nsanghi commited on
Commit
0cab308
·
1 Parent(s): 8a3e520

Push to Hub

Browse files
args.yml CHANGED
@@ -54,13 +54,13 @@
54
  - - save_replay_buffer
55
  - false
56
  - - seed
57
- - 2652168140
58
  - - storage
59
  - null
60
  - - study_name
61
  - null
62
  - - tensorboard_log
63
- - runs/CartPole-v1__dqn__2652168140__1699149373
64
  - - track
65
  - true
66
  - - trained_agent
 
54
  - - save_replay_buffer
55
  - false
56
  - - seed
57
+ - 265022033
58
  - - storage
59
  - null
60
  - - study_name
61
  - null
62
  - - tensorboard_log
63
+ - runs/CartPole-v1__dqn__265022033__1710223885
64
  - - track
65
  - true
66
  - - trained_agent
dqn-CartPole-v1.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ff14dc16a0b6df20c08ad329c5b1a4ec4f4f069f9496f78b3a939829a11d1e77
3
- size 1107483
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d7deef6fff64c9f67be8f3d0800361d59da4b6259c82885317ad3ab0ac4a17d1
3
+ size 1108823
dqn-CartPole-v1/data CHANGED
@@ -5,15 +5,15 @@
5
  "__module__": "stable_baselines3.dqn.policies",
6
  "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}",
7
  "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
8
- "__init__": "<function DQNPolicy.__init__ at 0x7f4dcefc8790>",
9
- "_build": "<function DQNPolicy._build at 0x7f4dcefc8820>",
10
- "make_q_net": "<function DQNPolicy.make_q_net at 0x7f4dcefc88b0>",
11
- "forward": "<function DQNPolicy.forward at 0x7f4dcefc8940>",
12
- "_predict": "<function DQNPolicy._predict at 0x7f4dcefc89d0>",
13
- "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f4dcefc8a60>",
14
- "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f4dcefc8af0>",
15
  "__abstractmethods__": "frozenset()",
16
- "_abc_impl": "<_abc._abc_data object at 0x7f4dcefbb840>"
17
  },
18
  "verbose": 1,
19
  "policy_kwargs": {
@@ -27,12 +27,12 @@
27
  "_num_timesteps_at_start": 0,
28
  "seed": 0,
29
  "action_noise": null,
30
- "start_time": 1699149376068469832,
31
  "learning_rate": {
32
  ":type:": "<class 'function'>",
33
- ":serialized:": "gAWVAwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMaC9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxoL2hvbWUvbnNhbmdoaS9zYW5kYm94L2FwcmVzcy9kcmwtMmVkL3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP2LXcxj8UEiFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
34
  },
35
- "tensorboard_log": "runs/CartPole-v1__dqn__2652168140__1699149373/CartPole-v1",
36
  "_last_obs": null,
37
  "_last_episode_starts": {
38
  ":type:": "<class 'numpy.ndarray'>",
@@ -40,16 +40,16 @@
40
  },
41
  "_last_original_obs": {
42
  ":type:": "<class 'numpy.ndarray'>",
43
- ":serialized:": "gAWVhQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAACh7/z7bw5M8GP0HvMGnDz2UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLBIaUjAFDlHSUUpQu"
44
  },
45
- "_episode_num": 388,
46
  "use_sde": false,
47
  "sde_sample_freq": -1,
48
  "_current_progress_remaining": 0.40002000000000004,
49
  "_stats_window_size": 100,
50
  "ep_info_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
- ":serialized:": "gAWV8AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFgAAAAAAACMAWyUS2CMAXSUR0BPPxFqi48VdX2UKGgGR0BTwAAAAAAAaAdLT2gIR0BPRTDwYtQLdX2UKGgGR0BeQAAAAAAAaAdLeWgIR0BP41y3kPtldX2UKGgGR0BfwAAAAAAAaAdLf2gIR0BP8mnXNC7cdX2UKGgGR0BbwAAAAAAAaAdLb2gIR0BQSPu9eyAydX2UKGgGR0BbgAAAAAAAaAdLbmgIR0BQTV3Qla8pdX2UKGgGR0BaAAAAAAAAaAdLaGgIR0BQlVWbPQfIdX2UKGgGR0BcwAAAAAAAaAdLc2gIR0BQmb+98JD3dX2UKGgGR0BYwAAAAAAAaAdLY2gIR0BQ3RqbjLjhdX2UKGgGR0BtIAAAAAAAaAdL6WgIR0BQ5Ndu5z5odX2UKGgGR0BiAAAAAAAAaAdLkGgIR0BRNukpI+W4dX2UKGgGR0BiQAAAAAAAaAdLkmgIR0BRgBgAp8WsdX2UKGgGR0BsYAAAAAAAaAdL42gIR0BRy5bY9Pk8dX2UKGgGR0Bk4AAAAAAAaAdLp2gIR0BR1zwYtQKsdX2UKGgGR0BkgAAAAAAAaAdLpGgIR0BSNNRFZxJedX2UKGgGR0BbQAAAAAAAaAdLbWgIR0BSOSe/Yao/dX2UKGgGR0BcQAAAAAAAaAdLcWgIR0BSn28dxQzldX2UKGgGR0BbQAAAAAAAaAdLbWgIR0BSpPuPV/c4dX2UKGgGR0BcwAAAAAAAaAdLc2gIR0BTKWJ79hqkdX2UKGgGR0BTgAAAAAAAaAdLTmgIR0BTMGS2Yv38dX2UKGgGR0BUAAAAAAAAaAdLUGgIR0BTN8FINEw4dX2UKGgGR0BVgAAAAAAAaAdLVmgIR0BTO/NRm9QGdX2UKGgGR0BUAAAAAAAAaAdLUGgIR0BTwYHTqjagdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0BTwg8OkLx7dX2UKGgGR0AyAAAAAAAAaAdLEmgIR0BTwqTKT0QLdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0BTw3O8kD6ndX2UKGgGR0AmAAAAAAAAaAdLC2gIR0BTw8sg+yJLdX2UKGgGR0AxAAAAAAAAaAdLEWgIR0BTxEJSiudPdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0BTxMvugHu7dX2UKGgGR0A3AAAAAAAAaAdLF2gIR0BTxYL9deIEdX2UKGgGR0A0AAAAAAAAaAdLFGgIR0BTxhPCVKPGdX2UKGgGR0BZwAAAAAAAaAdLZ2gIR0BUJxu0kWykdX2UKGgGR0BZwAAAAAAAaAdLZ2gIR0BULSteUpuudX2UKGgGR0BZwAAAAAAAaAdLZ2gIR0BUjqB7NSqEdX2UKGgGR0BhIAAAAAAAaAdLiWgIR0BUk4z3yqdZdX2UKGgGR0BhQAAAAAAAaAdLimgIR0BU6mfkFOfvdX2UKGgGR0B9IAAAAAAAaAdN0gFoCEdAVWZbUwztTnV9lChoBkdAZmAAAAAAAGgHS7NoCEdAVcmgpSaVlnV9lChoBkdAZqAAAAAAAGgHS7VoCEdAViEnfEXLvHV9lChoBkdAcYAAAAAAAGgHTRgBaAhHQFaM1DjR2KV1fZQoaAZHQDMAAAAAAABoB0sTaAhHQFaNl7dBSk11fZQoaAZHQFkAAAAAAABoB0tkaAhHQFaTNjbzshR1fZQoaAZHQH9AAAAAAABoB030AWgIR0BXVS0WuX/pdX2UKGgGR0BoIAAAAAAAaAdLwWgIR0BYJiwr1/UfdX2UKGgGR0BiYAAAAAAAaAdLk2gIR0BYnaSTyJ9BdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0BYnjbnHNordX2UKGgGR0AxAAAAAAAAaAdLEWgIR0BYnrx3FDOUdX2UKGgGR0AuAAAAAAAAaAdLD2gIR0BYnzV6NVBEdX2UKGgGR0AsAAAAAAAAaAdLDmgIR0BYn6LCN0eVdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BYoPHtF8XvdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0BYoX/95yEMdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BYorW/ag27dX2UKGgGR0AuAAAAAAAAaAdLD2gIR0BYoyXt0FKTdX2UKGgGR0AoAAAAAAAAaAdLDGgIR0BYo4/mknCwdX2UKGgGR0AzAAAAAAAAaAdLE2gIR0BYpC/O+qR2dX2UKGgGR0AwAAAAAAAAaAdLEGgIR0BYpM/2TPjXdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BYpTW07bL2dX2UKGgGR0AxAAAAAAAAaAdLEWgIR0BYpc/yGzrvdX2UKGgGR0BkAAAAAAAAaAdLoGgIR0BZA7fUF0PpdX2UKGgGR0BjAAAAAAAAaAdLmGgIR0BZdTmSyMUAdX2UKGgGR0BmwAAAAAAAaAdLtmgIR0BZf194NZvDdX2UKGgGR0BlQAAAAAAAaAdLqmgIR0BZ73Xyy2QXdX2UKGgGR0BlQAAAAAAAaAdLqmgIR0BaWWKIi1RcdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAWx0Kx9oexXV9lChoBkdAZwAAAAAAAGgHS7hoCEdAWygDoyKvV3V9lChoBkdAfCAAAAAAAGgHTcIBaAhHQFvxAdn003x1fZQoaAZHQGPgAAAAAABoB0ufaAhHQFxBNVzZHut1fZQoaAZHQHbQAAAAAABoB01tAWgIR0BcrQdXDFZQdX2UKGgGR0BroAAAAAAAaAdL3WgIR0BdGo2OyVv/dX2UKGgGR0AoAAAAAAAAaAdLDGgIR0BdGw2VE/jbdX2UKGgGR0BwgAAAAAAAaAdNCAFoCEdAXYcaBI4EOnV9lChoBkdAZKAAAAAAAGgHS6VoCEdAXdgi3XqZ+nV9lChoBkdAXoAAAAAAAGgHS3poCEdAXd6HzpX6qXV9lChoBkdAYwAAAAAAAGgHS5hoCEdAXkPIxQBPsXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQF8XYjB2wFF1fZQoaAZHQDIAAAAAAABoB0sSaAhHQF8YNm16Vt51fZQoaAZHQFpAAAAAAABoB0tpaAhHQF8eTAnDziF1fZQoaAZHQEMAAAAAAABoB0smaAhHQF8f92X9itt1fZQoaAZHQFhAAAAAAABoB0thaAhHQF9mTbnHNot1fZQoaAZHQFmAAAAAAABoB0tmaAhHQF9qsasIVud1fZQoaAZHQFqAAAAAAABoB0tqaAhHQF++smv4dp91fZQoaAZHQH9AAAAAAABoB030AWgIR0BgUVoUSIxhdX2UKGgGR0BgQAAAAAAAaAdLgmgIR0BgVSGpMpPRdX2UKGgGR0BgAAAAAAAAaAdLgGgIR0Bgh4OUdJardX2UKGgGR0BpAAAAAAAAaAdLyGgIR0BgjYFPi1iOdX2UKGgGR0BmAAAAAAAAaAdLsGgIR0BgvkcCHRCydX2UKGgGR0BnQAAAAAAAaAdLumgIR0Bg7AsK9f1IdX2UKGgGR0ByMAAAAAAAaAdNIwFoCEdAYQ8CCBf8dnV9lChoBkdAW8AAAAAAAGgHS29oCEdAYREhIOH313V9lChoBkdAdoAAAAAAAGgHTWgBaAhHQGFcp3os7Mh1fZQoaAZHQH9AAAAAAABoB030AWgIR0BhoeIGhVU/dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAYgCNR3u/lHV9lChoBkdAc/AAAAAAAGgHTT8BaAhHQGIov+OwPiF1fZQoaAZHQFsAAAAAAABoB0tsaAhHQGIqSNGViWp1fZQoaAZHQGVgAAAAAABoB0uraAhHQGJIC48U21l1fZQoaAZHQG0AAAAAAABoB0voaAhHQGJvnM+u/1x1fZQoaAZHQFzAAAAAAABoB0tzaAhHQGJx0GFBY3h1fZQoaAZHQGVAAAAAAABoB0uqaAhHQGKRxKpT/AF1fZQoaAZHQHcQAAAAAABoB01xAWgIR0BitGMXJo0zdX2UKGgGR0B7gAAAAAAAaAdNuAFoCEdAYwrlpXZGrnVlLg=="
53
  },
54
  "ep_success_buffer": {
55
  ":type:": "<class 'collections.deque'>",
@@ -93,13 +93,13 @@
93
  ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
94
  "__module__": "stable_baselines3.common.buffers",
95
  "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
96
- "__init__": "<function ReplayBuffer.__init__ at 0x7f4dcefa8f70>",
97
- "add": "<function ReplayBuffer.add at 0x7f4dcefa9000>",
98
- "sample": "<function ReplayBuffer.sample at 0x7f4dcefa9090>",
99
- "_get_samples": "<function ReplayBuffer._get_samples at 0x7f4dcefa9120>",
100
- "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7f4dcefa91b0>)>",
101
  "__abstractmethods__": "frozenset()",
102
- "_abc_impl": "<_abc._abc_data object at 0x7f4dcf3ca7c0>"
103
  },
104
  "replay_buffer_kwargs": {},
105
  "train_freq": {
@@ -116,12 +116,12 @@
116
  "exploration_rate": 0.04,
117
  "lr_schedule": {
118
  ":type:": "<class 'function'>",
119
- ":serialized:": "gAWVAwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMaC9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxoL2hvbWUvbnNhbmdoaS9zYW5kYm94L2FwcmVzcy9kcmwtMmVkL3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP2LXcxj8UEiFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
120
  },
121
  "batch_norm_stats": [],
122
  "batch_norm_stats_target": [],
123
  "exploration_schedule": {
124
  ":type:": "<class 'function'>",
125
- ":serialized:": "gAWVowMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyhkAXwAGACIAWsEcgiIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjGgvaG9tZS9uc2FuZ2hpL3NhbmRib3gvYXByZXNzL2RybC0yZWQvdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS3FDBgwBBAEYApSMA2VuZJSMDGVuZF9mcmFjdGlvbpSMBXN0YXJ0lIeUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMaC9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB0pUpRoHSlSlIeUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgjfZR9lChoGGgNjAxfX3F1YWxuYW1lX1+UjBtnZXRfbGluZWFyX2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQoaAqMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoL3WMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+keuFHrhR7hZRSlGg3Rz/EeuFHrhR7hZRSlGg3Rz/wAAAAAAAAhZRSlIeUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
126
  }
127
  }
 
5
  "__module__": "stable_baselines3.dqn.policies",
6
  "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}",
7
  "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
8
+ "__init__": "<function DQNPolicy.__init__ at 0x7dd0f85fd6c0>",
9
+ "_build": "<function DQNPolicy._build at 0x7dd0f85fd750>",
10
+ "make_q_net": "<function DQNPolicy.make_q_net at 0x7dd0f85fd7e0>",
11
+ "forward": "<function DQNPolicy.forward at 0x7dd0f85fd870>",
12
+ "_predict": "<function DQNPolicy._predict at 0x7dd0f85fd900>",
13
+ "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7dd0f85fd990>",
14
+ "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7dd0f85fda20>",
15
  "__abstractmethods__": "frozenset()",
16
+ "_abc_impl": "<_abc._abc_data object at 0x7dd0f85f6340>"
17
  },
18
  "verbose": 1,
19
  "policy_kwargs": {
 
27
  "_num_timesteps_at_start": 0,
28
  "seed": 0,
29
  "action_noise": null,
30
+ "start_time": 1710223887059016239,
31
  "learning_rate": {
32
  ":type:": "<class 'function'>",
33
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9i13MY/FBIhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
34
  },
35
+ "tensorboard_log": "runs/CartPole-v1__dqn__265022033__1710223885/CartPole-v1",
36
  "_last_obs": null,
37
  "_last_episode_starts": {
38
  ":type:": "<class 'numpy.ndarray'>",
 
40
  },
41
  "_last_original_obs": {
42
  ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVhQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAJAvPj2qEXQ/Ho7rPXCMAL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLBIaUjAFDlHSUUpQu"
44
  },
45
+ "_episode_num": 480,
46
  "use_sde": false,
47
  "sde_sample_freq": -1,
48
  "_current_progress_remaining": 0.40002000000000004,
49
  "_stats_window_size": 100,
50
  "ep_info_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGBAAAAAAACMAWyUS4KMAXSUR0BF/8EV32VWdX2UKGgGR0BbwAAAAAAAaAdLb2gIR0BGCzt9hJAddX2UKGgGR0BawAAAAAAAaAdLa2gIR0BGFzpHI6sAdX2UKGgGR0BXQAAAAAAAaAdLXWgIR0BGXCJoCdSVdX2UKGgGR0BVwAAAAAAAaAdLV2gIR0BGZsJpnHvMdX2UKGgGR0BXAAAAAAAAaAdLXGgIR0BGct8NQTEjdX2UKGgGR0BYgAAAAAAAaAdLYmgIR0BGq6xoqTbGdX2UKGgGR0BYwAAAAAAAaAdLY2gIR0BGs5F5OafBdX2UKGgGR0BaAAAAAAAAaAdLaGgIR0BG5y+xnnMddX2UKGgGR0AxAAAAAAAAaAdLEWgIR0BG6IHC4z7/dX2UKGgGR0BZgAAAAAAAaAdLZmgIR0BG8Lf1pTMrdX2UKGgGR0AoAAAAAAAAaAdLDGgIR0BG8ZlWfbsXdX2UKGgGR0BawAAAAAAAaAdLa2gIR0BHI/XPJJXhdX2UKGgGR0BgwAAAAAAAaAdLhmgIR0BHLuHFglWwdX2UKGgGR0BhIAAAAAAAaAdLiWgIR0BHZgbADaGpdX2UKGgGR0BZgAAAAAAAaAdLZmgIR0BHbZBC2MKkdX2UKGgGR0BYQAAAAAAAaAdLYWgIR0BHdStV7x/edX2UKGgGR0BgAAAAAAAAaAdLgGgIR0BHqBnBciW3dX2UKGgGR0BOgAAAAAAAaAdLPWgIR0BHrK+Jxeb/dX2UKGgGR0AzAAAAAAAAaAdLE2gIR0BHriosI3R5dX2UKGgGR0BXgAAAAAAAaAdLXmgIR0BH4ohQm/nGdX2UKGgGR0AzAAAAAAAAaAdLE2gIR0BH5BbW3BpIdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0BH5VZcLSeAdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0BH5yaEzwc6dX2UKGgGR0AsAAAAAAAAaAdLDmgIR0BH6E9+w1R+dX2UKGgGR0AsAAAAAAAAaAdLDmgIR0BH6UrsjVx0dX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BH6lOO801qdX2UKGgGR0A0AAAAAAAAaAdLFGgIR0BH689fTkQxdX2UKGgGR0AsAAAAAAAAaAdLDmgIR0BH7M052hZhdX2UKGgGR0A1AAAAAAAAaAdLFWgIR0BH7k9ECvHMdX2UKGgGR0BAgAAAAAAAaAdLIWgIR0BH8SGBWgezdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0BH8lar3j+8dX2UKGgGR0A1AAAAAAAAaAdLFWgIR0BH9F9Brvb5dX2UKGgGR0AyAAAAAAAAaAdLEmgIR0BIHq2BreqJdX2UKGgGR0BYAAAAAAAAaAdLYGgIR0BIJtk4FRpDdX2UKGgGR0BYQAAAAAAAaAdLYWgIR0BILmXokiUxdX2UKGgGR0BYQAAAAAAAaAdLYWgIR0BIYCeVcD8tdX2UKGgGR0BKAAAAAAAAaAdLNGgIR0BIZRSHdoFndX2UKGgGR0BMAAAAAAAAaAdLOGgIR0BIabngYP5IdX2UKGgGR0AxAAAAAAAAaAdLEWgIR0BIa3t8eCCjdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0BIbKXF98Z2dX2UKGgGR0AzAAAAAAAAaAdLE2gIR0BIbgDaGpMpdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0BIbzXBguyvdX2UKGgGR0BiAAAAAAAAaAdLkGgIR0BIpGGdqcmTdX2UKGgGR0BfQAAAAAAAaAdLfWgIR0BIrkf9xZMddX2UKGgGR0BegAAAAAAAaAdLemgIR0BI4Wkadc0MdX2UKGgGR0BegAAAAAAAaAdLemgIR0BI7GDlHSWrdX2UKGgGR0BbgAAAAAAAaAdLbmgIR0BJHhcqvvBrdX2UKGgGR0BYgAAAAAAAaAdLYmgIR0BJJd1uBMBZdX2UKGgGR0BYQAAAAAAAaAdLYWgIR0BJWEQGwA2idX2UKGgGR0BPAAAAAAAAaAdLPmgIR0BJXa0IC2c8dX2UKGgGR0A5AAAAAAAAaAdLGWgIR0BJX2tMfzSUdX2UKGgGR0BMAAAAAAAAaAdLOGgIR0BJY7OeJ53UdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0BJZHrIHTqjdX2UKGgGR0BKAAAAAAAAaAdLNGgIR0BJak+X7cfvdX2UKGgGR0BXgAAAAAAAaAdLXmgIR0BJmf8uSOindX2UKGgGR0BgYAAAAAAAaAdLg2gIR0BJpOPeYUnHdX2UKGgGR0BfAAAAAAAAaAdLfGgIR0BJ2HDaXa8IdX2UKGgGR0BJgAAAAAAAaAdLM2gIR0BJ3ODBdld1dX2UKGgGR0BKgAAAAAAAaAdLNWgIR0BJ4aW5Yoy9dX2UKGgGR0BFAAAAAAAAaAdLKmgIR0BJ5SQgcLjQdX2UKGgGR0BFgAAAAAAAaAdLK2gIR0BJ6T8xbjcVdX2UKGgGR0BYAAAAAAAAaAdLYGgIR0BKG3UYsNDudX2UKGgGR0BZgAAAAAAAaAdLZmgIR0BKI/x+az/qdX2UKGgGR0BZAAAAAAAAaAdLZGgIR0BKVsdLg4wRdX2UKGgGR0BrIAAAAAAAaAdL2WgIR0BKZ/9YOlO5dX2UKGgGR0BmAAAAAAAAaAdLsGgIR0BKn/6oESuhdX2UKGgGR0BjwAAAAAAAaAdLnmgIR0BK1vaURnOCdX2UKGgGR0AmAAAAAAAAaAdLC2gIR0BK18twrDqGdX2UKGgGR0BZQAAAAAAAaAdLZWgIR0BK3/9YOlO5dX2UKGgGR0BZwAAAAAAAaAdLZ2gIR0BLE+w9q1w6dX2UKGgGR0A2AAAAAAAAaAdLFmgIR0BLFZGBnSOSdX2UKGgGR0A4AAAAAAAAaAdLGGgIR0BLF3BHkLhKdX2UKGgGR0BYgAAAAAAAaAdLYmgIR0BLH6/IsAeadX2UKGgGR0BXAAAAAAAAaAdLXGgIR0BLJzRhMJyAdX2UKGgGR0BtQAAAAAAAaAdL6mgIR0BLZPt2LYPHdX2UKGgGR0BlwAAAAAAAaAdLrmgIR0BLpjCHh0hedX2UKGgGR0BeQAAAAAAAaAdLeWgIR0BL5dDpkf9xdX2UKGgGR0A3AAAAAAAAaAdLF2gIR0BL6LD63y7PdX2UKGgGR0A4AAAAAAAAaAdLGGgIR0BL64GMXJo1dX2UKGgGR0BegAAAAAAAaAdLemgIR0BL+VPN3W4FdX2UKGgGR0BfAAAAAAAAaAdLfGgIR0BMPPoV2zOYdX2UKGgGR0BiAAAAAAAAaAdLkGgIR0BMTeY2Kl54dX2UKGgGR0BhIAAAAAAAaAdLiWgIR0BMmeJxeb/fdX2UKGgGR0BgoAAAAAAAaAdLhWgIR0BMp5BcAzYVdX2UKGgGR0BhoAAAAAAAaAdLjWgIR0BM3Am7aqS6dX2UKGgGR0BjYAAAAAAAaAdLm2gIR0BM6EaESM99dX2UKGgGR0Bj4AAAAAAAaAdLn2gIR0BNHo2n889wdX2UKGgGR0BjQAAAAAAAaAdLmmgIR0BNVLNGEwnIdX2UKGgGR0BgoAAAAAAAaAdLhWgIR0BNXwI2OyVwdX2UKGgGR0BjoAAAAAAAaAdLnWgIR0BNlWYWtU4rdX2UKGgGR0BmQAAAAAAAaAdLsmgIR0BNzU0m+j/NdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0BNzpXyRSxadX2UKGgGR0Bg4AAAAAAAaAdLh2gIR0BN2Ye1a4c4dX2UKGgGR0BgQAAAAAAAaAdLgmgIR0BODvSlWOp9dX2UKGgGR0BqQAAAAAAAaAdL0mgIR0BOHwu/UONHdX2UKGgGR0BpAAAAAAAAaAdLyGgIR0BOV5PuXu3MdX2UKGgGR0B7wAAAAAAAaAdNvAFoCEdATtAAOrhisnV9lChoBkdAaYAAAAAAAGgHS8xoCEdATwnnQpnYhHV9lChoBkdAaiAAAAAAAGgHS9FoCEdAT0Yh0Qsf73VlLg=="
53
  },
54
  "ep_success_buffer": {
55
  ":type:": "<class 'collections.deque'>",
 
93
  ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
94
  "__module__": "stable_baselines3.common.buffers",
95
  "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
96
+ "__init__": "<function ReplayBuffer.__init__ at 0x7dd0f85ddbd0>",
97
+ "add": "<function ReplayBuffer.add at 0x7dd0f85ddc60>",
98
+ "sample": "<function ReplayBuffer.sample at 0x7dd0f85ddcf0>",
99
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7dd0f85ddd80>",
100
+ "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7dd0f85dde10>)>",
101
  "__abstractmethods__": "frozenset()",
102
+ "_abc_impl": "<_abc._abc_data object at 0x7dd0f8558380>"
103
  },
104
  "replay_buffer_kwargs": {},
105
  "train_freq": {
 
116
  "exploration_rate": 0.04,
117
  "lr_schedule": {
118
  ":type:": "<class 'function'>",
119
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9i13MY/FBIhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
120
  },
121
  "batch_norm_stats": [],
122
  "batch_norm_stats_target": [],
123
  "exploration_schedule": {
124
  ":type:": "<class 'function'>",
125
+ ":serialized:": "gAWVZQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyhkAXwAGACIAWsEcgiIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLcUMGDAEEARgClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxJL3Vzci9sb2NhbC9saWIvcHl0aG9uMy4xMC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgdKVKUaB0pUpSHlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoI32UfZQoaBhoDYwMX19xdWFsbmFtZV9flIwbZ2V0X2xpbmVhcl9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgKjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC91jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/pHrhR64Ue4WUUpRoN0c/xHrhR64Ue4WUUpRoN0c/8AAAAAAAAIWUUpSHlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
126
  }
127
  }
dqn-CartPole-v1/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0583cc5a3c614b0148d4f94d06e2b1f5d15f9805fe9f4efd91ef3109befb3d41
3
- size 545519
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:613daf5d8605a9279ed56325728d44c63c3b8c35a3f80a9655aa0fb4576fd0b5
3
+ size 546144
dqn-CartPole-v1/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5d0338306e5f82dc7f9488376dcf4065b971b6ad0504880550233d2c50975322
3
- size 544641
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74aaf968892e0fe4b02559763e622b0fe46a5d027025afaac8dad8a9a1394a62
3
+ size 545202
dqn-CartPole-v1/pytorch_variables.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
- size 431
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
dqn-CartPole-v1/system_info.txt CHANGED
@@ -1,9 +1,9 @@
1
- - OS: Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Jan 27 02:56:13 UTC 2023
2
- - Python: 3.10.6
3
  - Stable-Baselines3: 2.1.0
4
- - PyTorch: 2.0.1+cu117
5
- - GPU Enabled: False
6
- - Numpy: 1.25.1
7
  - Cloudpickle: 2.2.1
8
- - Gymnasium: 0.28.1
9
  - OpenAI Gym: 0.26.2
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
  - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.1.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
  - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
  - OpenAI Gym: 0.26.2
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4679ef83d04ba51e951bdb271cc9f118916235e1b10f315c0f637d8b9b05afba
3
- size 51590
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:257d52ecebfdb03f9abc85a5a8c06b02e1b13d40cb5be661dbd31213c82dfa77
3
+ size 76982
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 500.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-05T07:33:04.960059"}
 
1
+ {"mean_reward": 500.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-12T06:14:37.762770"}
train_eval_metrics.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a168ecc6eb2ff4596c35e8b2603c37faf2715d3bb849e5d4c629fa0106344053
3
- size 10586
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f760c59501c7dcc2ea7a61faf869a5eb6841225ba50f556fc17a70b72c3f6c58
3
+ size 12208