tt98+K664Ys4777z86U9/ygUXXJD/+7//yyWXXJIkOeiggzJu3Ljceuutn+t569osuyDK/Y8e739Hnn3uxfzgyBOblr0w6OHcfvs9OfmUswupqQhykEEig0QGFXKQQSKDRAYVcpBBIoMKOcggkUEigwo5tKwMaqq6t7nr0qVzRr3zQrbeZvf07/9k1fdf1AeNLWkcFEkOMkhk8Ekzpo3M7t88ILfffm/RpVSdsSCDRAaJDCrk0FxZXx+Mg0ZymKUlzIVJl333c20/ZdqMfPuS+3PSjuvmkv4v58vdFs/xvdZJkkyfWZ+LHnoxd704LJM+np5VunbKD7ddMxuuuNRcn+vvz7+V259/K5fu9/W5rj/+5gH5cOr0XLx3z6Zlh1/7WDq1a5Ozd994ro8Z/+HUbHPeHbl0v62y/gpdP9O/afnDb/xM2/0vLbnkEhn65pPZ5f/2zhOPP9O0fOnu3XLfgzdmz90OyHU3/jl/+sOV+dPvr1zg9Uz8+MMFvo/Poqyfq8yuJRwXitCSXhtmTBv5nzeC/4G1lt606BIogUGjnyi6hPmyUF6xeuDAgTn22GPTsWPH/PCHP8w777yTgw8+uGn9EUcckaeffrrACj+71q1bZ7311kq/+x9ptrxfv0ey6SYbFFRV9clBBokMEhlUyEEGiQwSGVTIQQaJDCrkIINEBokMKuQgg7lZbLFOSZIJE94vtpAqMg4ayUEGiQyYxViQQSKDRAYVciAxDirksPA78+7n0nPVpbPJl7rNse7U25/Ov4aPy6923zg3fn/7bL/6cjni2v55e9yk+drXoBHj5tjPpl/qludHjJvHI5LJU6cnSRZbpM187bNaOi3WMUkyYcLEpmU1NTX5w5/PyUUX/iVDh7xWVGmFKuPnKnhtAGBOC2Vj9bRp07LIIo0/u9G6deu0b98+Xbp0aVq/5JJLZty4eb+RTZKpU6fmgw8+aHYr4uLdXbp0Tl1dXca8O7bZ8jFjxqbb0nP/q8kvIjnIIJFBIoMKOcggkUEigwo5yCCRQYUcZJDIIJFBhRxkMDe//vXP0r//kxk8eGjRpVSNcdBIDjJIZMAsxoIMEhkkMqiQA4lxUCGHhds9Lw7PkFETctQ2a86xbvj4ybnnxeH59Tc3yXo9umb5zotm/02/nHV7dMnfn39rvvY3dvLHWbJDu2bLluzQLmMnfzzX7RsaGvL/7N15mJ2D3f/xzySThSxCIiRRS6mdIClibcNjLYra18fS0tKiP1tRW0lKUaql1lra2pcUCUEFJaoJDRp7a4klkhCJkPX8/vCciSGRpXLumdyv13PNdfXc58zM1/u5Z+aeme+cnHffP7Pu1zpnpa6Lzdf7rJUzzz4xjz/2jzw/8qWGYz8++vuZNn16Lrvk2gInK1YZf66Crw0AfFF90QPMj6997Wt59dVXs/zyyydJbrjhhnTr1q3h/rfffrvRovWs9OvXL6effnqjY3Ut2qeuZcevfN658fml7rq6ukIWvYumgwaJBokGVTpokGiQaFClgwaJBlU6aJBokGhQpYMGVRddeFbWWnO1fOvbOxc9SiGcB5/SQYNEA2ZyLmiQaJBoUKUDifOgSofm553xk3LOfU/nkr03TZv6ll+4f+Q7H6SSZKffDmp0fOr0GQ3PHv32+EnZ5ZJ7G+6bPqOSaTNmpE//2xuObb/Wcjl5+/UabtfVNX4/lSSfO9Sg36Cn8+Lo8fnDgd+al/+0mvvleadm9TVWyfZb79VwrOc6a+T7h++fLTYt588UEj9XwdcGAGZqlovVe+65Z0aPHt1we/vtt290/4ABA7L++ut/6ds48cQTc8wxxzQ6tnjnVb+6IefSmDHjMm3atCy19JKNji+5ZOeMfve9ms9TFB00SDRINKjSQYNEg0SDKh00SDSo0kGDRINEgyodNPisX19wZr7zna3Sd4tdMmrU20WPU1POg0/poEGiATM5FzRINEg0qNKBxHlQpUPz9a+338+4jyZn7yseaDg2vVLJ8NfG5MYnX8nZO6+flnV1+fMhW6ZFi8arz4u2/nQ1ZskObXPj9/+n4fgDz4/KAyPfzNk7b9BwrH2bmWs0Xdp/8dmpx330STq3b/ws1knSf9BTGfLiW7lq/29lqY6L/nf/sQtQv3NPyTbb9s0O2+6Tt996t+H4hhv1zpJLds7T/3qo4Vh9fX3OOOuE/ODwA7LeWn0LmLZ2yvxzFXxtAOCLWhQ9wPw49dRTs+eee872/pNOOil/+tOfvvRttGnTJh07dmz0Uvf5PzWsgalTp2b48BHZcovNGh3fcsvN8vjQf9R8nqLooEGiQaJBlQ4aJBokGlTpoEGiQZUOGiQaJBpU6aBB1YW//kW++91ts9XWu+c//3mj6HFqznnwKR00SDRgJueCBokGiQZVOpA4D6p0aL42WKFrbvnB/+TG72/Z8LJ6t8Wz3VrL5sbvb5lVl+6U6ZVKxk36JMsu0b7RS5f/W4Sub9Gi0fEl2rVJm1YtP3ds5tL02st0ztB/j240x9BX303PZTo33K5UKuk38Kk88PyoXLbvZumxeLvaBJkP/X/183xnh62y8w775/XX3mx030033JnN+uyQb228U8PL22+9m4svvDK773xwQRPXRtl/roKvDQB8UbN8xuokGTlyZIYOHZo+ffpk1VVXzfPPP58LL7wwkydPzr777pu+fZvPX8tdcOHluebqCzNs2D8z9IlhOfTgfbPs13rk95ddV/RoNaWDBokGiQZVOmiQaJBoUKWDBokGVTpokGiQaFClgwa/uejs7Lnnd7PLrgdlwoSJWWqpT59ZZ/z4Cfnkk0/m8NoLj7KfB1U6aJBokCTt2i2alVZaoeH2Cssvm54918i4ce/njTfeKnCy2nIuaJBokGhQpYOvD4nzoKrsHZrrx0K7Nq2yUtfFGh1bpHXLLLZI64bj2625bE6+88n8dMueWXXpTnn/48l58t+js1LXxbLpN7rN8/vce/2VcvA1Q3L1357Pt1bpnodeeCtP/Ht0rj7wWw2POXvgUxn47Bv59R4bpV2bVg3PcN2+Tau0bdVy/v+Dv2LnnH9qdv3eDtlvr8MzccJH6dq1S5Lkww8n5JNPJuf9cR/k/XEfNHqdqVOnZvTo9/Lyy/8uYOLa8HOVTzXXzwtfpbJ/bQCgsWa5WD1o0KDstNNOad++fSZNmpTbb789+++/f3r27JlKpZKtt9469957b7NZrr755gHpvMTiOfmko9OtW9c8+9wL2WHH/fL666OKHq2mdNAg0SDRoEoHDRINEg2qdNAg0aBKBw0SDRINqnTQ4LDDDkiSPPjArY2OH3zw0bn2upuKGKkQZT8PqnTQINEgSXr36pkH7r+l4fZ5vzotSXLNtTfl4EOOLmiq2nMuaJBokGhQpYOvD4nzoKrsHRbmj4XTd+ydyx8ZmfPu/2dGf/hxOi3aJmv3WCKbrDTvS9VJss7XuqT/Lhvktw89l98+9Fy+tnj7/HKXDbNWj5nPWH3zsFeTJIdcO+QLs+zUc/n5/m/5qh10yD5JkgED/9jo+BGHHZ8b/nR7ESM1CX6u8qmF+fPC3Cr71wbKaUalUvQI0GTVVSrN7yNko402St++ffOLX/wiN9xwQ374wx/m8MMPz1lnnZUkOemkk/Lkk0/mvvvum6e3W9+6x4IYFwAAAIASqCt6gCag2f2gEQAAgEJNuOrAokco3Nd+eHPRIxRu/CcfFT1Ck+DnKiTJtCmWuamNNZfasOgRKIFn3x1a9AjzpUXRA8yP5557LgceeGCSZPfdd8+ECROy6667Nty/1157ZcSIEQVNBwAAAAAAAAAAAAA0N81ysfqzWrRokbZt26ZTp04Nxzp06JDx48cXNxQAAAAAAAAAAAAA0Kw0y8Xq5ZdfPi+//HLD7ccffzzLLrtsw+033ngj3bp1K2I0AAAAAAAAAAAAAKAZqi96gPlx+OGHZ/r06Q2311xzzUb3Dxw4MH379q31WAAAAAAAAAAAAABAM9UsF6sPO+ywL73/rLPOqtEkAAAAAAAAAAAAAMDCoEXRAwAAAAAAAAAAAAAAFM1iNQAAAAAAAAAAAABQeharAQAAAAAAAAAAAIDSs1gNAAAAAAAAAAAAAJSexWoAAAAAAAAAAAAAoPTqix4AAAAAAAAAAAAAgNqopFL0CNBkecZqAAAAAAAAAAAAAKD0LFYDAAAAAAAAAAAAAKVnsRoAAAAAAAAAAAAAKD2L1QAAAAAAAAAAAABA6VmsBgAAAAAAAAAAAABKz2I1AAAAAAAAAAAAAFB6FqsBAAAAAAAAAAAAgNKzWA0AAAAAAAAAAAAAlJ7FagAAAAAAAAAAAACg9CxWAwAAAAAAAAAAAAClZ7EaAAAAAAAAAAAAACi9+qIHAAAAAAAAAAAAAKA2ZlQqRY8ATZZnrAYAAAAAAAAAAAAASs9iNQAAAAAAAAAAAABQeharAQAAAAAAAAAAAIDSs1gNAAAAAAAAAAAAAJSexWoAAAAAAAAAAAAAoPQsVgMAAAAAAAAAAAAApWexGgAAAAAAAAAAAAAoPYvVAAAAAAAAAAAAAEDpWawGAAAAAAAAAAAAAErPYjUAAAAAAAAAAAAAUHoWqwEAAAAAAAAAAACA0qsvegAAAAAAAAAAAAAAaqOSStEjQJNlsRoAAAAAvgJ+DJ3UFT1AE+FcIPHxkPhYAJiVFnW+Qsyo+AoBzNTxoD8UPULhPhx4atEjFK7DtqcXPUKT4CrB95EANA0tih4AAAAAAAAAAAAAAKBoFqsBAAAAAAAAAAAAgNKzWA0AAAAAAAAAAAAAlJ7FagAAAAAAAAAAAACg9CxWAwAAAAAAAAAAAAClZ7EaAAAAAAAAAAAAACg9i9UAAAAAAAAAAAAAQOlZrAYAAAAAAAAAAAAASs9iNQAAAAAAAAAAAABQeharAQAAAAAAAAAAAIDSqy96AAAAAAAAAAAAAABqY0alUvQI0GR5xmoAAAAAAAAAAAAAoPQsVgMAAAAAAAAAAAAApWexGgAAAAAAAAAAAAAoPYvVAAAAAAAAAAAAAEDpWawGAAAAAAAAAAAAAErPYjUAAAAAAAAAAAAAUHoWqwEAAAAAAAAAAACA0rNYDQAAAAAAAAAAAACUnsVqAAAAAAAAAAAAAKD0LFYDAAAAAAAAAAAAAKVnsRoAAAAAAAAAAAAAKL36ogcAAAAAAAAAAAAAoDYqqRQ9AjRZnrEaAAAAAAAAAAAAACg9i9UAAAAAAAAAAAAAQOlZrAYAAAAAAAAAAAAASs9iNQAAAAAAAAAAAABQeharAQAAAAAAAAAAAIDSs1gNAAAAAAAAAAAAAJSexWoAAAAAAAAAAAAAoPQsVgMAAAAAAAAAAAAApWexGgAAAAAAAAAAAAAoPYvVAAAAAAAAAAAAAEDpWawGAAAAAAAAAAAAAErPYnUTcdgPDshLLzyeiR++kieGDswmG69f9Eg1tekmG+SO2/+Q1/8zLNOmjMqOO25d9EiFcS44FzSYqewfD4kGiQaJBlU6aJBoUKWDBokGiQa+d/iUDhokyQ++v3+GDxucsWOez9gxz+eRhwdk662/XfRYhSj758ak3A2OO+6IPP7Y3Rk39oWMevOfueWWK7PyyisWPVYhynwefJYOGiQaJBqccvIxmTL5zUYvr782vOixClH2cyHRoKrMHXwP2byum68c9ETW+eF5Oefmv87V4596ZVR6HXF+dj/72gU8WfLSqPdy8Pk3ZoOfXJj/OfH3+f09j6dSqTTc/8BTL+UHF92cbx/3u2x8zG+y/7l/ymP/+s8Cn2t+lPlzQnP6eFiQfG6kjGZUKl68LPCX5mqhWqz++te/npdeeqnoMebZbrvtmPPPOy39+l+U3utvnUcf/Xvu+sv1+drXuhc9Ws20a7doRoz4V3581MlFj1Io54JzIdGgyseDBokGiQZVOmiQaFClgwaJBokGie8dqnTQIEneHPV2fnZSv2zYZ7ts2Ge7/PWhv+W2W6/K6quvXPRoNeVzowabbbphLrnkmmyy6Q7Zdru9Ut+yPvfc/acsuugiRY9WU2U/D6p00CDRINGg6rnnns/Xll234WW9XlsWPVLNORc0qCp7B99DNp/r5mf/805u/duIrNxjybl6/ISPJ+eUawZm/VWW/a/f96ix47POD8+b7f0TP56cw35zS5bs1C5/PH6fnLB731x7/z9y3QPDGh4z7OU3s+Gqy+U3P9wlfzph3/Re+Wv58SW35/k33v2v5/sqlf1zQnP5eFjQfG4E4LPqKpXmtxZ+0UUXzfL4Mccck+OOOy5LL710kuTHP/7xPL3d+tY9/uvZ5sdjj/4lw596NkcceWLDsWdGPJQBAwblpJP7FzJTkaZNGZVdvndQBgy4t+hRas650FiZz4WqMjfw8aBBokGiQZUOGiQaVOmgQaJBosHnlfl7h8/SofgGdYW811l7951nc8IJv8jVf7ih5u+7qB+4+tzYtBo0hY+HLl2WyNtvPZNv990ljz76RM3fv4+FYumgQaJB0vQatKir/VeIU04+JjvuuHW+uX7TeObFop61rKmdC0XQ4FM6zFT095CJ6+Yk+XDgqV84NumTKdmz//X52Z5b5PKBQ7PKMl1z3G5f/i8zHX/lXVm26+JpUVeXv454OTf9bP9G99/x+LO55r4nM2rs+HTv3DF7fWu97LH5OrN8W6PGjs/2p1yRp3/301nef9PDT+eiOx/Ng/0PS+tW9UmSq+59In9+6Oncd/b3Uzebr3e7nPmHbN1rlfxguz6NjnfY9vQv/W9bkJrS5wQfD8V9H/lZRX9unDZlVCHvl/JZsct6RY9ACbwypnn+a0nN8hmrjzrqqJx77rm54IILGr3MmDEj1157bS644IL8+te/LnrMudKqVaust97aGXz/kEbHBw8ekj4b9i5oKorgXICZfDxokGiQaFClgwaJBlU6aJBokGgAfLkWLVpk9913TLt2i2boE8Pm/AoLCZ8bNZiVxRbrmCR5//0Pih2khpwHn9JBg0SDRIPPWmmlFfKff/8jL7zwWK6/7rdZYYX//tlMmxPnggZVOjArTfG6+ewbH8ima66QDVddbq4ef8fjz+aN9z74wsJy1a2PjshvBzyaI3bcJLf//H9z5I6b5nd3/S0Dhj43X/ONePXt9P7GMg1L1Umy0erL573xE/PW2A9n+TozZlQy6ZMpWWzRtvP1PhcEnxO+qCl+PABArdXP+SFNz6GHHpq///3v+dOf/pTVVlut4XirVq1y3333ZfXVV5/j25g8eXImT57c6FilUpntX80tKF26LJH6+vqMfndMo+OjR4/JUkt3reksFMu5ADP5eNAg0SDRoEoHDRINqnTQINEg0QCYtTXXXDWPPDwgbdu2ycSJH+V7ux2SkSNfKnqsmvG5UYNZOffcU/Poo0/kuedeKHqUmnEefEoHDRINEg2q/v7kUznooKPy0kuvputSXXLiCT/JkIfuyDrr9s24cR8UPV5NOBc0qNKBWWlq182D/vF8nn9jdP54/D5z9fjXRr+fi+54JFcfs0fqW876+RUvHzg0x+yyebZY9xtJkh5dFsur74zNLY/8MztuuMY8zzjmw4/SvXPHRseW6NCu4b4eXRb7wutc+8A/8vGUqdmq1yrz/P4WFJ8TvqipfTwAQBGa5WL173//+9xxxx3Zeuutc9xxx+WII46Y57fRr1+/nH56439KpK5F+9S17Dib11iwKp/7J6/q6uq+cIxycC7ATD4eNEg0SDSo0kGDRIMqHTRINEg0ABp74YVX0vubW6XTYh2z8y7b5aorf50ttty1VMvVic+NiQZVF114VtZac7V869s7Fz1KIZwHn9JBg0SDRIN77/3rzBvPJUOHDsvzI/+W/fbbLRdeeHlxgxWg7OdCokGVDlQ1tevmd8Z9mHNu/msuOXLXtGk155We6TNm5MSr7s7h22+U5ZZaYpaPGTdhUt55f0JOv/6+nPGnwTNfd/qMtF+kTcPtXc78Q94e9+mzTVc/HvocfVHD/d2W6JjbTjmw4fbnn7iwksr/Hf/iDAOfHJlL734svz7su1miw6Jz/O+qNZ8TPtXUPh4AoCjNcrE6Sb773e/mm9/8Zvbff//cfffdufrqq+fp9U888cQcc8wxjY4t3nnVr3LEuTJmzLhMmzYtSy29ZKPjSy7ZOaPffa/m81Ac5wLM5ONBg0SDRIMqHTRINKjSQYNEg0QDYNamTp2aV175T5Jk2PAR6d1rnRx5xCH54Y+OL3awGvG5UYPP+vUFZ+Y739kqfbfYJaNGvV30ODXlPPiUDhokGiQazM6kSR/n2eeez0orrVD0KDXjXNCgSgc+qyleN//r9XczbsKk7N3/+oZj02dUMvzlN3PjkKfy94uOSssWM5+V+qNPpuRfr7+bF94cnf43PZAkmVGppFJJeh1xfi458ntZsVvnJMkp+2yVtZZfutH7++zbuviHu2Ta9OlJktEfTMwhv74pN564X8P99S1bNvzvLh3bZeyHHzV6W+9PmJQk6fx/z1xdde8/ns/p19+Xcw7ZIRuuuty8R1mAfE6YqSl+PABAUWb9b4A0Ez169Mj999+fzTbbLOuuu+48/bVYmzZt0rFjx0Yvn/9rulqYOnVqhg8fkS232KzR8S233CyPD/1HzeehOM4FmMnHgwaJBokGVTpokGhQpYMGiQaJBsDcqaurS5s2rYseo2Z8btSg6sJf/yLf/e622Wrr3fOf/7xR9Dg15zz4lA4aJBokGsxO69ats+oq38g7b48uepSacS5oUKUDVU31unmDVZfLLScfkBt/tn/Dy+rLLpXtvrlabvzZ/o0WoZOkfds2X3j89zbpmeWXWjw3/mz/rLV8t3Tu2C5dO7XPqDEfZNmuizd66dFlsYa31b1zx4bj3Tp/+q+9f/ax3TvP/Bfg1/56twx76c1MnTa94djjI1/Lkou1b/S4gU+OzM+vuzdn/+922Wytry+obPPN54RPNdWPBwAoSrN9xuqqurq6nHjiidlqq63y6KOPplu3bkWPNM8uuPDyXHP1hRk27J8Z+sSwHHrwvln2az3y+8uuK3q0mmnXbtFGfxW/wvLLpmfPNTJu3Pt54423CpystpwLzoVEgyofDxokGiQaVOmgQaJBlQ4aJBokGiS+d6jSQYMkOfPMEzJo0IN588230qFD++y++07ZfPM+2f47+xQ9Wk353KjBby46O3vu+d3ssutBmTBhYpZa6tNnXRs/fkI++eSTgqernbKfB1U6aJBokGiQJP37n5y7774/b7wxKksu2SU/O/HH6dixfa67/uaiR6sp54IGVWXv4HvIpn3d3K5t66zUvUujY4u0aZXF2i3ScPyiOx7J6A8m5hcHbpsWLeq+8PglOiya1q3qGx0/bPs+Oeemv6Zd2zbZZI3lM2Xa9Dz3+ruZMOmT7LdF73mec9tvrpbf3/N4Trl2UA7ZZoO8Pvr9XDnoiXx/uz4NT2o48MmROeWaQTl2t29n7RW6Z8z4T5/huk3r+nRYpM08v88FpeyfE5ryx0Mt+dwIwGc128XqkSNHZujQoenTp09WXXXVtGvXLs8//3x++tOfZt99903fvn2LHnGu3XzzgHReYvGcfNLR6data5597oXssON+ef31UUWPVjO9e/XMA/ff0nD7vF+dliS55tqbcvAhRxc0Ve05F5wLiQZVPh40SDRINKjSQYNEgyodNEg0SDRIfO9QpYMGSbJU1y75w9UXpVu3rhk/fkKeeWZktv/OPnnggUeKHq2mfG7U4LDDDkiSPPjArY2OH3zw0bn2upuKGKkQZT8PqnTQINEg0SBJlunRLddde3G6dFki7703Ln//+/BsuumOpWqQOBcSDarK3sH3kM3/uvm9Dz/K2+9/OE+vs8vGa6dt61a5ZvCT+fUdD2eR1q3yje5dsk/f9eZrhg6LtMmlR34v/W58IHv3vz4dF22bfbfolf226NXwmFseHZFpM2ak340PpN+NDzQc32HDNXLm/tvM1/tdEMr+OaG5fzx8VXxuBOCz6iqVSqXoIebVoEGDstNOO6V9+/aZNGlSbr/99uy///7p2bNnKpVKhgwZknvvvXeel6vrW/dYQBMDAAAAwMKvrugBmohm9wNXFggfDz4WAGalRZ2vEDOa36+ngQXIZ8Xkw4GnFj1C4Tpse3rRIzQJPh58H5kk06aUY6mf4q3YZf7+uAbmxStjhhc9wnxpUfQA8+OMM87Isccem7Fjx+bqq6/O3nvvnUMPPTSDBw/O/fffn+OOOy79+/cvekwAAAAAAAAAAAAAoJlolovVzz33XA488MAkye67754JEyZk1113bbh/r732yogRIwqaDgAAAAAAAAAAAKBpqvg//1eD/2uumuVi9We1aNEibdu2TadOnRqOdejQIePHjy9uKAAAAAAAAAAAAACgWWmWi9XLL798Xn755Ybbjz/+eJZddtmG22+88Ua6detWxGgAAAAAAAAAAAAAQDNUX/QA8+Pwww/P9OnTG26vueaaje4fOHBg+vbtW+uxAAAAAAAAAAAAAIBmqlkuVh922GFfev9ZZ51Vo0kAAAAAAAAAAAAAgIVBi6IHAAAAAAAAAAAAAAAomsVqAAAAAAAAAAAAAKD0LFYDAAAAAAAAAAAAAKVnsRoAAAAAAAAAAAAAKD2L1QAAAAAAAAAAAABA6VmsBgAAAAAAAAAAAABKz2I1AAAAAAAAAAAAAFB69UUPAAAAAAAAAAAAAEBtVCozih4BmizPWA0AAAAAAAAAAAAAlJ7FagAAAAAAAAAAAACg9CxWAwAAAAAAAAAAAAClZ7EaAAAAAAAAAAAAACg9i9UAAAAAAAAAAAAAQOlZrAYAAAAAAAAAAAAASs9iNQAAAAAAAAAAAABQeharAQAAAAAAAAAAAIDSs1gNAAAAAAAAAAAAAJSexWoAAAAAAAAAAAAAoPQsVgMAAAAAAAAAAAAApVdf9AAAAAAAAAAAAAAA1MaMVIoeAZosz1gNAAAAAAAAAAAAAJSexWoAAAAAAAAAAAAAoPQsVgMAAAAAAAAAAAAApWexGgAAAAAAAAAAAAAoPYvVAAAAAAAAAAAAAEDpWawGAAAAAAAAAAAAAErPYjUAAAAAAAAAAAAAUHoWqwEAAAAAAAAAAACA0rNYDQAAAAAAAAAAAACUXn3RAwAAAAAAC4dK0QNAE+LjAYBZqVR8hQD4LJ8Vkw7bnl70CIWb9OqgokdoEhb9+jZFjwAAxDNWAwAAAAAAAAAAAAB4xmoAAAAAAAAAAACAsvCv6cDsecZqAAAAAAAAAAAAAKD0LFYDAAAAAAAAAAAAAKVnsRoAAAAAAAAAAAAAKD2L1QAAAAAAAAAAAABA6VmsBgAAAAAAAAAAAABKz2I1AAAAAAAAAAAAAFB6FqsBAAAAAAAAAAAAgNKzWA0AAAAAAAAAAAAAlJ7FagAAAAAAAAAAAACg9CxWAwAAAAAAAAAAAAClZ7EaAAAAAAAAAAAAACi9+qIHAAAAAAAAAAAAAKA2ZqRS9AjQZHnGagAAAAAAAAAAAACg9CxWAwAAAAAAAAAAAAClZ7EaAAAAAAAAAAAAACg9i9UAAAAAAAAAAAAAQOlZrAYAAAAAAAAAAAAASs9iNQAAAAAAAAAAAABQeharAQAAAAAAAAAAAIDSs1gNAAAAAAAAAAAAAJSexWoAAAAAAAAAAAAAoPQsVgMAAAAAAAAAAAAApWexGgAAAAAAAAAAAAAovfqiBwAAAAAAAAAAAACgNiqVStEjQJPlGasBAAAAAAAAAAAAgNKzWA0AAAAAAAAAAAAAlJ7FagAAAAAAAAAAAACg9CxWAwAAAAAAAAAAAAClZ7EaAAAAAAAAAAAAACg9i9UAAAAAAAAAAAAAQOlZrAYAAAAAAAAAAAAASs9iNQAAAAAAAAAAAABQeharm4jDfnBAXnrh8Uz88JU8MXRgNtl4/aJHKkTZO2y6yQa54/Y/5PX/DMu0KaOy445bFz1SIcp+HiQaVOmgQaJBokGVDhokGlTpoEGige+fZir7uZBokGiQaFClgwaJBokGVTpokGiQaPCD7++f4cMGZ+yY5zN2zPN55OEB2Xrrbxc9ViHKfi4kGlTpoEGiQdJ8Glzxp9uy1hbfyy9/e/WXPu6u+x/Orof+NN/cbu98e7dDcvI5v80H4ycs0NlefPW1HHj0z9N7272zxe7fzyXX3pxKpdJw//2PDM2hx56RzXY5KBvusF/2OeJn+duTTy/QmeZHczkXFiQNAKhaKBarp06dmjvuuCPnnnturr/++nz00UdFjzRPdtttx5x/3mnp1/+i9F5/6zz66N9z11+uz9e+1r3o0WpKh6Rdu0UzYsS/8uOjTi56lMI4DzSo0kGDRINEgyodNEg0qNJBg0SDxPdPVc4FDRINEg2qdNAg0SDRoEoHDRINEg2S5M1Rb+dnJ/XLhn22y4Z9tstfH/pbbrv1qqy++spFj1ZTzgUNqnTQINEgaT4Nnn3+5dxy9/1Z+evLfenjhj8zMif98uLssm3f3H7lBTnv5z/Ncy+8nFPPu2S+3/eod0ZnrS2+N9v7J340Kd8/7sx07bx4/vy7/jnxyINyzc0Dcu3Nf2l4zLARI9On19r53dk/y42XnJP111kjR5zcPyNfenW+5/qqNZdzYUHSAIDPqqt89s+kmomNNtoo99xzTzp16pT33nsvW2yxRV544YUst9xyeeONN9K1a9c89thj6dGjxzy93frW8/b4r8pjj/4lw596NkcceWLDsWdGPJQBAwblpJP7FzJTEXRobNqUUdnlewdlwIB7ix6lppwHGlTpoEGiQaJBlQ4aJBpU6aBBosHnlfX7p8S5kGiQaJBoUKWDBokGiQZVOmiQaJA0vQZ1NX+Ps/buO8/mhBN+kav/cEPN33dRv5xuaudCETT4lA4aJBokTavBpFcHzfr4xx9n9x8cl5N+cmgu++MtWXXFFXL8j/53lo/9w0135sYB92Xg9b9tOPbH2+/J1Tfemftv+H3DsdsHPZirb7wzo94ene5LL5l9dt4ue+60zSzf5qh3RmebfX6YZx64ZZb33zjg3lx4xR/z0C1XpnXrVkmSK/58e/58+8Dcf+PvU1c366/83z3oqGz9rY1z+P67NTq+6NdnPceC1pTOhaI0pQbTpoyq6fujvHosvkbRI1ACo95/rugR5kuzfMbqoUOHZsqUKUmSk046KS1btsxrr72WF198MW+++WaWWWaZ/PznPy94yrnTqlWrrLfe2hl8/5BGxwcPHpI+G/YuaKra04HEeZBoUKWDBokGiQZVOmiQaFClgwaJBszkXNAg0SDRoEoHDRINEg2qdNAg0SDRYFZatGiR3XffMe3aLZqhTwwrepyacS5oUKWDBokGSfNpcNaFV2TTDddLn15rz/Gx66yxSt4dMzYPPzE8lUolY8Z9kMEPD81mG6zX8Jhb7h6c31z15/z4oL1y59W/zk8O3jsXX31D7rz3ofma75//eiG9eq7esFSdJBv37pnRY8dl1DujZ/k6M2bMyEcff5LFOrafr/f5VWsu58KCpAFlNaNS8eJlgb80V/VFD/DfGjJkSM4///wsvfTSSZLOnTvnrLPOyv/+76z/Qq1q8uTJmTx5cqNjlUpltn8ttqB06bJE6uvrM/rdMY2Ojx49Jkst3bWmsxRJBxLnQaJBlQ4aJBokGlTpoEGiQZUOGiQaMJNzQYNEg0SDKh00SDRINKjSQYNEg0SDz1pzzVXzyMMD0rZtm0yc+FG+t9shGTnypaLHqhnnggZVOmiQaJA0jwYDH3w0/3r537nhd3P3bMHrrLFq+p/4kxx75vmZMmVqpk2fnm9t1DsnHnlww2N+f/2t+X+HHZAtN90wSbJMt6Xyymtv5ua77stOW39rnmccM+6DdP9cr86Ld2q4b5luS33hda65+S/5+ONPsvXmG83z+1sQmsO5sKBpAMDnNdvF6uoC9AcffJAVVlih0X0rrLBC3n777S99/X79+uX0009v/DZbtE9dy45f7aBzqfK57fy6urovHCsDHUicB4kGVTpokGiQaFClgwaJBlU6aJBowEzOBQ0SDRINqnTQINEg0aBKBw0SDRINkuSFF15J729ulU6LdczOu2yXq678dbbYctdSLVcnzoVEgyodNEg0SJpug3dGj0n/316dy845JW1at56r13nlP2+k/2+vymH77ZaNevfMmHEf5LzfX5szL7gsZxz7w4z7YHzeGT0mp/7qdzntvEsbXm/69Olp327RhtvfPeiovNWwYPtpi/W337fh/u5LdckdV/264XZdGj+BY7XfrJ7Y8Z4HH80l196UC884Pp0XX2yu/rtqpameC7WkAQBVzXax+sADD0ybNm0yderUvPbaa1l99dUb7nv77bfTqVOnL339E088Mcccc0yjY4t3XnVBjPqlxowZl2nTpmWppZdsdHzJJTtn9Lvv1XyeouhA4jxINKjSQYNEg0SDKh00SDSo0kGDRANmci5okGiQaFClgwaJBokGVTpokGiQaPBZU6dOzSuv/CdJMmz4iPTutU6OPOKQ/PBHxxc7WI04FzSo0kGDRIOk6Td47sVXM+6D8dnjsOMajk2fMSPDRozMn+8YmGGD/pyWLVs2ep0r/nx71lljlfzvHjslSVZZMVmkbZsccNQpOfKgvRoWnU895rCsvdo3Gr1uixYtGv737/qdlGnTpiVJ3h0zLgcdc2puuezchvvr62euWnVZolPGvP9+o7c17oPxSfKFxelBf/1bTv3V73Lez3+aPr3WnrcgC1BTPxdqQQMAPq/FnB/S9BxwwAHp2rVrFltssey0006ZOHFio/tvvfXWrLPOOl/6Ntq0aZOOHTs2epnVX4staFOnTs3w4SOy5RabNTq+5Zab5fGh/6j5PEXRgcR5kGhQpYMGiQaJBlU6aJBoUKWDBokGzORc0CDRINGgSgcNEg0SDap00CDRINHgy9TV1aVNm7l7BtCFgXNBgyodNEg0SJp+gw3XWyu3XXF+br7sVw0va6yyYrbfYtPcfNmvvrBUnSSfTJ7caEE6mbkwXalU0mWJTunaZYm8+fa7WbZHt0Yvy3RbquF1ui+1ZMPx7kt9umj72cdWjyVJz9VXybARIzN16tSGY4/945/p2nmJ9Fi6a8Oxex58NCef89v0/9lR2WzDXl9NpK9IUz8XakEDAD6vWT5j9dVXX/2l95922mmzvIhqqi648PJcc/WFGTbsnxn6xLAcevC+WfZrPfL7y64rerSa0iFp127RrLTSCg23V1h+2fTsuUbGjXs/b7zxVoGT1Y7zQIMqHTRINEg0qNJBg0SDKh00SDRIfP9U5VzQINEg0aBKBw0SDRINqnTQINEg0SBJzjzzhAwa9GDefPOtdOjQPrvvvlM237xPtv/OPkWPVlPOBQ2qdNAg0SBp2g3aLbpIvrHCso2OLdK2TTp17NBw/NdX/DGjx4zN2Sf8OEmy+Ya9c/r5l+bGAfdmo97rZMy49/PL312dtVZdKV27LJEk+eH+u6f/b69K+0UXzSbrr5spU6fmuRdfyYcTPsoBu+0wz3Nu13eTXHLtzTnpnN/m0L13yeuj3s4Vf749h+37vYYnd7znwUdzUv/f5Pgf/W96rv6NjBn36TNct2ndOh3at5vvRl+lpnwu1IoGAHxWs1ysTpKRI0dm6NCh2WijjbLKKqvk+eefz4UXXpjJkydn3333Td++fYseca7dfPOAdF5i8Zx80tHp1q1rnn3uheyw4355/fVRRY9WUzokvXv1zAP339Jw+7xfnZYkuebam3LwIUcXNFVtOQ80qNJBg0SDRIMqHTRINKjSQYNEg8T3T1XOBQ0SDRINqnTQINEg0aBKBw0SDRINkmSprl3yh6svSrduXTN+/IQ888zIbP+dffLAA48UPVpNORc0qNJBg0SDpPk3eG/s+3l79JiG29/d5tv56OOP8+c7BuZXl16TDu3bZf111szRh+7b8Jhdt98ybdu2yR9uujPnX35dFmnbNt9YYdnst+v28zVDh/btctk5p+Ssi67Inocfn44d2mX/730n+39mSfvmu+7LtOnTc9ZFV+Ssi65oOL7jVt/KWccfMV/v96vW3M+Fr4IGAHxWXaVSqRQ9xLwaNGhQdtppp7Rv3z6TJk3K7bffnv333z89e/ZMpVLJkCFDcu+9987zcnV96x4LaGIAAAAAAACg7OqKHqAJaHa/nAZggZv06qCiR2gSFv36NkWPQBMwbYplbmqjW6fVix6BEnj7g38VPcJ8aVH0APPjjDPOyLHHHpuxY8fm6quvzt57751DDz00gwcPzv3335/jjjsu/fv3L3pMAAAAAAAAAAAAAKCZaJaL1c8991wOPPDAJMnuu++eCRMmZNddd224f6+99sqIESMKmg4AAAAAAAAAAAAAaG6a5WL1Z7Vo0SJt27ZNp06dGo516NAh48ePL24oAAAAAAAAAAAAAKBZaZaL1csvv3xefvnlhtuPP/54ll122Ybbb7zxRrp161bEaAAAAAAAAAAAAABAM1Rf9ADz4/DDD8/06dMbbq+55pqN7h84cGD69u1b67EAAAAAAAAAAAAAmrRKKkWPAE1WXaVS8RHyf+pb9yh6BAAAAAAAAGAhVVf0AE2AX04D8HmTXh1U9AhNwqJf36boEWgCpk0ZVfQIlMTSnVYregRK4J0PRhY9wnxpUfQAAAAAAAAAAAAAAABFs1gNAAAAAAAAAAAAAJSexWoAAAAAAAAAAAAAoPQsVgMAAAAAAAAAAAAApWexGgAAAAAAAAAAAAAoPYvVAAAAAAAAAAAAAEDpWawGAAAAAAAAAAAAAErPYjUAAAAAAAAAAAAAUHoWqwEAAAAAAAAAAACA0rNYDQAAAAAAAAAAAACUXn3RAwAAAAAAAAAAAABQG5VKpegRoMnyjNUAAAAAAAAAAAAAQOlZrAYAAAAAAAAAAAAASs9iNQAAAAAAAAAAAABQeharAQAAAAAAAAAAAIDSs1gNAAAAAAAAAAAAAJSexWoAAAAAAAAAAAAAoPQsVgMAAAAAAAAAAAAApWexGgAAAAAAAAAAAAAoPYvVAAAAAAAAAAAAAEDpWawGAAAAAAAAAAAAAErPYjUAAAAAAAAAAAAAUHr1RQ8AAAAAAAAAAAAAQG3MSKXoEaDJ8ozVAAAAAAAAAAAAAEDpWawGAAAAAAAAAAAAAErPYjUAAAAAAAAAAAAAUHoWqwEAAAAAAAAAAACA0rNYDQAAAAAAAAAAAACUnsVqAAAAAAAAAAAAAKD06oseAAAAAAAAAKAMKkUPAECTU1f0AE3Aol/fpugRmoSJD/QveoTCtd/ihKJHAADPWA0AAAAAAAAAAAAAYLEaAAAAAAAAAAAAACg9i9UAAAAAAAAAAAAAQOlZrAYAAAAAAAAAAAAASq++6AEAAAAAAAAAAAAAqI1KpVL0CNBkecZqAAAAAAAAAAAAAKD0LFYDAAAAAAAAAAAAAKVnsRoAAAAAAAAAAAAAKD2L1QAAAAAAAAAAAABA6VmsBgAAAAAAAAAAAABKz2I1AAAAAAAAAAAAAFB6FqsBAAAAAAAAAAAAgNKzWA0AAAAAAAAAAAAAlJ7FagAAAAAAAAAAAACg9CxWAwAAAAAAAAAAAAClZ7EaAAAAAAAAAAAAACi9+qIHAAAAAAAAAAAAAKA2ZlQqRY8ATZZnrAYAAAAAAAAAAAAASs9iNQAAAAAAAAAAAABQeharAQAAAAAAAAAAAIDSs1gNAAAAAAAAAAAAAJSexWoAAAAAAAAAAAAAoPQsVgMAAAAAAAAAAAAApWexGgAAAAAAAAAAAAAoPYvVAAAAAAAAAAAAAEDpWawGAAAAAAAAAAAAAErPYjUAAAAAAAAAAAAAUHoWqwEAAAAAAAAAAACA0qsvegAAAAAAAAAAAAAAaqNSqRQ9AjRZnrEaAAAAAAAAAAAAACg9i9UAAAAAAAAAAAAAQOlZrAYAAAAAAAAAAAAASs9iNQAAAAAAAAAAAABQeharAQAAAAAAAAAAAIDSs1jdRBz2gwPy0guPZ+KHr+SJoQOzycbrFz1SIXTQINEg0aBKBw0SDRINqnTQINGgSgcNEg0SDTbdZIPccfsf8vp/hmXalFHZccetix6pMGU/FxINEg2qdNAg0cDXyJnKfi4kGiQaJBpU6aBBokGVDhok5W7wg+/vn+HDBmfsmOczdszzeeThAdl6628XPVZhmsO5cOU9f0vPQ36Rc264b64e/9RLb2S975+V3U+/fAFPlrz05ugcdM61Wf/w/tny/12YS//ycCqVSsP99w97Pj8474/51lHnZ6Mjzsl+Z1+dvz37ygKfa141h/MAgNpolovVb775ZsaMGdNw+5FHHsk+++yTTTfdNPvuu28ef/zxAqebd7vttmPOP++09Ot/UXqvv3UeffTvuesv1+drX+te9Gg1pYMGiQaJBlU6aJBokGhQpYMGiQZVOmiQaJBokCTt2i2aESP+lR8fdXLRoxTKuaBBokGVDhokGiS+RlY5FzRINEg0qNJBg0SDKh00SDR4c9Tb+dlJ/bJhn+2yYZ/t8teH/pbbbr0qq6++ctGj1VxzOBee/fdbueXh4Vl5ma5z9fgJkz7JyVfdmfVXW+G/ft+jxnyQnof8Yrb3T/x4cn5w/h+zZKf2+ePJB+WEvbbOtfcOzbX3PdHwmOEvvZ4NV18hF/9kz/z5lEPyzVWXy49/c2NGvv7Ofz3fV6U5nAcA1E5d5bN/ItRMbLTRRjnllFOy7bbb5s4778wuu+yS73znO1lttdXy4osv5q677sptt92W73znO/P0dutb91hAE3+5xx79S4Y/9WyOOPLEhmPPjHgoAwYMykkn9y9kpiLooEGiQaJBlQ4aJBokGlTpoEGiQZUOGiQaJBp83rQpo7LL9w7KgAH3Fj1KzTkXNEg0qNJBg0SDz/M1stznggYaJBpU6aBBokGVDhokTatBXU3f2+y9+86zOeGEX+TqP9xQ8/dd5OJSUzoXJj7wxfc36ZMp2ePMK3LSPtvk8rsezSrLLp3j9tzqS9/Ocb+/LcsutURa1tXlr0+/mJtOPbTR/Xc8+nT+MOjxjBrzQbp36ZS9t/hm9vh271m+rVFjPsh2J1ycf14x6z9cvemvw3LRbQ/mwfOPTutW9Uk+fXbtPz/4jww+98epq5v1Gb7zzy/N1t9cPYftsFmj4+23OOFL/9sWlKZ0HkybMqqm74/yWrz9SkWPQAm8P/HlokeYL83yGaufffbZrLbaakmSfv365eyzz86dd96Z/v3757bbbsv555+fn//85wVPOXdatWqV9dZbO4PvH9Lo+ODBQ9Jnw1lftCyMdNAg0SDRoEoHDRINEg2qdNAg0aBKBw0SDRINmMm5oEGiQZUOGiQaMJNzQYNEg0SDKh00SDSo0kGDRIPPa9GiRXbffce0a7dohj4xrOhxaqo5nAtn/3FgNltrpWy4+tfn6vF3PPp03nzv/S8sLFfd+vDwXHz7Qzli52/n9jMPy5E7fzu/vWNIBvztn/M13z9ffTO9VlmuYak6STZac8W898GEjBrzwSxfZ8aMSiZ9MiWLtVtkvt7nV605nAcA1Fb9nB/S9LRo0SIffvhhkuTf//53tt1220b3b7vttjn++OO/9G1Mnjw5kydPbnSsUqnM9i+lFpQuXZZIfX19Rr87ptHx0aPHZKml5+6f8FgY6KBBokGiQZUOGiQaJBpU6aBBokGVDhokGiQaMJNzQYNEgyodNEg0YCbnggaJBokGVTpokGhQpYMGiQZVa665ah55eEDatm2TiRM/yvd2OyQjR75U9Fg11dTPhYF/fy4jX38nfzr54Ll6/GvvjsuFt/41Vx+/f+pbzvq5Ni+769H8dPcts2WvVZMkyyy5eF59+73c8vBT2XHjnvM845jxE9OjS6dGxzp3bJckGfvhR1lmycW/8DrX3jc0H0+emq16rz7P729BaOrnAQC11ywXqzfffPP8+c9/ztprr5111103Dz30UNZee+2G+//617+mR48eX/o2+vXrl9NPP73RsboW7VPXsuMCmXlOKpXG/7BJXV3dF46VgQ4aJBokGlTpoEGiQaJBlQ4aJBpU6aBBokGiATM5FzRINKjSQYNEA2ZyLmiQaJBoUKWDBokGVTpokGjwwguvpPc3t0qnxTpm5122y1VX/jpbbLlr6Zark6Z5LrwzbnzO+fN9ufSYvdOm1ZzXu6bPmJETL789h++0WZZfuvMsHzNuwkd5Z9yHOe2au3L6tXfPfN3pM9J+kbYNt3f++aV5e+z4JEk1w4Y/+mXD/d06L5bbzzhstrNU283qqS0HPvFsLhnwcC48YreGBeymoimeBwAUo1kuVvfv3z+bbrpp3nrrrWyyySY56aST8uSTT2a11VbLCy+8kBtvvDGXXnrpl76NE088Mcccc0yjY4t3XnVBjj1LY8aMy7Rp07LU0ks2Or7kkp0z+t33aj5PUXTQINEg0aBKBw0SDRINqnTQINGgSgcNEg0SDZjJuaBBokGVDhokGjCTc0GDRINEgyodNEg0qNJBg0SDqqlTp+aVV/6TJBk2fER691onRx5xSH74oy//F+IXJk35XPjXa+9k3ISPsteZVzQcmz6jkmEvvZ4bHnwyT156Ylq2mPms1B99MiXP/eftPP/6O+n/p0FJkhmVSiqVZL3vn5VLjt47K3X/9L/z5/tvn7VWaPyElS1azFyD/u1P9sy0aTOSJKM/mJCDz70uN/380Ib76+tnvt8ui7XP2A8/avS2xk2YlCRZ4nOL04P+/lxOu+aunHvYrtlw9a/Pe5QFpCmfB7AgzYg/HIDZmfW/+9DErbbaanniiScyefLknHPOOfnoo4/yxz/+Maeddlpefvnl3HDDDTnwwAO/9G20adMmHTt2bPRSVzerv5VasKZOnZrhw0dkyy02a3R8yy03y+ND/1HzeYqigwaJBokGVTpokGiQaFClgwaJBlU6aJBokGjATM4FDRINqnTQINGAmZwLGiQaJBpU6aBBokGVDhokGsxOXV1d2rRpXfQYNdWUz4UNVls+t5z+/dx46qENL2ss3y3bbbBmbjz10EZL1UnSvm2bLzx+t817ZfmlO+fGUw/NWl/vkc6LtU/XxTvkzfc+yLJLLdHoZZklF294W907d2o43q3zYknS6LHdO3dqeGzPry+TYS++nqnTpjcce/y5V7Nkpw7p0WXm4wY+8Wx+fvVf0u/QnbPZ2t9YMNHmU1M+DwAoRrN8xuokWXHFFXPDDTekUqlk9OjRmTFjRrp06ZJWrVoVPdo8u+DCy3PN1Rdm2LB/ZugTw3Lowftm2a/1yO8vu67o0WpKBw0SDRINqnTQINEg0aBKBw0SDap00CDRINEgSdq1WzQrrbRCw+0Vll82PXuukXHj3s8bb7xV4GS15VzQINGgSgcNEg0SXyOrnAsaJBokGlTpoEGiQZUOGiQanHnmCRk06MG8+eZb6dChfXbffadsvnmfbP+dfYoereaa6rnQrm2bfKNH10bHFmndKp3aL9pw/MJbH8zoDybkrIN3SosWdV94/BIdFk2bVvWNjh++w2b55Q33pv0ibbLxmitm6rTpee4/b+XDSZ9k/602nOc5t91gjVz6l4dzylUDcvD2G+f1d8flynv+lu9/Z9OGJ7gc+MSzOfmqATluz62y9td7ZMz4iUmSNq3q02HRtvP8PheEpnoeAFCMZrtYPXLkyAwdOjQbbbRRVllllTz//PM544wzMnny5Oy7777p27dv0SPOtZtvHpDOSyyek086Ot26dc2zz72QHXbcL6+/Pqro0WpKBw0SDRINqnTQINEg0aBKBw0SDap00CDRINEgSXr36pkH7r+l4fZ5vzotSXLNtTfl4EOOLmiq2nMuaJBoUKWDBokGia+RVc4FDRINEg2qdNAg0aBKBw0SDZbq2iV/uPqidOvWNePHT8gzz4zM9t/ZJw888EjRo9Vccz4XxoyfmHfGjp+n19lls3XTtk2r/GHQ47nglgeySOtW+cYyXbPPluvP1wwdFm2b3x+zT87+48DsfeaV6dhukez3Pxtk/602aHjMLUOGZ9r0GTn7j4Ny9h8HNRzfcaO1c+ZBO87X+/2qNefzAICvXl2lUqkUPcS8GjRoUHbaaae0b98+kyZNyu233579998/PXv2TKVSyZAhQ3LvvffO83J1feseC2hiAAAAAAAAAABorK7oAZqAZre4tIBMfKB/0SMUrv0WJxQ9QuGmTbHMTW0s1n7FokegBMZPfKXoEeZLi6IHmB9nnHFGjj322IwdOzZXX3119t577xx66KEZPHhw7r///hx33HHp39/FBgAAAAAAAAAAAAAwd5rlYvVzzz2XAw88MEmy++67Z8KECdl1110b7t9rr70yYsSIgqYDAAAAAAAAAAAAAJqbZrlY/VktWrRI27Zt06lTp4ZjHTp0yPjx44sbCgAAAAAAAAAAAABoVprlYvXyyy+fl19+ueH2448/nmWXXbbh9htvvJFu3boVMRoAAAAAAAAAAAAA0AzVFz3A/Dj88MMzffr0httrrrlmo/sHDhyYvn371nosAAAAAAAAAAAAAKCZqqtUKpWih2gq6lv3KHoEAAAAAAAAAABKoq7oAZoAi0ufmvhA/6JHKFz7LU4oeoTCTZsyqugRKInF2q9Y9AiUwPiJrxQ9wnxpUfQAAAAAAAAAAAAAAABFqy96AAAAAAAAAAAAAABqo1Lx7wXA7HjGagAAAAAAAAAAAACg9CxWAwAAAAAAAAAAAAClZ7EaAAAAAAAAAAAAACg9i9UAAAAAAAAAAAAAQOlZrAYAAAAAAAAAAAAASs9iNQAAAAAAAAAAAABQeharAQAAAAAAAAAAAIDSs1gNAAAAAAAAAAAAAJSexWoAAAAAAAAAAAAAoPQsVgMAAAAAAAAAAAAApWexGgAAAAAAAAAAAAAovfqiBwAAAAAAAAAAAACgNmZUKkWPAE2WZ6wGAAAAAAAAAAAAAErPYjUAAAAAAAAAAAAAUHoWqwEAAAAAAAAAAACA0rNYDQAAAAAAAAAAAACUnsVqAAAAAAAAAAAAAKD0LFYDAAAAAAAAAAAAAKVnsRoAAAAAAAAAAAAAKD2L1QAAAAAAAAAAAABA6VmsBgAAAAAAAAAAAABKz2I1AAAAAAAAAAAAAFB6FqsBAAAAAAAAAAAAgNKzWA0AAAAAAAAAAAAAlF590QMAAAAAAAAAAAAAUBuVVIoeAZosz1gNAAAAAAAAAAAAAJSexWoAAAAAAAAAAAAAoPTqix4AAAAAAAAAAADKqE1966JHKNwn06YUPUKT0H6LE4oeoXAfPXVt0SMAgGesBgAAAAAAAAAAAACwWA0AAAAAAAAAAAAAlJ7FagAAAAAAAAAAAACg9CxWAwAAAAAAAAAAAAClZ7EaAAAAAAAAAAAAACg9i9UAAAAAAAAAAAAAQOlZrAYAAAAAAAAAAAAASs9iNQAAAAAAAAAAAABQevVFDwAAAAAAAAAAAABAbcyoVIoeAZosz1gNAAAAAAAAAAAAAJSexWoAAAAAAAAAAAAAoPQsVgMAAAAAAAAAAAAApWexGgAAAAAAAAAAAAAoPYvVAAAAAAAAAAAAAEDpWawGAAAAAAAAAAAAAErPYjUAAAAAAAAAAAAAUHoWqwEAAAAAAAAAAACA0rNYDQAAAAAAAAAAAACUnsVqAAAAAAAAAAAAAKD0LFYDAAAAAAAAAAAAAKVXX/QAAAAAAAAAAAAAANRGpVIpegRosjxjNQAAAAAAAAAAAABQeharAQAAAAAAAAAAAIDSs1gNAAAAAAAAAAAAAJSexWoAAAAAAAAAAAAAoPQsVgMAAAAAAAAAAAAApWexGgAAAAAAAAAAAAAoPYvVAAAAAAAAAAAAAEDpWawGAAAAAAAAAAAAAErPYjUAAAAAAAAAAAAAUHoWqwEAAAAAAAAAAACA0rNYDQAAAAAAAAAAAACUXn3RAwAAAAAAAAAAAABQG5VUih4BmizPWA0AAAAAAAAAAAAAlJ7F6ibisB8ckJdeeDwTP3wlTwwdmE02Xr/okQqhgwaJBokGVTpokGiQaFClgwaJBlU6aJBokGhQpYMGiQabbrJB7rj9D3n9P8Mybcqo7Ljj1kWPVJiynwuJBokGiQZVOmiQaJBoUKWDBokGVTpokJSvwcYbr5+bbrkiL70yNBMn/Tvf2eF/Gt1/6e/PzcRJ/2708uBDtxU0bW2V7VyYlebQ4IpbB2XtXX6YX15585c+bsrUqbnoj3dm6++fnF67/zjbHf7z3P7AYwt0thdfG5X/Pfn8fHPPn2TLQ07MpTfdk0pl5rMB3z/0qXz/tIuy+YHHpc8+x2TfE87N35761wKdCYD51ywXq88777y89tprRY/xldlttx1z/nmnpV//i9J7/a3z6KN/z11/uT5f+1r3okerKR00SDRINKjSQYNEg0SDKh00SDSo0kGDRINEgyodNEg0SJJ27RbNiBH/yo+POrnoUQrlXNAg0SDRoEoHDRINEg2qdNAg0aBKBw2ScjZYtN0iefaZkfnpMafO9jH33fdQvr7CNxtedt35f2s4YTHKeC58XnNo8OxL/8ktg/+WlZfrMcfH/r9fXZknRryQ03+0bwZcfGp+ecxBWaHHUvP9vkeNHpu1d/nhbO+fOOnj/OD032TJJTrlT788PiccsnuuufP+XDvggYbHDHvu5WzYc9X89qQf5oZzT8g311w5R/a7JCNffWO+5wJgwamrfPbPY5qJFi1apEWLFvn2t7+dQw45JDvvvHNat279X7/d+tZz/uK7IDz26F8y/Klnc8SRJzYce2bEQxkwYFBOOrl/ITMVQQcNEg0SDap00CDRINGgSgcNEg2qdNAg0SDRoEoHDRINPm/alFHZ5XsHZcCAe4sepeacCxokGiQaVOmgQaJBokGVDhokGlTpoEHStBq0rf/v913m1cRJ/86ee3w/d/1lcMOxS39/bhbr1DF77fGDms/zybQpNX+fVU3pXChKU2rw0VPXfuHYpI8/yR7/r39O+v6eueyWgVll+WVy/MG7zfL1Hx3+XI4//6rcc8kZWaxDu9m+nzseeDxX33FfRo0em+5dO2fv7b6VPbfdfJaPHTV6bLY97JSMuO13s7z/xkEP56Lr78xfr+6f1q1aJUmuvO3e/PmehzL48rNTV1c3y9fb+SdnZuuNe+Ww3bdrdLzNGlvMdm74KrVp+7WiR6AEJn/SPP+ApFk+Y3WSXHHFFWnXrl3222+/dO/ePUcddVSeffbZoseaZ61atcp6662dwfcPaXR88OAh6bNh74Kmqj0dNEg0SDSo0kGDRINEgyodNEg0qNJBg0SDRIMqHTRINGAm54IGiQaJBlU6aJBokGhQpYMGiQZVOmiQaPBlNt10w/z7P0/mqX8+mN/8tl+WXLJz0SMtUM6F5tHgrMtvzKa91syGPVed42MfenJEVl9p2Vx9x+BseciJ2eFHp+VXf7g1n0yeubx/y+BH85s/DciR++yYOy76eX68z4757Z/vyp1/HTpf8/3zhVfTa41vNCxVJ8lG66ye0ePGZ9TosbN8nRkzZuSjjz/JYu0Xna/3CcCC1WwXq7fbbrvccccdefPNN3Pcccfl3nvvTc+ePbP++uvn8ssvz4QJE7709SdPnpwPP/yw0UsRT97dpcsSqa+vz+h3xzQ6Pnr0mCy1dNeaz1MUHTRINEg0qNJBg0SDRIMqHTRINKjSQYNEg0SDKh00SDRgJueCBokGiQZVOmiQaJBoUKWDBokGVTpokGgwO4PveygHH3RUtt9un/zsxLPSq9faufueP34l/4J8U+VcaPoNBj76j4x89Y38ZN+d5urxb747Nk+NfCUvv/5WLjj+BznuoO/l/sefytmX39jwmMtuHpifHrhLttxw3SyzVJdsueG62W+Hvrnlvkfma8axH3yYzp06NDpWvT32gw9n+TrXDHggH38yJVtt1Gu+3icAC1Z90QP8t7p27Zrjjjsuxx13XB555JFceeWVOfroo3P00Udn4sSJs329fv365fTTT290rK5F+9S17LigR56lzy9119XVFbLoXTQdNEg0SDSo0kGDRINEgyodNEg0qNJBg0SDRIMqHTRINGAm54IGiQaJBlU6aJBokGhQpYMGiQZVOmiQaPB5t956d8P//te/Xszw4SMy8vlHs822386AO+8tcLIFz7nQNBu8M2Zcfnnlzfn9z49Mm9at5vwKSSqVGamrq0u/o/43HdotkiT5f/+7a3567hX52aF7ZNInk/POmPdz2m+vz+mX/Knh9aZPn572iy7ScHvnn5yZt94b939v89MOG+x9dMP93ZdcIrdfeErD7brUfW6Omfd83j2PPJlLbrw7F51w2BcWsgFoGprlYnVd3Re/6CTJpptumk033TQXXXRRbrzxxlk+purEE0/MMccc0+jY4p3n/E9GfNXGjBmXadOmZamll2x0fMklO2f0u+/VfJ6i6KBBokGiQZUOGiQaJBpU6aBBokGVDhokGiQaVOmgQaIBMzkXNEg0SDSo0kGDRINEgyodNEg0qNJBg0SDufXuO+/l9ddHZcUVly96lAXGudC0G/zrldczbvyE7Hls/4Zj02fMyLB/vZwbBg7JP268KC1btmj0Ol0WXyxdl+jUsFSdJF9fZulUKpW8O/aDtF+0bZLk1MP3yVorL9/odVu0mPm2fnvSDzNt+vQkyehxH+SgU36dm887seH++pYtG/53504dM+Zzz0w9bvyE/7uv8eL0oEf/kdN+e31+9f8OyYY9a7+nBsDcaTHnhzQ9c/qLqI4dO+bQQw/90se0adMmHTt2bPQyu4XtBWnq1KkZPnxEttxis0bHt9xyszw+9B81n6coOmiQaJBoUKWDBokGiQZVOmiQaFClgwaJBokGVTpokGjATM4FDRINEg2qdNAg0SDRoEoHDRINqnTQINFgbi2xRKcss0z3vPPOwrtg7Fxo2g02WHvV3HrBybnpvJ81vKyx4rLZfrNv5qbzfvaFpeokWXfVFfPeuA8y6eNPGo699tbotGhRl6U6d0rnTh3TdYlOefPdMVm2W9dGL8ss1aXhdbp37dxwvNuSnZOk0WO7d+3c8Nieq3w9w/71UqZOndZw7PGnR6brEoulx2ced88jT+aUi69L/6P/N5v1XusrbQXAV6tZPmP1jBkzih7hK3XBhZfnmqsvzLBh/8zQJ4bl0IP3zbJf65HfX3Zd0aPVlA4aJBokGlTpoEGiQaJBlQ4aJBpU6aBBokGiQZUOGiQaJEm7dotmpZVWaLi9wvLLpmfPNTJu3Pt54423CpystpwLGiQaJBpU6aBBokGiQZUOGiQaVOmgQVLOBu3aLZqvr7hcw+3llvta1lp7tbw/bnzef/+D/Oyko3LnHQPzzjujs9xyy+TU04/N2LHj8pcB9xY49YJXxnPh85pqg3aLtM03luve6NgibdtksfbtGo5feP0deXfsBzn7JwcmSbbbtHd+f/M9OeXi6/LDPb+T9z+cmPOvuT3f7btR2rZpnSQ5fI/t88srb0q7Rdtmk/XWyJSp0/Kvl1/Phx9Nyv47bjHPc2636Tdz6U335OSLr80hu2yT198enStuG5Qf7LZdw5N83vPIkzn5omty3EG7Ze2VV8iY98cnSdq0bt3o2bUBaBqa5WJ1kowcOTJDhw5Nnz59suqqq+b555/PhRdemMmTJ2ffffdN3759ix5xrt1884B0XmLxnHzS0enWrWuefe6F7LDjfnn99VFFj1ZTOmiQaJBoUKWDBokGiQZVOmiQaFClgwaJBokGVTpokGiQJL179cwD99/ScPu8X52WJLnm2pty8CFHFzRV7TkXNEg0SDSo0kGDRINEgyodNEg0qNJBg6ScDdZbb60MvPeGhtu/POeUJMn1192So35yctZYY5XsvffOWaxTx7zzznt5eMjjOWC/IzNx4kdFjVwTZTwXPq85N3jv/Q/zzpj3G24vukjbXHbqj9Pvipuy17H9s1iHdtl6o145Yu8dGh6z6/9snLZtWueaOwfngmvvyCJtW+cby3bPvt+Zv12zDu0Wye9PPTJnX35j9jqufzq2WzT77bBFoyXtW+57NNOmz8jZl9+Ysy+/seH4jt/eML84cv/5er8ALDh1lUqlUvQQ82rQoEHZaaed0r59+0yaNCm333579t9///Ts2TOVSiVDhgzJvffeO8/L1fWteyygiQEAAAAAAAAAoLG29a2LHqFwn0ybUvQINBEfPXVt0SMUrs0a8/6s2TA/WrdZpugRKIEpk98seoT50qLoAebHGWeckWOPPTZjx47N1Vdfnb333juHHnpoBg8enPvvvz/HHXdc+vfvX/SYAAAAAAAAAAAAAEAz0SwXq5977rkceOCBSZLdd989EyZMyK677tpw/1577ZURI0YUNB0AAAAAAAAAAAAA0Nw0y8Xqz2rRokXatm2bTp06NRzr0KFDxo8fX9xQAAAAAAAAAAAAAECz0iwXq5dffvm8/PLLDbcff/zxLLvssg2333jjjXTr1q2I0QAAAAAAAAAAAACAZqi+6AHmx+GHH57p06c33F5zzTUb3T9w4MD07du31mMBAAAAAAAAAAAAAM1UXaVSqRQ9RFNR37pH0SMAAAAAAAAAAFASbetbFz1C4T6ZNqXoEWgiPnrq2qJHKFybNbYoegRKonWbZYoegRKYMvnNokeYLy2KHgAAAAAAAAAAAAAAoGgWqwEAAAAAAAAAAACA0rNYDQAAAAAAAAAAAACUnsVqAAAAAAAAAAAAAKD0LFYDAAAAAAAAAAAAAKVXX/QAAAAAAAAAAAAAANRGpVIpegRosjxjNQAAAAAAAAAAAABQeharAQAAAAAAAAAAAIDSs1gNAAAAAAAAAAAAAJSexWoAAAAAAAAAAAAAoPQsVgMAAAAAAAAAAAAApWexGgAAAAAAAAAAAAAoPYvVAAAAAAAAAAAAAEDpWawGAAAAAAAAAAAAAErPYjUAAAAAAAAAAAAAUHoWqwEAAAAAAAAAAACA0rNYDQAAAAAAAAAAAACUXn3RAwAAAAAAAAAAAABQG5WiB4AmzDNWAwAAAAAAAAAAAAClZ7EaAAAAAAAAAAAAACg9i9UAAAAAAAAAAAAAQOlZrAYAAAAAAAAAAAAASs9iNQAAAAAAAAAAAABQeharAQAAAAAAAAAAAIDSs1gNAAAAAAAAAAAAAJSexWoAAAAAAAAAAAAAoFC/+93vssIKK6Rt27bp1atXHnnkkZrPYLEaAAAAAAAAAAAAACjMjTfemKOOOionnXRSnnrqqWy66abZdttt8/rrr9d0jrpKpVKp6Xtswupb9yh6BAAAAAAAAAAASqJtfeuiRyjcJ9OmFD0CTcRHT11b9AiYZbh5AAAwTElEQVSFa7PGFkWPQEnYlaQWpk0ZNU+P32CDDbLeeuvlkksuaTi22mqr5bvf/W769ev3VY83W56xGgAAAAAAAAAAAAD4ykyePDkffvhho5fJkyfP8rFTpkzJsGHDstVWWzU6vtVWW+Wxxx6rxbgzVWgyPvnkk8qpp55a+eSTT4oepTAaaFClgwaVigaVigZVOmhQqWhQpYMGlYoGlYoGVTpoUKloUKloUKWDBpWKBpWKBlU6aFCpaFCpaFClgwaVigZVOmhQqWhQqWhQpYMGlYoGlYoGVToAfLVOPfXUSpJGL6eeeuosHztq1KhKksrf/va3RsfPOuusysorr1yDaWeqq1QqldqucjM7H374YRZbbLGMHz8+HTt2LHqcQmigQZUOGiQaJBpU6aBBokGVDhokGiQaVOmgQaJBokGVDhokGiQaVOmgQaJBokGVDhokGlTpoEGiQaJBlQ4aJBokGlTpAPDVmjx58heeobpNmzZp06bNFx771ltvpUePHnnsscfSp0+fhuNnnXVWrrvuujz//PMLfN6q+pq9JwAAAAAAAAAAAABgoTe7JepZ6dKlS1q2bJl33nmn0fHRo0dnqaWWWhDjzVaLmr43AAAAAAAAAAAAAID/07p16/Tq1SuDBw9udHzw4MHZaKONajqLZ6wGAAAAAAAAAAAAAApzzDHHZL/99kvv3r3Tp0+fXHbZZXn99ddz2GGH1XQOi9VNSJs2bXLqqafO9VOfL4w00KBKBw0SDRINqnTQINGgSgcNEg0SDap00CDRINGgSgcNEg0SDap00CDRINGgSgcNEg2qdNAg0SDRoEoHDRINEg2qdAAo1h577JGxY8fmjDPOyNtvv50111wz99xzT5ZbbrmazlFXqVQqNX2PAAAAAAAAAAAAAABNTIuiBwAAAAAAAAAAAAAAKJrFagAAAAAAAAAAAACg9CxWAwAAAAAAAAAAAAClZ7EaAAAAAAAAAAAAACg9i9VNxO9+97ussMIKadu2bXr16pVHHnmk6JFq6uGHH84OO+yQ7t27p66uLnfccUfRI9Vcv3798s1vfjMdOnRI165d893vfjcvvPBC0WPV1CWXXJK11147HTt2TMeOHdOnT58MHDiw6LEK1a9fv9TV1eWoo44qepSaOu2001JXV9foZemlly56rJobNWpU9t1333Tu3DmLLrpo1llnnQwbNqzosWpm+eWX/8J5UFdXlx/96EdFj1ZT06ZNy8knn5wVVlghiyyySL7+9a/njDPOyIwZM4oeraYmTJiQo446Ksstt1wWWWSRbLTRRnnyySeLHmuBmdO1UaVSyWmnnZbu3btnkUUWybe+9a0899xzxQy7gMypwW233Zatt946Xbp0SV1dXZ5++ulC5lzQvqzD1KlTc/zxx2ettdZKu3bt0r179+y///556623iht4AZjTuXDaaadl1VVXTbt27bL44otnyy23zBNPPFHMsAvIvHy/9IMf/CB1dXX59a9/XbP5amVOHQ488MAvXDdsuOGGxQy7gMzNuTBy5MjsuOOOWWyxxdKhQ4dsuOGGef3112s/7AIypwazun6sq6vLueeeW8zAC8CcGkycODFHHHFElllmmSyyyCJZbbXVcskllxQz7AI0pw7vvvtuDjzwwHTv3j2LLrpottlmm7z00kvFDLsAzM3PkcpwzTg3HRb268Y5NSjDNePcnAcL+zXjvP5seWG9ZpybDgv7NePcngsL8zXj3DRY2K8Z56ZBGa4Z56bDwn7NOKffu5XhenFODRb2a8WqL+tQhuvFZM7nwsJ+vZjM2+/iF9brxTk1WNivFavm5lxYmK8Xkzk3WNivFwGYM4vVTcCNN96Yo446KieddFKeeuqpbLrpptl2220XqouSOfnoo4/Ss2fPXHzxxUWPUpghQ4bkRz/6UYYOHZrBgwdn2rRp2WqrrfLRRx8VPVrNLLPMMunfv3/+8Y9/5B//+Ef69u2bnXbaaaH7Ic7cevLJJ3PZZZdl7bXXLnqUQqyxxhp5++23G16eeeaZokeqqffffz8bb7xxWrVqlYEDB+Zf//pXzjvvvHTq1Kno0WrmySefbHQODB48OEmy2267FTxZbf3yl7/MpZdemosvvjgjR47MOeeck3PPPTe/+c1vih6tpg455JAMHjw41113XZ555plstdVW2XLLLTNq1KiiR1sg5nRtdM455+T888/PxRdfnCeffDJLL710/ud//icTJkyo8aQLzpwafPTRR9l4443Tv3//Gk9WW1/WYdKkSRk+fHhOOeWUDB8+PLfddltefPHF7LjjjgVMuuDM6VxYeeWVc/HFF+eZZ57Jo48+muWXXz5bbbVV3nvvvRpPuuDM7fdLd9xxR5544ol07969RpPV1tx02GabbRpdP9xzzz01nHDBm1ODV155JZtssklWXXXVPPTQQ/nnP/+ZU045JW3btq3xpAvOnBp89v//b7/9dq666qrU1dVl1113rfGkC86cGhx99NEZNGhQrr/++owcOTJHH310jjzyyNx55501nnTB+rIOlUol3/3ud/Pqq6/mzjvvzFNPPZXlllsuW2655ULzc5a5+TlSGa4Z56bDwn7dOKcGZbhmnJvzYGG/ZpyXny0vzNeMc9thYb5mnJsGC/s149w0WNivGeemQRmuGefUoQzXjHP6vVsZrhfn1GBhv1as+rIOZbheTOZ8Lizs14vJ3P8ufmG+XpybBgvztWLVnDos7NeLyZwbLOzXiwDMhQqFW3/99SuHHXZYo2Orrrpq5YQTTihoomIlqdx+++1Fj1G40aNHV5JUhgwZUvQohVp88cUrV1xxRdFj1NyECRMq3/jGNyqDBw+ubL755pWf/OQnRY9UU6eeemqlZ8+eRY9RqOOPP76yySabFD1Gk/KTn/yksuKKK1ZmzJhR9Cg1tf3221cOOuigRsd22WWXyr777lvQRLU3adKkSsuWLSt33XVXo+M9e/asnHTSSQVNVTufvzaaMWNGZemll67079+/4dgnn3xSWWyxxSqXXnppARMueF92ffjvf/+7kqTy1FNP1XSmIszNdfLf//73SpLKa6+9VpuhamxuGowfP76SpHL//ffXZqgam12DN998s9KjR4/Ks88+W1luueUqF1xwQc1nq6VZdTjggAMqO+20UyHzFGFWDfbYY49SXSPMzeeEnXbaqdK3b9/aDFSAWTVYY401KmeccUajY+utt17l5JNPruFktfX5Di+88EIlSeXZZ59tODZt2rTKEkssUbn88ssLmHDB+/zPkcp4zVipfPnP08py3Tg3P1Nc2K8Z56bBwn7NOLsGZbtmnFWHsl0zzqpB2a4Z5+ZzwsJ+zTirBmW8Zvx8hzJeM1YqM3/vVtbrxUpl1r97LMu14md92e9gF/brxaova7CwXy9Wfb5B2a4XK5XGDcp2rfhZn+1QtuvFqi/7nLCwXy8C8EWesbpgU6ZMybBhw7LVVls1Or7VVlvlscceK2gqmoLx48cnSZZYYomCJynG9OnTc8MNN+Sjjz5Knz59ih6n5n70ox9l++23z5Zbbln0KIV56aWX0r1796ywwgrZc8898+qrrxY9Uk0NGDAgvXv3zm677ZauXbtm3XXXzeWXX170WIWZMmVKrr/++hx00EGpq6srepya2mSTTfLAAw/kxRdfTJL885//zKOPPprtttuu4MlqZ9q0aZk+ffoX/hJ+kUUWyaOPPlrQVMX597//nXfeeafR9WObNm2y+eabu34k48ePT11dXan+hYPPmjJlSi677LIstthi6dmzZ9Hj1MyMGTOy33775dhjj80aa6xR9DiFeuihh9K1a9esvPLKOfTQQzN69OiiR6qZGTNm5O67787KK6+crbfeOl27ds0GG2yQO+64o+jRCvPuu+/m7rvvzsEHH1z0KDW1ySabZMCAARk1alQqlUr++te/5sUXX8zWW29d9Gg1M3ny5CRpdP3YsmXLtG7deqG9fvz8z5HKes1Y9p+nJXPXYGG/ZpxTgzJcM86qQRmvGWd3LpTpmvHzDcp4zTinzwlluGacVYMyXjN+vkPZrhk//3u3Ml4vlv13j1Vz02Fhv16cU4MyXC/OqkHZrhdndx6U6Vox+WKHMl4vzulzQhmuFwH4IovVBRszZkymT5+epZZaqtHxpZZaKu+8805BU1G0SqWSY445JptssknWXHPNosepqWeeeSbt27dPmzZtcthhh+X222/P6quvXvRYNXXDDTdk+PDh6devX9GjFGaDDTbItddem3vvvTeXX3553nnnnWy00UYZO3Zs0aPVzKuvvppLLrkk3/jGN3LvvffmsMMOy49//ONce+21RY9WiDvuuCMffPBBDjzwwKJHqbnjjz8+e+21V1ZdddW0atUq6667bo466qjstddeRY9WMx06dEifPn1y5pln5q233sr06dNz/fXX54knnsjbb79d9Hg1V71GdP3I533yySc54YQTsvfee6djx45Fj1NTd911V9q3b5+2bdvmggsuyODBg9OlS5eix6qZX/7yl6mvr8+Pf/zjokcp1Lbbbps//vGPefDBB3PeeeflySefTN++fRt+Wb6wGz16dCZOnJj+/ftnm222yX333Zedd945u+yyS4YMGVL0eIW45ppr0qFDh+yyyy5Fj1JTF110UVZfffUss8wyad26dbbZZpv87ne/yyabbFL0aDWz6qqrZrnllsuJJ56Y999/P1OmTEn//v3zzjvvLJTXj7P6OVIZrxnL/PO0qrlpsLBfM35Zg7JcM86uQdmuGWfXoUzXjLNqULZrxrn5vLiwXzPOrkHZrhln1aEs14yz+71bma4X/e7xU3PbYWG+XpxTgzJcL35Zg7JcL35ZgzJdK86uQ5muF+f28+LCfr0IwKzVFz0An/r8s29WKpXSPSMnMx1xxBEZMWLEQvkX8XOyyiqr5Omnn84HH3yQW2+9NQcccECGDBlSmh9wvPHGG/nJT36S++677wvPzFom2267bcP/XmuttdKnT5+suOKKueaaa3LMMccUOFntzJgxI717987ZZ5+dJFl33XXz3HPP5ZJLLsn+++9f8HS1d+WVV2bbbbdN9+7dix6l5m688cZcf/31+dOf/pQ11lgjTz/9dI466qh07949BxxwQNHj1cx1112Xgw46KD169EjLli2z3nrrZe+9987w4cOLHq0wrh/5rKlTp2bPPffMjBkz8rvf/a7ocWru29/+dp5++umMGTMml19+eXbfffc88cQT6dq1a9GjLXDDhg3LhRdemOHDh5f+c8Aee+zR8L/XXHPN9O7dO8stt1zuvvvuUvzQe8aMGUmSnXbaKUcffXSSZJ111sljjz2WSy+9NJtvvnmR4xXiqquuyj777FO6760uuuiiDB06NAMGDMhyyy2Xhx9+OD/84Q/TrVu30vyrSK1atcqtt96agw8+OEsssURatmyZLbfcstH3mguTL/s5UpmuGcv887SqOTUowzXjlzUoyzXjrBqU8ZpxdudCma4ZZ9WgbNeMc/O1YWG/Zpxdg7JdM86qQ1muGWf3e7eqMlwvlv13j1Vz02Fhv16cU4MyXC/OrsHHH39cmuvFLzsPynStOLsO1WeqL8P14tx+fVjYrxcBmDXPWF2wLl26pGXLll/4y9/Ro0d/4S+EKYcjjzwyAwYMyF//+tcss8wyRY9Tc61bt85KK62U3r17p1+/funZs2cuvPDCoseqmWHDhmX06NHp1atX6uvrU19fnyFDhuSiiy5KfX19pk+fXvSIhWjXrl3WWmutvPTSS0WPUjPdunX7wjdtq622Wl5//fWCJirOa6+9lvvvvz+HHHJI0aMU4thjj80JJ5yQPffcM2uttVb222+/HH300aV7VvsVV1wxQ4YMycSJE/PGG2/k73//e6ZOnZoVVlih6NFqbumll04S1480mDp1anbffff8+9//zuDBgxe6Z5KZG+3atctKK62UDTfcMFdeeWXq6+tz5ZVXFj1WTTzyyCMZPXp0ll122Ybrx9deey0//elPs/zyyxc9XqG6deuW5ZZbrjTXkF26dEl9fb1ryP/zyCOP5IUXXijdNeTHH3+cn/3sZzn//POzww47ZO21184RRxyRPfbYI7/61a+KHq+mevXq1fDLsbfffjuDBg3K2LFjF7rrx9n9HKls14xl/3laMucGZbhmnFODMlwzzq5B2a4Z5+VzwsJ6zTi7BmW6Zpyb82Bhv2acXYOyXTN+2blQhmvG2f3erUzXi2X/3WPVnDqU4XpxTg3KcL04uwZlul6cl88JC+u1YjL7DmW6Xpybc2Fhv14EYPYsVhesdevW6dWrVwYPHtzo+ODBg7PRRhsVNBVFqFQqOeKII3LbbbflwQcfXKh+aPPfqFQqC+U/rTM7W2yxRZ555pk8/fTTDS+9e/fOPvvsk6effjotW7YsesRCTJ48OSNHjky3bt2KHqVmNt5447zwwguNjr344otZbrnlCpqoOFf//3buPaqqOv//+Osot4MpCkKAisLkpURNlPKSYumysURDKxxnELFMTBvtok7WpFY6zZSgaaUkgrbU8jY6lnkH7WKhFoGoaSaiqTleUBNRkP37wy/nJ8PlACrHznk+1mKtzd6fz2e/95utvju8+yQlycfHR48++qitQ7GJvLw81apVsmSrXbu2ZYchR1OnTh35+fnp7NmzWr9+vfr372/rkGpcYGCgfH19S9SPV65c0datW6kfHVDxLzwOHDigTZs2ycvLy9Yh3RYcqYaMiopSRkZGifrR399f48aN0/r1620dnk2dPn1aR44ccZga0sXFRaGhodSQ/ycxMVEdOnRQu3btbB1KjSooKFBBQQH143U8PDzk7e2tAwcOaOfOnXZTP1r7HMlRakY+T6tcDuy9Zqzue2BPNaO1HDhKzVidd8HeakZrOXCEmrEq74G91ozWcuAoNWNV3gV7rRnLUvzvn6PUi2WxpxrgRlyfB3uvF8tj7V1whHel+BkdpV4sS0U/Z3urFStSnAdHqBfLU9a7YK/1IgDAOidbBwDphRdeUFRUlDp27KjOnTsrISFBOTk5io2NtXVoNea3337TTz/9ZPn+0KFDSk9Pl6enpwICAmwYWc0ZNWqUFi9erNWrV6tu3bqW/0Pcw8NDZrPZxtHVjIkTJ6pPnz5q0qSJLly4oI8//lipqalat26drUOrMXXr1lVwcHCJc3Xq1JGXl1ep8/bspZdeUnh4uAICAnTy5Em9+eabOn/+vKKjo20dWo15/vnn1aVLF02bNk1PPvmk0tLSlJCQoISEBFuHVqOKioqUlJSk6OhoOTk5ZtkSHh6uqVOnKiAgQK1bt9b333+vuLg4DRs2zNah1aj169fLMAy1bNlSP/30k8aNG6eWLVsqJibG1qHdEtZqo7Fjx2ratGlq3ry5mjdvrmnTpsnd3V2DBw+2YdQ3l7UcnDlzRjk5OTp27JgkWT7k8/X1tey4Yw8qyoO/v78ef/xxfffdd/r000919epVSw3p6ekpFxcXW4V9U1WUAy8vL02dOlX9+vWTn5+fTp8+rffff19Hjx7VE088YcOoby5rfx7+95ddzs7O8vX1VcuWLWs61Fuqojx4enpq8uTJGjhwoPz8/JSdna2JEyeqYcOGioiIsGHUN5e1d2HcuHGKjIxU9+7d9eCDD2rdunVas2aNUlNTbRf0TVaZzw/Onz+vZcuWafr06bYK85ayloOwsDCNGzdOZrNZTZs21datW7Vw4ULFxcXZMOqbz1oeli1bJm9vbwUEBCgzM1NjxozRY489pt69e9sw6pvH2udIJpPJIWrGynyeZu91o7UcFBYW2n3NaC0HFy9etPua0VoOvLy8HKJmtJaH3377ze5rxsr8vWjvNWNlf9dizzWjtRzUq1fPIWrGyrwL9l4zVvR7N0epF6397tHea8ViFeXBEepFqeIcOEK9KFWcA0epFyvKgSPUisWs/d1o7/WiVLneFHuuFwEAlWDgtvDee+8ZTZs2NVxcXIyQkBBj69attg6pRqWkpBiSSn1FR0fbOrQaU9bzSzKSkpJsHVqNGTZsmOXPgbe3t9GzZ09jw4YNtg7L5sLCwowxY8bYOowaFRkZafj5+RnOzs6Gv7+/MWDAACMrK8vWYdW4NWvWGMHBwYarq6vRqlUrIyEhwdYh1bj169cbkowff/zR1qHYzPnz540xY8YYAQEBhpubmxEUFGS88sorxuXLl20dWo365JNPjKCgIMPFxcXw9fU1Ro0aZeTm5to6rFvGWm1UVFRkTJo0yfD19TVcXV2N7t27G5mZmbYN+iazloOkpKQyr0+aNMmmcd9sFeXh0KFD5daQKSkptg79pqkoB5cuXTIiIiIMf39/w8XFxfDz8zP69etnpKWl2Trsm6qq/73UtGlTIz4+vkZjrAkV5SEvL8/o3bu34e3tbTg7OxsBAQFGdHS0kZOTY+uwb6rKvAuJiYnGXXfdZbi5uRnt2rUzVq1aZbuAb4HK5GDu3LmG2Wy221rBWg6OHz9uDB061PD39zfc3NyMli1bGtOnTzeKiopsG/hNZi0PM2fONBo3bmz5O+HVV1+1qxq6Mp8jOULNWJk82HvdaC0HjlAzWsuBI9SM1fls2R5rRmt5cISasbLvgj3XjJXNgT3XjJXJgSPUjJXJg73XjNZ+7+YI9aK1HNh7rVisojw4Qr1oGBXnwBHqRcOo+u/i7bFerCgHjlArFqvMu2DP9aJhVC4H9lwvAgCsMxmGYQgAAAAAAAAAAAAAAAAAAAAAHFgtWwcAAAAAAAAAAAAAAAAAAAAAALZGYzUAAAAAAAAAAAAAAAAAAAAAh0djNQAAAAAAAAAAAAAAAAAAAACHR2M1AAAAAAAAAAAAAAAAAAAAAIdHYzUAAAAAAAAAAAAAAAAAAAAAh0djNQAAAAAAAAAAAAAAAAAAAACHR2M1AAAAAAAAAAAAAAAAAAAAAIdHYzUAAAAAAAAAAAAAAAAAAAAAh0djNQAAAAAAAHAbMJlMMplMmjx5cqlrycnJluvZ2dk1Hpst3G7PPHnyZEs8AAAAAAAAAADAPtFYDQAAAAAAgN+N1NRUS3Pr/36ZzWY1adJEffv21bx585Sfn2/rcHGb2bdvn15//XWFhYUpICBAZrNZd9xxh5o2barw8HDFxcXpxIkTtg4TAAAAAAAAAADYCI3VAAAAAAAAsAv5+fk6evSoPvvsMw0fPlz33nuv9u/fb+uwbnu3287Qt0Jubq5iYmIUHBysSZMmadu2bTpy5Ijy8/N18eJF5eTk6NNPP9WLL76oJk2aaOTIkTpz5oytwwYAAAAAAAAAADXMydYBAAAAAAAAANUxcuRIPfvss5bv8/LylJ6erhkzZmjv3r368ccf9cc//lFZWVkym802jPTGDR06VEOHDrV1GL9L2dnZ6tOnj/bt2ydJ8vb21uDBgxUWFiY/Pz+ZTCYdO3ZMqampWrFihX755RfNmTNHDz/8sB577DHbBg8AAAAAAAAAAGoUjdUAAAAAAAD4XfLx8VFwcHCJc/fdd5+ioqLUo0cPpaWl6dChQ0pMTNTo0aNtFCVs6dKlSwoPD7c0VcfExGjmzJmqW7duqbERERF6++239cEHH+iVV16p6VABAAAAAAAAAMBtoJatAwAAAAAAAABuJrPZrKlTp1q+//zzz20YDWxp4sSJ2r17t6Rru37Pnz+/zKbqYi4uLhozZoy+/fZbNWnSpKbCBAAAAAAAAAAAtwkaqwEAAAAAAGB3OnXqZDk+fPiw5Tg7O1smk0kmk0nJycmSpJUrV+qRRx6Rv7+/nJyc1KNHj1LrHT16VC+//LJCQkLUoEEDubm5KSAgQJGRkUpJSalUTIsWLVKPHj3UoEED3XHHHQoODtakSZOUm5trdW5ycrIl7uzs7HLHFRUVacmSJRo4cKACAgJkNpvl5eWldu3aadiwYVq3bp0KCwslSampqTKZTIqJibHMDwwMtNyn+Cs1NbXMe23cuFF/+ctfFBgYKLPZrHr16qldu3YaP368jh8/bvWZzp49q7/97W9q1aqVzGazfHx81KtXLy1btszq3Mo4deqUEhISJEm+vr569913Kz23devW6tChQ5Xud+XKFa1Zs0ajR49WaGioGjRoIGdnZ3l5een+++/X5MmTderUKavrbNmyRX/6058seXV3d1ezZs3UqVMnvfTSS9qyZUuZ83JzczV16lR17tzZcm9vb2/dc889ioiI0AcffKCTJ09W6ZkAAAAAAAAAAHA0TrYOAAAAAAAAALjZnJz+/8deV69eLXOMYRgaMmSIPvroowrXSkxM1HPPPadLly6VOH/kyBEdOXJES5cu1VNPPaU5c+aUuG+xwsJCDRo0SCtWrChxPisrS1lZWVq0aJE2btxY2UcrV3Z2tiIiIpSenl7ifH5+vs6cOaOMjAwlJSUpJSWlzObxyrp48aKioqL073//u9R9MjIylJGRoQ8++EBLlixR3759y1xjz5496tWrV4kG7Pz8fG3evFmbN2/WsGHD1K1bt2rHKEkff/yx8vLyJElPP/10hTtV3wzPPPOMFixYUOr8mTNnlJaWprS0NM2ePVurV69W165dy1zjhRdeUHx8fKnzhw8f1uHDh/Xtt98qOTm5VIP23r171atXLx07dqzE+VOnTunUqVPau3evVq1apatXr2r06NE38JQAAAAAAAAAANg3GqsBAAAAAABgdzIyMizH/v7+ZY6ZMWOGMjIy1K1bN40cOVItWrRQbm5uiR2h58+fr6efflqSFBwcrBEjRqh9+/Zyd3fXoUOHlJiYqLVr1yoxMVEeHh6aPn16qfs8//zzlqbqli1bavz48Wrbtq3OnTunZcuW6cMPP1RkZOQNPe+vv/6qrl27WhprH3roIUVHR6tVq1YymUw6dOiQtmzZUmI36NDQUGVmZmr16tV69dVXJUnr168vla/AwEDL8dWrVxUeHq6UlBSZTCYNGjRIAwYMUGBgoAoKCpSWlqbp06crJydHAwcO1Ndff11q5+dz587p4YcftjRVR0ZGKjo6Wj4+Ptq/f7/i4uI0f/58ZWZm3lBOtm7dajkur8H7ZiosLFRQUJAiIiJ03333KSAgQE5OTjp8+LA2bdqk+fPn6/Tp04qIiNDu3bvl4+NTYv6nn35qaapu27atRo4cqbvvvlseHh46d+6c9u3bp40bN2r79u2l7h0VFaVjx47J2dlZw4cPV58+feTr66uioiIdO3ZMaWlppRr7AQAAAAAAAABAaTRWAwAAAAAAwO5MmzbNclze7swZGRkaMmSIkpOTZTKZSl0/cuSInnvuOUlSdHS05s2bV2JH6vbt22vAgAF65ZVXNG3aNM2YMUMjRoxQixYtStzj/ffflySFhIRo69atuuOOOyzXe/bsqS5duig6OvqGnjc2NtbSVP3Pf/5T48ePL3E9NDRUTz75pKZPn64rV65IkurUqaPg4GDt3LnTMq5FixZq1qxZufeZMWOGUlJS5OzsrNWrV6tPnz4lrnfq1ElRUVHq1q2bsrKyNHbsWH3xxRclxrz++us6evSopGs/p5dfftlyrUOHDnr88cfVt29fbdiwoeqJuM4PP/wgSapVq5buvffeG1qrMqZMmaKgoKBS71LHjh01cOBAPfvss+rSpYv++9//atasWXrjjTdKjFu6dKkkqWnTpvrqq69KvCeSFBYWphEjRujMmTMlzv/888/atWuXJCkuLq7MHakfe+wxTZ06Vbm5uTf6mAAAAAAAAAAA2LVatg4AAAAAAAAAuBkuXbqk7du3q1+/flq9erUkqV69eoqNjS1zfP369TV79uwym6olaebMmcrLy5O/v7/mzJlToqn6elOmTFGjRo1UVFSkhQsXlrg2Z84cFRUVSZISEhJKNctK0pAhQ0o1KFfFvn37LM/bv3//Uk3V16tTp44aNGhQrfsUFBRYduQePXp0uTE3aNBAb7/9tiTpyy+/1E8//WS5dvnyZSUlJUm6tivzhAkTSs13dnZWYmKinJ2dqxVnsVOnTkmSPDw85OrqekNrVcYf/vCHct8lSWrTpo1l9/NVq1aVun7ixAlJ1xrwy3pPinl6epY5T5K6d+9e7jyTyVTtnz0AAAAAAAAAAI6CxmoAAAAAAAD8Lk2ZMkUmk8ny5e7uri5dumjNmjWSrjVVr1ixQt7e3mXODw8PV926dctdv7hZOTw8XG5ubuWOc3JyUufOnSVJ27dvL3Ft06ZNkq411Xbo0KHcNYYNG1buNWvWrl0rwzAkSc8//3y117EmLS1Nx48flyQ9+eSTFY69vsH3+pzs2rVLZ8+elXRtF/Batcr+eLJx48bq3bv3DcV74cIFSdeayW3h7NmzOnjwoLKysrR7927t3r1b9evXlyTt2bNHBQUFJcb7+flJkrZt26aDBw9W+j7F8yQpOTn5huMGAAAAAAAAAMCR0VgNAAAAAAAAu9KkSRM999xzyszMVK9evcod17Zt23KvnTt3zrLT8ty5c0s0cJf1tXz5ckkldw/Oz8+3rBEaGlphzPfdd1+ln+9/ff/995Ku7fTcqVOnaq9jzc6dOy3HnTt3rjAf1++4fH1OMjMzLce3MieSLE3zFy9evKF1qiIzM1PDhg2Tn5+fPD09dddddyk4OFht2rRRmzZtNHnyZElSUVGRpcG82JAhQyRJp0+fVnBwsAYNGqSkpKQSO36XJTAwUN26dZMkxcfHq3Xr1nrttde0ZcsW5eXl3fyHBAAAAAAAAADAjtFYDQAAAAAAgN+lkSNHKjMz0/J14MABnTlzRjk5OXr33XcVEBBQ4fwGDRqUe+3kyZPViun6Rtbc3FzLTtI+Pj4VzrvzzjurdT9JOnXqlCTJ09NTrq6u1V7HmpuRk+ubiW9lTiSpYcOGkq41yV++fPmG1qqMxMREhYSEKCkpqUQzeXkuXbpU4vuePXtq9uzZMpvNys/P1yeffKJhw4apefPmaty4sWJjY/XDDz+UudaSJUssu6bv2bNHb7zxhnr27Kn69esrLCxMc+bMUX5+/o0/JAAAAAAAAAAAds7J1gEAAAAAAAAA1eHj46Pg4OBqz69du3a5165evWo5Hjt2rJ566qlKreni4mI5Lm6qliSTyVSNCKvmVt/j+pykpqbKy8urUvOub6CuSk6uH1sd7dq104EDB1RUVKT09HTdf//9N7ReRfbt26fY2FgVFhbKx8dH48aN00MPPaRmzZqpbt26cnZ2liTNnz/f8i6V9XyjRo3SE088ocWLF2vjxo366quvdO7cOf3yyy+aO3euEhISNHHiRL355psl5jVq1Ehff/21Nm/erJUrV2rr1q3as2ePCgoKtG3bNm3btk3vvPOO1q5dqxYtWtyyPAAAAAAAAAAA8HtHYzUAAAAAAADwP65vGs7Ly6tWA/f1O2L/+uuvFY61dr0ixTsznz59WleuXCnR3H0zXZ8TFxeXauXE09PTcvzrr79W2ORb3R2yi4WFhWn58uWSpM8+++yWNlYnJyersLBQtWvXVmpqqu6+++4yx12/Y3d5fHx8NHbsWI0dO9bSFL5y5Uq99957ys3N1dSpUxUaGqr+/fuXmtuzZ0/17NlT0rX3YdOmTUpISNCWLVt08OBBRUZG6vvvv7+xhwUAAAAAAAAAwI7VsnUAAAAAAAAAwO3G29tbjRo1kiRt2rSpWrsnu7m5qXnz5pKkHTt2VDjW2vWKhISESJIKCgq0ffv2Ks+v7E7X7du3txxv2LChyveRpDZt2liOb2VOJGnQoEEym82SpHnz5unixYs3tF5FsrKyJF3bJbu8pmpJ2rlzZ5XWrVWrlkJCQvTmm29q8+bNlvNLly61OtfLy0uRkZHavHmz+vXrJ0lKT0/XgQMHqhQDAAAAAAAAAACOhMZqAAAAAAAAoAzFzag///yzZefjqurVq5ckKTMzs8KdgufPn1+t9SXp0UcftTRHx8fHV3m+m5ub5fjy5cvljnvggQcsO07PmTNH58+fr/K9OnToYNnJ+6OPPiq3Yf2XX36pdvN2sYYNG2r48OGSpOPHj2vs2LGVnpuVlaVdu3ZVenxhYaGka7ubl+fEiRNavXp1pdf8XyEhIZbcnTp1qkpzi3exrs5cAAAAAAAAAAAcCY3VAAAAAAAAQBnGjRsnV1dXSVJsbKzV3YbXrl2rjIyMEudGjBhhaXp+5plnytw1edGiRVq7dm2142zRooUiIiIkSatXr9bbb79d7tiLFy/q7NmzJc75+flZjg8ePFjuXDc3N7300kuSrjUJDxo0qMJdoC9cuKDZs2eXOOfq6qqYmBhJ13ZPLivWwsJCDR8+XFeuXCl37cr6xz/+oXvuuUfStV2rhw8frt9++63c8QUFBZo1a5Y6deqkI0eOVPo+xTuT79+/X998802p63l5eRo8eLAuXbpU7hqffPJJhdd37txp+dkFBgZazqenpys9Pb3ceYZhaNOmTZKu7U7erFmzih4FAAAAAAAAAACH5mTrAAAAAAAAAIDbUWBgoObMmaOYmBidOXNGXbt2VVRUlPr27auAgAAVFhbq6NGjSktL0/Lly3Xw4EGtWbNGbdu2tazRrl07jRo1SrNnz9bOnTvVsWNHTZgwQW3atNG5c+e0bNkyJSQkqGPHjlYbtyvy/vvv65tvvtGxY8c0fvx4rVu3TkOHDlWrVq1kMpmUnZ2t1NRUffzxx1q+fLl69Ohhmdu+fXu5ubkpPz9ff//73+Xk5KRmzZqpVq1rezI0atRIZrNZkjR+/Hht3rxZmzdv1ueff6577rlHsbGx6ty5s+rXr68LFy7oxx9/VGpqqlatWiU3NzeNHj26RKyvvfaali5dqqNHj2rChAlKT0/XkCFD5OPjo/379ysuLk47duxQaGioduzYUe2cSJK7u7vWrFmjPn36aP/+/Zo3b57+85//6M9//rPCwsLk5+cnwzB0/Phxbdu2TStWrFBOTk6V7xMVFaVZs2apqKhIjzzyiMaPH68uXbrIzc1Nu3btUnx8vA4cOKCuXbvqq6++KnONCRMmKDY2Vv3791f37t3VokUL1alTR6dPn9aXX36pWbNmSZJq165t2YlbutZYHRMTo9DQUIWHhyskJES+vr4qKCjQoUOHlJSUpI0bN0qS+vfvX6KRHgAAAAAAAAAAlERjNQAAAAAAAFCOoUOHymw265lnntH58+eVmJioxMTEMsfWqlVLderUKXU+Li5Ox44d08qVK7Vv3z7Ljs3FAgMDtXTpUgUFBVU7zjvvvFNffPGF+vfvr927d2vLli3asmVLpebWrVtXf/3rX/Wvf/1L3333nR5++OES11NSUiyN2LVr19aaNWsUGxurhQsXKicnRxMnTix3bR8fn1LnPDw8tG7dOvXq1UsnTpzQkiVLtGTJkhJjYmJi1L1791K5qo6goCBt375dY8eO1aJFi3Ty5EnFx8crPj6+zPHOzs4aOXKkHnzwwUrfIzQ0VFOmTNGkSZN09uxZvfzyy6XGvPjiiwoODi63sVqScnNztWDBAi1YsKDM625ubpo7d646dOhQ6tqOHTsqbER/4IEHyn13AQAAAAAAAADANbVsHQAAAAAAAABwO4uMjFR2drbeeust9ejRQz4+PnJ2dpa7u7uCgoIUHh6uuLg4ZWdnl9mM6+zsrBUrVuijjz5St27d5OHhIXd3d919992aOHGidu3apcDAwBuOMygoSOnp6UpOTtajjz4qPz8/ubi4qGHDhmrXrp2GDx+uTZs2qXv37qXmvvXWW/rwww/VrVs3eXp6qnbt2uXex2w2a8GCBdq5c6dGjhyp1q1by8PDQ05OTqpfv77uvfdePfXUU1q+fLn27t1b5hqtW7dWVlaWxo8fr+bNm8vV1VUNGzbUgw8+qMWLF2v+/Pk3nI/reXp6auHChdq9e7cmTZqkBx54QI0aNZKrq6vc3d0VEBCg8PBwxcfH6+jRo5o5c6Y8PDyqdI/XXntNn332mXr37q0GDRrIxcVFjRs31oABA7Rhwwa98847Fc7ftm2b5s2bp8jISLVp00be3t5ycnJSvXr1FBISonHjxmnPnj0aMmRIiXmDBw9WSkqKJk6cqG7duikwMFDu7u6W+/fr10+LFy/W1q1b5enpWeXcAQAAAAAAAADgSEyGYRi2DgIAAAAAAAAAAAAAAAAAAAAAbIkdqwEAAAAAAAAAAAAAAAAAAAA4PBqrAQAAAAAAAAAAAAAAAAAAADg8GqsBAAAAAAAAAAAAAAAAAAAAODwaqwEAAAAAAAAAAAAAAAAAAAA4PBqrAQAAAAAAAAAAAAAAAAAAADg8GqsBAAAAAAAAAAAAAAAAAAAAODwaqwEAAAAAAAAAAAAAAAAAAAA4PBqrAQAAAAAAAAAAAAAAAAAAADg8GqsBAAAAAAAAAAAAAAAAAAAAODwaqwEAAAAAAAAAAAAAAAAAAAA4PBqrAQAAAAAAAAAAAAAAAAAAADg8GqsBAAAAAAAAAAAAAAAAAAAAODwaqwEAAAAAAAAAAAAAAAAAAAA4PBqrAQAAAAAAAAAAAAAAAAAAADi8/wfiInu3gihE8AAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(40, 40))\n", "sns.heatmap(cm,annot=True,annot_kws={\"size\": 10})\n", "\n", "plt.xlabel('Predicted Class',fontsize = 20)\n", "plt.ylabel('Actual Class',fontsize = 20)\n", "plt.title('Plant Disease Prediction Confusion Matrix',fontsize = 25)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "id": "52ec84c6-fac8-4f85-bb5f-6249b764b610", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "83aac1f7-d911-48c2-8fef-775cf3515335", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.7" } }, "nbformat": 4, "nbformat_minor": 5 }