--- library_name: transformers language: - ko license: mit base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper Small ko results: [] --- # Whisper Small ko This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the custom dataset. It achieves the following results on the evaluation set: - Loss: 0.1905 - Wer: 12.1097 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.689 | 0.0107 | 10 | 1.0086 | 45.3169 | | 0.0756 | 0.0214 | 20 | 0.6343 | 38.0322 | | 0.0145 | 0.0322 | 30 | 0.6367 | 41.3434 | | 0.0212 | 0.0429 | 40 | 0.7120 | 42.6679 | | 0.0205 | 0.0536 | 50 | 0.4694 | 32.6395 | | 0.016 | 0.0643 | 60 | 0.5533 | 38.7890 | | 0.014 | 0.0750 | 70 | 0.4716 | 30.8420 | | 0.0115 | 0.0857 | 80 | 0.6191 | 30.9366 | | 0.0228 | 0.0965 | 90 | 0.7998 | 43.8978 | | 0.0191 | 0.1072 | 100 | 0.7273 | 36.4238 | | 0.026 | 0.1179 | 110 | 0.7720 | 42.3841 | | 0.0196 | 0.1286 | 120 | 0.9171 | 79.4702 | | 0.0178 | 0.1393 | 130 | 1.1460 | 136.0454 | | 0.037 | 0.1501 | 140 | 0.5558 | 62.8193 | | 0.0237 | 0.1608 | 150 | 0.6369 | 109.6500 | | 0.0195 | 0.1715 | 160 | 0.6671 | 38.7890 | | 0.0151 | 0.1822 | 170 | 0.6717 | 53.9262 | | 0.0479 | 0.1929 | 180 | 0.5412 | 68.1173 | | 0.0187 | 0.2036 | 190 | 0.5311 | 60.2649 | | 0.0191 | 0.2144 | 200 | 0.4761 | 33.3964 | | 0.0149 | 0.2251 | 210 | 0.6630 | 38.5998 | | 0.0285 | 0.2358 | 220 | 0.6162 | 36.8023 | | 0.0134 | 0.2465 | 230 | 0.5166 | 31.5043 | | 0.0143 | 0.2572 | 240 | 0.6748 | 55.3453 | | 0.0185 | 0.2680 | 250 | 0.5091 | 28.1930 | | 0.0106 | 0.2787 | 260 | 0.4697 | 28.0984 | | 0.0163 | 0.2894 | 270 | 0.4483 | 24.4087 | | 0.0186 | 0.3001 | 280 | 0.3112 | 22.1381 | | 0.018 | 0.3108 | 290 | 0.3752 | 26.7739 | | 0.0067 | 0.3215 | 300 | 0.5734 | 28.0984 | | 0.0129 | 0.3323 | 310 | 0.3768 | 22.3273 | | 0.0196 | 0.3430 | 320 | 0.3069 | 23.4626 | | 0.0096 | 0.3537 | 330 | 0.3197 | 20.5298 | | 0.0143 | 0.3644 | 340 | 0.3839 | 43.8032 | | 0.0082 | 0.3751 | 350 | 0.3098 | 80.1325 | | 0.0099 | 0.3859 | 360 | 0.2946 | 77.6727 | | 0.0146 | 0.3966 | 370 | 0.3007 | 19.3945 | | 0.0115 | 0.4073 | 380 | 0.2685 | 17.3132 | | 0.0058 | 0.4180 | 390 | 0.2686 | 16.7455 | | 0.0067 | 0.4287 | 400 | 0.2572 | 15.6102 | | 0.0095 | 0.4394 | 410 | 0.2400 | 14.9480 | | 0.0085 | 0.4502 | 420 | 0.2436 | 15.2318 | | 0.005 | 0.4609 | 430 | 0.2426 | 15.0426 | | 0.0044 | 0.4716 | 440 | 0.2318 | 13.8127 | | 0.0063 | 0.4823 | 450 | 0.2262 | 12.7720 | | 0.0093 | 0.4930 | 460 | 0.2098 | 12.1097 | | 0.0054 | 0.5038 | 470 | 0.2042 | 12.2990 | | 0.0046 | 0.5145 | 480 | 0.1941 | 11.9205 | | 0.0071 | 0.5252 | 490 | 0.1913 | 12.1097 | | 0.0066 | 0.5359 | 500 | 0.1905 | 12.1097 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0