push pipeline using my custom method
Browse files- MyPipe.py +76 -0
- README.md +201 -0
- config.json +14 -4
MyPipe.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch, os
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torchvision.transforms.functional import normalize
|
5 |
+
import numpy as np
|
6 |
+
from transformers import Pipeline
|
7 |
+
from skimage import io
|
8 |
+
from PIL import Image
|
9 |
+
|
10 |
+
class RMBGPipe(Pipeline):
|
11 |
+
def __init__(self,**kwargs):
|
12 |
+
Pipeline.__init__(self,**kwargs)
|
13 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
+
self.model.to(self.device)
|
15 |
+
self.model.eval()
|
16 |
+
|
17 |
+
def _sanitize_parameters(self, **kwargs):
|
18 |
+
# parse parameters
|
19 |
+
preprocess_kwargs = {}
|
20 |
+
postprocess_kwargs = {}
|
21 |
+
if "model_input_size" in kwargs :
|
22 |
+
preprocess_kwargs["model_input_size"] = kwargs["model_input_size"]
|
23 |
+
if "out_name" in kwargs:
|
24 |
+
postprocess_kwargs["out_name"] = kwargs["out_name"]
|
25 |
+
return preprocess_kwargs, {}, postprocess_kwargs
|
26 |
+
|
27 |
+
def preprocess(self,im_path:str,model_input_size: list=[1024,1024]):
|
28 |
+
# preprocess the input
|
29 |
+
orig_im = io.imread(im_path)
|
30 |
+
orig_im_size = orig_im.shape[0:2]
|
31 |
+
image = self.preprocess_image(orig_im, model_input_size).to(self.device)
|
32 |
+
inputs = {
|
33 |
+
"image":image,
|
34 |
+
"orig_im_size":orig_im_size,
|
35 |
+
"im_path" : im_path
|
36 |
+
}
|
37 |
+
return inputs
|
38 |
+
|
39 |
+
def _forward(self,inputs):
|
40 |
+
result = self.model(inputs.pop("image"))
|
41 |
+
inputs["result"] = result
|
42 |
+
return inputs
|
43 |
+
def postprocess(self,inputs,out_name = ""):
|
44 |
+
result = inputs.pop("result")
|
45 |
+
orig_im_size = inputs.pop("orig_im_size")
|
46 |
+
im_path = inputs.pop("im_path")
|
47 |
+
result_image = self.postprocess_image(result[0][0], orig_im_size)
|
48 |
+
if out_name != "" :
|
49 |
+
# if out_name is specified we save the image using that name
|
50 |
+
pil_im = Image.fromarray(result_image)
|
51 |
+
no_bg_image = Image.new("RGBA", pil_im.size, (0,0,0,0))
|
52 |
+
orig_image = Image.open(im_path)
|
53 |
+
no_bg_image.paste(orig_image, mask=pil_im)
|
54 |
+
no_bg_image.save(out_name)
|
55 |
+
else :
|
56 |
+
return result_image
|
57 |
+
|
58 |
+
# utilities functions
|
59 |
+
def preprocess_image(self,im: np.ndarray, model_input_size: list=[1024,1024]) -> torch.Tensor:
|
60 |
+
# same as utilities.py with minor modification
|
61 |
+
if len(im.shape) < 3:
|
62 |
+
im = im[:, :, np.newaxis]
|
63 |
+
# orig_im_size=im.shape[0:2]
|
64 |
+
im_tensor = torch.tensor(im, dtype=torch.float32).permute(2,0,1)
|
65 |
+
im_tensor = F.interpolate(torch.unsqueeze(im_tensor,0), size=model_input_size, mode='bilinear').type(torch.uint8)
|
66 |
+
image = torch.divide(im_tensor,255.0)
|
67 |
+
image = normalize(image,[0.5,0.5,0.5],[1.0,1.0,1.0])
|
68 |
+
return image
|
69 |
+
def postprocess_image(self,result: torch.Tensor, im_size: list)-> np.ndarray:
|
70 |
+
result = torch.squeeze(F.interpolate(result, size=im_size, mode='bilinear') ,0)
|
71 |
+
ma = torch.max(result)
|
72 |
+
mi = torch.min(result)
|
73 |
+
result = (result-mi)/(ma-mi)
|
74 |
+
im_array = (result*255).permute(1,2,0).cpu().data.numpy().astype(np.uint8)
|
75 |
+
im_array = np.squeeze(im_array)
|
76 |
+
return im_array
|
README.md
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
|
201 |
+
|
config.json
CHANGED
@@ -1,15 +1,25 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"architectures": [
|
4 |
"BriaRMBG"
|
5 |
],
|
6 |
"auto_map": {
|
7 |
-
"AutoConfig": "MyConfig.RMBGConfig",
|
8 |
-
"AutoModelForImageSegmentation": "briarmbg.BriaRMBG"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
},
|
10 |
"in_ch": 3,
|
11 |
"model_type": "SegformerForSemanticSegmentation",
|
12 |
"out_ch": 1,
|
13 |
"torch_dtype": "float32",
|
14 |
-
"transformers_version": "4.
|
15 |
}
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "not-lain/CustomCodeForRMBG",
|
3 |
"architectures": [
|
4 |
"BriaRMBG"
|
5 |
],
|
6 |
"auto_map": {
|
7 |
+
"AutoConfig": "not-lain/CustomCodeForRMBG--MyConfig.RMBGConfig",
|
8 |
+
"AutoModelForImageSegmentation": "not-lain/CustomCodeForRMBG--briarmbg.BriaRMBG"
|
9 |
+
},
|
10 |
+
"custom_pipelines": {
|
11 |
+
"image-segmentation": {
|
12 |
+
"impl": "MyPipe.RMBGPipe",
|
13 |
+
"pt": [
|
14 |
+
"AutoModelForImageSegmentation"
|
15 |
+
],
|
16 |
+
"tf": [],
|
17 |
+
"type": "image"
|
18 |
+
}
|
19 |
},
|
20 |
"in_ch": 3,
|
21 |
"model_type": "SegformerForSemanticSegmentation",
|
22 |
"out_ch": 1,
|
23 |
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.38.0.dev0"
|
25 |
}
|