Fill-Mask
Transformers
PyTorch
Safetensors
English
nomic_bert
custom_code
File size: 52,810 Bytes
3e386a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e75bfa2
3e386a9
 
 
e119b48
 
 
 
 
 
 
 
 
 
 
 
 
3e386a9
 
 
e119b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcebeef
e119b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcebeef
 
 
 
 
 
 
 
 
 
e119b48
 
 
 
 
 
 
fcebeef
 
 
 
e119b48
fcebeef
 
 
 
 
 
 
 
e119b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e386a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13e12b1
fcebeef
 
 
f3ce33a
 
fcebeef
 
13e12b1
 
fcebeef
 
 
 
 
 
 
 
3e386a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13e12b1
3e386a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcebeef
3e386a9
fcebeef
3e386a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcebeef
 
 
 
 
 
3e386a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcebeef
 
 
3e386a9
 
 
 
 
 
 
 
 
fcebeef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e386a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcebeef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e386a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e75bfa2
3e386a9
e75bfa2
 
 
3e386a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
# Copyright (c) 2022, Tri Dao.
# This BERT implementation is based on our MLPerf 2.0 and MLPerf 2.1 BERT implementation.
# https://github.com/mlcommons/training_results_v2.0/blob/main/HazyResearch/benchmarks/bert/implementations/pytorch/modeling.py
# https://github.com/mlcommons/training_results_v2.1/blob/main/Azure-HazyResearch/benchmarks/bert/implementations/ND96amsr_A100_v4/modeling.py

# Inspired by https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py
import os
import logging
from functools import partial
from typing import Optional, List, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from transformers import GPT2Config, PreTrainedModel
from transformers.models.bert.modeling_bert import (
    BaseModelOutputWithPoolingAndCrossAttentions,
    MaskedLMOutput,
    SequenceClassifierOutput
)

import re
from collections import OrderedDict
from safetensors.torch import load_file as safe_load_file
from transformers.utils import (
    SAFE_WEIGHTS_INDEX_NAME,
    SAFE_WEIGHTS_NAME,
    WEIGHTS_INDEX_NAME,
    WEIGHTS_NAME,
)
from transformers.utils.hub import cached_file, get_checkpoint_shard_files


from .configuration_hf_nomic_bert import NomicBertConfig

logger = logging.getLogger(__name__)

# adapted from flash attention, added safe serialization option for hf models
def state_dict_from_pretrained(model_name, safe_serialization=False, device=None, dtype=None):
    # If not fp32, then we don't want to load directly to the GPU
    mapped_device = "cpu" if dtype not in [torch.float32, None] else device
    is_sharded = False
    load_safe = False
    resolved_archive_file = None

    weights_path = os.path.join(model_name, WEIGHTS_NAME)
    weights_index_path = os.path.join(model_name, WEIGHTS_INDEX_NAME)
    safe_weights_path = os.path.join(model_name, SAFE_WEIGHTS_NAME)
    safe_weights_index_path = os.path.join(model_name, SAFE_WEIGHTS_INDEX_NAME)

    if os.path.isfile(weights_path):
        resolved_archive_file = cached_file(
            model_name, WEIGHTS_NAME, _raise_exceptions_for_missing_entries=False
        )
    elif os.path.isfile(weights_index_path):
        resolved_archive_file = cached_file(
            model_name, WEIGHTS_INDEX_NAME, _raise_exceptions_for_missing_entries=False
        )
        is_sharded = True
    elif os.path.isfile(safe_weights_path):
        resolved_archive_file = cached_file(
            model_name, SAFE_WEIGHTS_NAME, _raise_exceptions_for_missing_entries=False
        )
        load_safe = True
    elif os.path.isfile(safe_weights_index_path):
        resolved_archive_file = cached_file(
            model_name, SAFE_WEIGHTS_INDEX_NAME, _raise_exceptions_for_missing_entries=False
        )
        is_sharded = True
        load_safe = True
    else:  # Try loading from HF hub instead of from local files
        weight_name = WEIGHTS_NAME if not safe_serialization else SAFE_WEIGHTS_NAME
        resolved_archive_file = cached_file(model_name, weight_name, _raise_exceptions_for_missing_entries=False)
        if resolved_archive_file is None:
            weight_index = WEIGHTS_INDEX_NAME if not safe_serialization else SAFE_WEIGHTS_INDEX_NAME
            resolved_archive_file = cached_file(model_name, weight_index,
                                                _raise_exceptions_for_missing_entries=False)
            if resolved_archive_file is not None:
                is_sharded = True

        load_safe = safe_serialization

    if resolved_archive_file is None:
        raise EnvironmentError(f"Model name {model_name} was not found.")

    if load_safe:
        loader = partial(safe_load_file, device=mapped_device)
    else:
        loader = partial(torch.load, map_location=mapped_device)

    if is_sharded:
        # resolved_archive_file becomes a list of files that point to the different
        # checkpoint shards in this case.
        resolved_archive_file, sharded_metadata = get_checkpoint_shard_files(
            model_name, resolved_archive_file
        )
        state_dict = {}
        for sharded_file in resolved_archive_file:
            state_dict.update(loader(sharded_file))
    else:
        state_dict = loader(resolved_archive_file)
    # Convert dtype before moving to GPU to save memory
    if dtype is not None:
        state_dict = {k: v.to(dtype=dtype) for k, v in state_dict.items()}
    state_dict = {k: v.to(device=device) for k, v in state_dict.items()}
    return state_dict

    
def filter_shapes(state_dict, model):
    """
    Filters the state dict to match the current model shape.
    """
    filtered_state_dict = {}
    for key, value in state_dict.items():
        if key in model.state_dict():
            if value.shape == model.state_dict()[key].shape:
                filtered_state_dict[key] = value
    return filtered_state_dict

    
def remap_bert_state_dict(state_dict, config, remove_bert=False, remove_cls_weights=False, add_pooling_layer=False):
    """
    Map the state_dict of a Huggingface BERT model to be flash_attn compatible.
    """
    def add_bert_prefix(key):
        # prepend bert. to the key
        if key.startswith("bert.") or key.startswith("cls."):
            return key
        return f"bert.{key}"

    state_dict = OrderedDict((add_bert_prefix(k), v) for k, v in state_dict.items())
        
    # LayerNorm
    def key_mapping_ln_gamma_beta(key):
        key = re.sub(r"LayerNorm.gamma$", "LayerNorm.weight", key)
        key = re.sub(r"LayerNorm.beta$", "LayerNorm.bias", key)
        return key

    state_dict = OrderedDict((key_mapping_ln_gamma_beta(k), v) for k, v in state_dict.items())

    # Layers
    def key_mapping_layers(key):
        return re.sub(r"^bert.encoder.layer\.", "bert.encoder.layers.", key)

    state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())

    # LayerNorm
    def key_mapping_ln(key):
        key = re.sub(r"^bert.embeddings.LayerNorm.", "bert.emb_ln.", key)
        key = re.sub(
            r"^bert.encoder.layers.(\d+).attention.output.LayerNorm.(weight|bias)",
            r"bert.encoder.layers.\1.norm1.\2",
            key,
        )
        key = re.sub(
            r"^bert.encoder.layers.(\d+).output.LayerNorm.(weight|bias)",
            r"bert.encoder.layers.\1.norm2.\2",
            key,
        )
        key = re.sub(
            r"^cls.predictions.transform.LayerNorm.(weight|bias)",
            r"cls.predictions.transform.layer_norm.\1",
            key,
        )
        return key

    state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())

    # MLP
    def key_mapping_mlp(key):
        key = re.sub(
            r"^bert.encoder.layers.(\d+).intermediate.dense.(weight|bias)",
            r"bert.encoder.layers.\1.mlp.fc1.\2",
            key,
        )
        key = re.sub(
            r"^bert.encoder.layers.(\d+).output.dense.(weight|bias)",
            r"bert.encoder.layers.\1.mlp.fc2.\2",
            key,
        )
        return key

    state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())

    # Attention
    last_layer_subset = getattr(config, "last_layer_subset", False)
    for d in range(config.num_hidden_layers):
        if f"bert.encoder.layers.{d}.attention.self.query.weight" not in state_dict:
            continue
        Wq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.weight")
        Wk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.weight")
        Wv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.weight")
        bq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.bias")
        bk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.bias")
        bv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.bias")
        if not (last_layer_subset and d == config.num_hidden_layers - 1):
            state_dict[f"bert.encoder.layers.{d}.attn.Wqkv.weight"] = torch.cat(
                [Wq, Wk, Wv], dim=0
            )
            state_dict[f"bert.encoder.layers.{d}.attn.Wqkv.bias"] = torch.cat([bq, bk, bv], dim=0)
        else:
            state_dict[f"bert.encoder.layers.{d}.attn.Wq.weight"] = Wq
            state_dict[f"bert.encoder.layers.{d}.attn.Wkv.weight"] = torch.cat([Wk, Wv], dim=0)
            state_dict[f"bert.encoder.layers.{d}.attn.Wq.bias"] = bq
            state_dict[f"bert.encoder.layers.{d}.attn.Wkv.bias"] = torch.cat([bk, bv], dim=0)

    def key_mapping_attn(key):
        return re.sub(
            r"^bert.encoder.layers.(\d+).attention.output.dense.(weight|bias)",
            r"bert.encoder.layers.\1.attn.out_proj.\2",
            key,
        )

    state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())

    def key_mapping_decoder_bias(key):
        return re.sub(r"^cls.predictions.bias", "cls.predictions.decoder.bias", key)

        
    # remove nsp weights, we don't use
    state_dict.pop("cls.seq_relationship.weight", None)
    state_dict.pop("cls.seq_relationship.bias", None)
    state_dict.pop("bert.embeddings.position_ids", None)

    state_dict = OrderedDict((key_mapping_decoder_bias(k), v) for k, v in state_dict.items())

    if remove_cls_weights:
        cls_weights = ["cls.predictions.decoder.bias",
                       "cls.predictions.transform.dense.weight",
                       "cls.predictions.transform.dense.bias", 
                       "cls.predictions.transform.layer_norm.weight", 
                       "cls.predictions.transform.layer_norm.bias", 
                       "cls.predictions.decoder.weight"]
        for weight in cls_weights:
            state_dict.pop(weight, None)

    # Word embedding
    pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
    if pad_vocab_size_multiple > 1:
        word_embeddings = state_dict["bert.embeddings.word_embeddings.weight"]
        state_dict["bert.embeddings.word_embeddings.weight"] = F.pad(
            word_embeddings, (0, 0, 0, config.vocab_size - word_embeddings.shape[0])
        )
        if not remove_cls_weights:
            decoder_weight = state_dict["cls.predictions.decoder.weight"]
            state_dict["cls.predictions.decoder.weight"] = F.pad(
                decoder_weight, (0, 0, 0, config.vocab_size - decoder_weight.shape[0])
            )
            # If the vocab was padded, we want to set the decoder bias for those padded indices to be
            # strongly negative (i.e. the decoder shouldn't predict those indices).
            # TD [2022-05-09]: I don't think it affects the MLPerf training.
            if "cls.predictions.decoder.bias" in state_dict:
                decoder_bias = state_dict["cls.predictions.decoder.bias"]
                state_dict["cls.predictions.decoder.bias"] = F.pad(
                    decoder_bias, (0, config.vocab_size - decoder_bias.shape[0]), value=-100.0
                )

    if add_pooling_layer is False:
        pooler_weights = ["bert.pooler.dense.weight",
                          "bert.pooler.dense.bias", 
                        ]
        for key in pooler_weights:
            state_dict.pop(key, None)

    if remove_bert:
        def remove_bert_prefix(key):
            key = re.sub(r"^bert.", "", key)
            return key

        state_dict = OrderedDict((remove_bert_prefix(k), v) for k, v in state_dict.items())


    return state_dict


class NomicBertPreTrainedModel(PreTrainedModel):
    """An abstract class to handle weights initialization and
    a simple interface for dowloading and loading pretrained models.
    """
    config_class = NomicBertConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["Block"]
    _skip_keys_device_placement = "past_key_values"

    def __init__(self, config, *inputs, **kwargs):
        super().__init__(config)
        if not isinstance(config, GPT2Config):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `GPT2Config`. "
                "To create a model from a Google pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
                )
            )
        self.config = config

    @classmethod
    def from_pretrained(cls, model_name, config=None, *inputs, **kwargs):
        """
        Instantiate a NomicBertPreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.

        Params:
            pretrained_model_name_or_path: either:
                - a path or url to a pretrained model archive containing:
                    . `bert_config.json` a configuration file for the model
                    . `pytorch_model.bin` a PyTorch dump of a NomicBertForPretraining instance
                - a path or url to a pretrained model archive containing:
                    . `bert_config.json` a configuration file for the model
                    . `model.chkpt` a TensorFlow checkpoint
            *inputs, **kwargs: additional input for the specific NomicBert class
                (ex: num_labels for NomicBertForSequenceClassification)
        """
        # Instantiate model.
        if config is None:
            config = cls.config_class.from_pretrained(model_name)
        remove_cls = cls != NomicBertForPreTraining
        remove_bert_prefix = cls != NomicBertForPreTraining
        ignore_mismatched_shapes = kwargs.pop("ignore_mismatched_sizes", False)
        num_labels = kwargs.pop("num_labels", None)
        rotary_scaling_factor = kwargs.pop("rotary_scaling_factor", None)
        if rotary_scaling_factor:
            config.rotary_scaling_factor = rotary_scaling_factor
        else:
            config.rotary_scaling_factor = None
        if config.n_positions <= 0 and config.rotary_emb_fraction > 0:
            config.n_positions = 2048
        if num_labels:
            config.num_labels = num_labels

        if "add_pooling_layer" in kwargs:
            model = cls(config, *inputs, add_pooling_layer=kwargs.pop("add_pooling_layer"))
        else:
            if cls == NomicBertModel:
                model = cls(config, *inputs, add_pooling_layer=False)
            else:
                model = cls(config, *inputs)
        # TODO: fix this
        # Assuming we know what we're doing when loading from disk
        # Prob a bad assumption but i'm tired and want to train this asap
        if os.path.exists(model_name):
            state_dict = torch.load(f"{model_name}/pytorch_model.bin")
            if ignore_mismatched_shapes:
                state_dict = filter_shapes(state_dict, model)
            load_return = model.load_state_dict(state_dict, strict=False)
        else:
            # TODO: can probably check config class and see if we need to remap from a bert model
            state_dict = state_dict_from_pretrained(model_name)
            state_dict = remap_bert_state_dict(state_dict,
                                               config,
                                               remove_bert=remove_bert_prefix,
                                               remove_cls_weights=remove_cls,
                                               add_pooling_layer=getattr(config, "add_pooling_layer", False)
                                               )
            if ignore_mismatched_shapes:
                state_dict = filter_shapes(state_dict, model)

            load_return = model.load_state_dict(
                state_dict,
                strict=True
            )
        logger.warning(load_return)
        return model

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, NomicBertEncoder):
            module.gradient_checkpointing = value


# https://github.com/huggingface/transformers/blob/7032e0203262ebb2ebf55da8d2e01f873973e835/src/transformers/models/bert/modeling_bert.py#L748
def _init_weights(module, initializer_range=0.02):
    if isinstance(module, nn.Linear):
        nn.init.normal_(module.weight, std=initializer_range)
        if module.bias is not None:
            nn.init.zeros_(module.bias)
    elif isinstance(module, nn.Embedding):
        nn.init.normal_(module.weight, std=initializer_range)
        if module.padding_idx is not None:
            nn.init.zeros_(module.weight[module.padding_idx])

            
class NomicBertEmbeddings(nn.Module):
    def __init__(
        self,
        config
    ):
        """
        If max_position_embeddings <= 0, there's no position embeddings
        If type_vocab_size <= 0, there's no token type embeddings
        """
        super().__init__()
        self.word_embeddings = nn.Embedding(
            config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id
        )
        self.max_position_embeddings = config.max_position_embeddings if config.rotary_emb_fraction <= 0 else 0
        self.type_vocab_size = config.type_vocab_size
        if self.max_position_embeddings > 0 and config.rotary_emb_fraction <= 0:
            self.position_embeddings = nn.Embedding(
                config.max_position_embeddings, config.hidden_size,
            )
        if self.type_vocab_size > 0:
            self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)

    def forward(self, input_ids, position_ids=None, token_type_ids=None):
        """
        input_ids: (batch, seqlen)
        position_ids: (batch, seqlen)
        token_type_ids: (batch, seqlen)
        """
        batch_size, seqlen = input_ids.shape
        embeddings = self.word_embeddings(input_ids)

        if self.type_vocab_size > 0:
            if token_type_ids is None:
                token_type_ids = torch.zeros(seqlen, dtype=torch.long, device=input_ids.device)
            token_type_embeddings = self.token_type_embeddings(token_type_ids)
            embeddings = embeddings + token_type_embeddings

        if self.max_position_embeddings > 0:
            if position_ids is None:
                position_ids = torch.arange(seqlen, dtype=torch.long, device=input_ids.device)
            position_embeddings = self.position_embeddings(position_ids)
            embeddings = embeddings + position_embeddings
        return embeddings

class NomicBertMLP(nn.Module):
    def __init__(
        self,
        in_features,
        hidden_features=None,
        out_features=None,
        activation=F.gelu,
        bias1=True,
        bias2=True,
        return_residual=False,
        fused_bias_fc=False,
    ):
        super().__init__()
        out_features = out_features if out_features is not None else in_features
        hidden_features = hidden_features if hidden_features is not None else in_features * 4
        self.return_residual = return_residual
        self.fc1 = nn.Linear(in_features, hidden_features, bias=bias1)
        approximate = (
            "tanh"
            if activation in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"]
            else "none"
        )
        self.activation = nn.GELU(approximate=approximate) if activation == "gelu" else activation
        self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2)

    def forward(self, x):
        y = self.fc1(x)
        y = self.activation(y)
        y = self.fc2(y)
        return y if not self.return_residual else (y, x)

        
class NomciBertGatedMLP(nn.Module):
    def __init__(
        self,
        in_features,
        hidden_features=None,
        out_features=None,
        activation=F.sigmoid,
        bias1=True,
        bias2=True,
        multiple_of=256,
        return_residual=False,
        fused_bias_fc=True,
        device=None,
        dtype=None,
    ):
        super().__init__()
        out_features = out_features if out_features is not None else in_features
        hidden_features = (
            hidden_features if hidden_features is not None else int(8 * in_features / 3)
        )
        hidden_features = (hidden_features + multiple_of - 1) // multiple_of * multiple_of
        self.return_residual = return_residual

        self.fc11 = nn.Linear(in_features, hidden_features, bias=bias1)
        self.fc12 = nn.Linear(in_features, hidden_features, bias=bias1)
        self.activation = activation
        self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2)

    def forward(self, x):
        y = self.fc11(x)
        gate = self.fc12(x)
        if self.activation == F.sigmoid:  # Special case for GLU
            y = F.glu(torch.cat([y, gate], dim=-1), dim=-1)
        else:
            y = y * self.activation(gate)
        y = self.fc2(y)
        return y if not self.return_residual else (y, x)


def rotate_half(x, interleaved=False):
    if not interleaved:
        x1, x2 = x.chunk(2, dim=-1)
        return torch.cat((-x2, x1), dim=-1)
    else:
        x1, x2 = x[..., ::2], x[..., 1::2]
        return rearrange(torch.stack((-x2, x1), dim=-1), "... d two -> ... (d two)", two=2)


def apply_rotary_emb(x, cos, sin, offset=0, interleaved=False):
    """
    x: (batch_size, seqlen, nheads, headdim)
    cos, sin: (seqlen, rotary_dim / 2) or (batch_size, seqlen, rotary_dim / 2)
    """
    ro_dim = cos.shape[-1] * 2
    assert ro_dim <= x.shape[-1]
    cos, sin = (
        cos[offset: offset + x.shape[1]],
        sin[offset: offset + x.shape[1]],
    )
    cos = repeat(cos, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
    sin = repeat(sin, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
    return torch.cat(
        [x[..., :ro_dim] * cos + rotate_half(x[..., :ro_dim], interleaved) * sin, x[..., ro_dim:]],
        dim=-1,
    )


class NomicBertRotaryEmbedding(nn.Module):
    def __init__(
        self,
        dim: int,
        base=10000.0,
        interleaved=False,
        scale_base=None,
        pos_idx_in_fp32=True,
        device=None,
    ):
        """
        interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
            of 1st half and 2nd half (GPT-NeoX style).
        pos_idx_in_fp32: if True, the position indices [0.0, ..., seqlen - 1] are in fp32,
            otherwise they might be in lower precision.
            This option was added because previously (before 2023-07-02), when we construct
            the position indices, we use the dtype of self.inv_freq. In most cases this would
            be fp32, but if the model is trained in pure bf16 (not mixed precision), then
            self.inv_freq would be bf16, and the position indices are also in bf16.
            Because of the limited precision of bf16 (e.g. 1995.0 is rounded to 2000.0), the
            embeddings for some positions will coincide.
            To maintain compatibility with models previously trained in pure bf16,
            we add this option.
        """
        super().__init__()
        self.dim = dim
        self.base = float(base)
        self.pos_idx_in_fp32 = pos_idx_in_fp32
        # Generate and save the inverse frequency buffer (non trainable)
        inv_freq = self._compute_inv_freq(device)
        self.register_buffer("inv_freq", inv_freq, persistent=False)
        self.interleaved = interleaved
        self.scale_base = scale_base
        scale = (
            (torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
            if scale_base is not None
            else None
        )
        self.register_buffer("scale", scale, persistent=False)

        self._seq_len_cached = 0
        self._cos_cached = None
        self._sin_cached = None
        self._cos_k_cached = None
        self._sin_k_cached = None

    def _compute_inv_freq(self, device=None):
        return 1.0 / (
            self.base
            ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim)
        )

    def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
        # Reset the tables if the sequence length has changed,
        # if we're on a new device (possibly due to tracing for instance),
        # or if we're switching from inference mode to training
        if (
            seqlen > self._seq_len_cached
            or self._cos_cached is None
            or self._cos_cached.device != device
            or self._cos_cached.dtype != dtype
            or (self.training and self._cos_cached.is_inference())
        ):
            self._seq_len_cached = seqlen
            # We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
            # And the output of arange can be quite large, so bf16 would lose a lot of precision.
            # However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
            if self.pos_idx_in_fp32:
                t = torch.arange(seqlen, device=device, dtype=torch.float32)
                # We want fp32 here as well since inv_freq will be multiplied with t, and the output
                # will be large. Having it in bf16 will lose a lot of precision and cause the
                # cos & sin output to change significantly.
                # We want to recompute self.inv_freq if it was not loaded in fp32
                if self.inv_freq.dtype != torch.float32:
                    inv_freq = self._compute_inv_freq(device=device)
                else:
                    inv_freq = self.inv_freq
            else:
                t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
                inv_freq = self.inv_freq
            # Don't do einsum, it converts fp32 to fp16 under AMP
            # freqs = torch.einsum("i,j->ij", t, self.inv_freq)
            freqs = torch.outer(t, inv_freq)
            self._cos_cached = torch.cos(freqs).to(dtype)
            self._sin_cached = torch.sin(freqs).to(dtype)

    def forward(
        self,
        qkv: torch.Tensor,
        kv: Optional[torch.Tensor] = None,
        seqlen_offset: Union[int, torch.Tensor] = 0,
        max_seqlen: Optional[int] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        qkv: (batch, seqlen, 3, nheads, headdim) if kv is none,
             else it's just q of shape (batch, seqlen, nheads, headdim)
        kv: (batch, seqlen, 2, nheads, headdim)
        seqlen_offset: (batch_size,) or int. Each sequence in x is shifted by this amount.
            Most commonly used in inference when we have KV cache.
            If it's a tensor of shape (batch_size,), then to update the cos / sin cache, one
            should pass in max_seqlen, which will update the cos / sin cache up to that length.
        Apply rotary embedding *inplace* to qkv and / or kv.
        """
        seqlen = qkv.shape[1]
        if seqlen > self._seq_len_cached:
            self._update_cos_sin_cache(seqlen, device=qkv.device, dtype=qkv.dtype)
        elif max_seqlen is not None:
            self._update_cos_sin_cache(max_seqlen, device=qkv.device, dtype=qkv.dtype)
        elif isinstance(seqlen_offset, int):
            self._update_cos_sin_cache(seqlen + seqlen_offset, device=qkv.device, dtype=qkv.dtype)

        q_rot = apply_rotary_emb(qkv[:, :, 0], self._cos_cached, self._sin_cached, seqlen_offset, self.interleaved)
        k_rot = apply_rotary_emb(qkv[:, :, 1], self._cos_cached, self._sin_cached, seqlen_offset, self.interleaved)
        return torch.stack((q_rot, k_rot, qkv[:, :, 2]), dim=2)


class NomicBertDynamicNTKRotaryEmbedding(NomicBertRotaryEmbedding):
    def __init__(self, rotary_scaling_factor, max_position_embeddings, **kwargs):
        super().__init__(**kwargs)
        self.rotary_scaling_factor = rotary_scaling_factor
        self.max_position_embeddings = max_position_embeddings

        
    def _compute_inv_freq(self, base=None, device=None):
        if base is None:
            base = self.base
        return 1.0 / (
            base 
            ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim)
        )

    def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
        # Reset the tables if the sequence length has changed,
        # if we're on a new device (possibly due to tracing for instance),
        # or if we're switching from inference mode to training
        if seqlen > self.max_position_embeddings:
            base = self.base * (
                (self.rotary_scaling_factor * seqlen / self.max_position_embeddings) - (self.rotary_scaling_factor - 1)
            ) ** (self.dim / (self.dim - 2))
            inv_freq = self._compute_inv_freq(base=base, device=device)
            self.register_buffer("inv_freq", inv_freq, persistent=False)

        if (
            seqlen > self._seq_len_cached
            or self._cos_cached is None
            or self._cos_cached.device != device
            or self._cos_cached.dtype != dtype
            or (self.training and self._cos_cached.is_inference())
        ):
            self._seq_len_cached = seqlen
            # We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
            # And the output of arange can be quite large, so bf16 would lose a lot of precision.
            # However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
            if self.pos_idx_in_fp32:
                t = torch.arange(seqlen, device=device, dtype=torch.float32)
                # We want fp32 here as well since inv_freq will be multiplied with t, and the output
                # will be large. Having it in bf16 will lose a lot of precision and cause the
                # cos & sin output to change significantly.
                # We want to recompute self.inv_freq if it was not loaded in fp32
                if self.inv_freq.dtype != torch.float32:
                    if seqlen > self.max_position_embeddings:
                        base = self.base * (
                            (self.scaling_factor * seqlen / self.max_position_embeddings) - (self.scaling_factor - 1)
                        ) ** (self.dim / (self.dim - 2))
                    else:
                        base = self.base
                    inv_freq = self._compute_inv_freq(device=device, base=base)
                else:
                    inv_freq = self.inv_freq
            else:
                t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
                inv_freq = self.inv_freq
            # Don't do einsum, it converts fp32 to fp16 under AMP
            # freqs = torch.einsum("i,j->ij", t, self.inv_freq)
            freqs = torch.outer(t, inv_freq)
            if self.scale is None:
                self._cos_cached = torch.cos(freqs).to(dtype)
                self._sin_cached = torch.sin(freqs).to(dtype)
            else:
                power = (
                    torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device)
                    - seqlen // 2
                ) / self.scale_base
                scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
                # We want the multiplication by scale to happen in fp32
                self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
                self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
                self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
                self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)

class NomicBertAttention(nn.Module):
    """Multi-head self-attention and cross-attention"""

    def __init__(
        self,
        config,
    ) -> None:
        """
        num_heads_kv: can be used to toggle MQA / GQA. If None, use num_heads.
        return_residual: whether to return the input x along with the output. This is for
            performance reason: for post-norm architecture, returning the input allows us
            to fuse the backward of nn.Linear with the residual connection.
        """
        super().__init__()
        self.embed_dim = config.n_embd
        self.use_flash_attn = config.use_flash_attn
        self.fused_bias_fc = config.fused_bias_fc

        self.num_heads = config.n_head
        self.num_heads_kv = config.num_heads_kv if getattr(config, "num_heads_kv", None) is not None else self.num_heads
        assert self.embed_dim % self.num_heads == 0, "embed_dim must be divisible by num_heads"
        self.head_dim = self.embed_dim // self.num_heads
        # we don't really support mqa / gqa for now
        qkv_dim = self.head_dim * (self.num_heads + 2 * self.num_heads_kv)

        self.register_buffer(
            "norm_factor",
            torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype()),
            persistent=False,
        )

        self.rotary_emb_dim = self.head_dim * config.rotary_emb_fraction
        if self.rotary_emb_dim > 0:
            if config.rotary_scaling_factor:
                self.rotary_emb = NomicBertDynamicNTKRotaryEmbedding(
                    dim=self.rotary_emb_dim,
                    base=config.rotary_emb_base,
                    scale_base=config.rotary_emb_scale_base,
                    interleaved=config.rotary_emb_interleaved,
                    rotary_scaling_factor=config.rotary_scaling_factor,
                    max_position_embeddings=config.n_positions,
                ) 
            else:
                self.rotary_emb = NomicBertRotaryEmbedding(
                    dim=self.rotary_emb_dim,
                    base=config.rotary_emb_base,
                    scale_base=config.rotary_emb_scale_base,
                    interleaved=config.rotary_emb_interleaved,
                )
            # bug in xformers: https://github.com/facebookresearch/xformers/issues/841
            # uses the head dimension instead of the sequence dimension
            self.rotary_head_dim = getattr(config, "rotary_head_dim", False)

        self.Wqkv = nn.Linear(self.embed_dim, qkv_dim, bias=config.qkv_proj_bias)

        self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.qkv_proj_bias)
        self.causal = config.causal
        self.drop = nn.Dropout(config.attn_pdrop)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
        is_padded_inputs: Optional[bool] = True,
        cu_seqlens: Optional[torch.Tensor] = None,
        max_seq_len: Optional[int] = None,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:

        has_layer_past = past_key_value is not None

        if has_layer_past:
            past_key_value = past_key_value[0]
            past_len = past_key_value[1]
        else:
            past_len = 0

        qkv = self.Wqkv(hidden_states)
        qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim)

        past_key_value = (past_key_value, past_len + qkv.size(1)) if use_cache else None

        if self.rotary_emb_dim > 0:
            if self.rotary_head_dim:
                qkv = rearrange(qkv, "b s three h d -> b h three s d")
            qkv = self.rotary_emb(qkv, seqlen_offset=past_len)

            if self.rotary_head_dim:
                qkv = rearrange(qkv, "b h three s d -> b s three h d")

        query, key, value = qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2]

        query = query.permute(0, 2, 1, 3)
        key = key.permute(0, 2, 1, 3)
        value = value.permute(0, 2, 1, 3)

        attention_scores = torch.matmul(query, key.transpose(-1, -2)) / self.norm_factor
        if attention_mask is not None:
            attention_scores = attention_scores + attention_mask

        attentions_probs = F.softmax(attention_scores, dim=-1)
        attentions_probs = self.drop(attentions_probs)

        attn_output = torch.matmul(attentions_probs, value)
        attn_output = rearrange(attn_output.permute(0, 2, 1, 3), "... h d -> ... (h d)")

        attn_output = self.out_proj(attn_output)

        return attn_output
            

class NomicBertBlock(nn.Module):
    def __init__(
        self,
        config,
    ):
        super().__init__()
        self.prenorm = config.prenorm
        self.fused_dropout_add_ln = config.fused_dropout_add_ln
        
        self.attn = NomicBertAttention(config) 
        activation = (
                F.sigmoid
                if config.activation_function == "glu"
                else (F.silu if config.activation_function == "swiglu" else F.gelu)
        )
        if config.activation_function in ["glu", "swiglu", "geglu"]:
            self.mlp = NomciBertGatedMLP(config.n_embd, hidden_features=config.n_inner, bias1=config.mlp_fc1_bias, bias2=config.mlp_fc2_bias, activation=activation, fused_bias_fc=config.fused_bias_fc)
        else:
            self.mlp = NomicBertMLP(config.n_embd, hidden_features=config.n_inner, bias1=config.mlp_fc1_bias, bias2=config.mlp_fc2_bias, activation=activation, fused_bias_fc=config.fused_bias_fc)

        self.dropout1 = nn.Dropout(config.resid_pdrop)
        self.norm1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
        self.norm2 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
        self.dropout2 = nn.Dropout(config.resid_pdrop)

    def forward(
        self,
        hidden_states: torch.Tensor,
        hidden_states2: torch.Tensor,
        residual: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        is_padded_inputs: Optional[bool] = True,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = False,
        cu_seqlens: Optional[torch.Tensor] = None,
        max_seq_len: Optional[int] = None,
    ):
        r"""Pass the input through the encoder layer.

        Args:
            hidden_states: the sequence to the encoder layer (required).
            residual: if postnorm, residual=None, If prenorm, hidden_states = Attn/MLP(LN(residual))
            mixer_subset: for cross-attention only. If not None, will take a subset of x
                before applying the query projection. Useful for e.g., ViT where we only care
                about the CLS token in the last layer.
        """
        if self.prenorm:
            dropped = self.dropout1(hidden_states)
            residual = (dropped + residual) if residual is not None else dropped
            hidden_states = self.norm1(residual.to(dtype=self.norm1.weight.dtype))
            hidden_states = self.attn(hidden_states, attention_mask=attention_mask, is_padded_inputs=is_padded_inputs, cu_seqlens=cu_seqlens, max_seq_len=max_seq_len)

            dropped = self.dropout2(hidden_states)
            residual = (dropped + residual) if residual is not None else dropped
            hidden_states = self.norm2(residual.to(dtype=self.norm2.weight.dtype))
            hidden_states = self.mlp(hidden_states)

            return hidden_states, None, residual
        else:
            assert residual is None
            attn_outputs = self.attn(hidden_states, 
                                     attention_mask=attention_mask, 
                                     is_padded_inputs=is_padded_inputs, 
                                     cu_seqlens=cu_seqlens, 
                                     max_seq_len=max_seq_len)
            hidden_states = self.norm1(
                (self.dropout1(attn_outputs) + hidden_states).to(
                    dtype=self.norm1.weight.dtype
                )
            )
            mlp_out = self.mlp(hidden_states)

            hidden_states = self.norm2(
                (self.dropout2(mlp_out) + hidden_states).to(
                    dtype=self.norm2.weight.dtype
                )
            )
            return hidden_states, None, None


class NomicBertEncoder(nn.Module):
    def __init__(self, config: GPT2Config):
        super().__init__()
        self.layers = nn.ModuleList(
            [NomicBertBlock(config) for _ in range(config.n_layer)]
        )
        self.gradient_checkpointing = False
        self.config = config

    def forward(self,
        hidden_states: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        is_padded_inputs: Optional[bool] = True,):

        """If subset_mask is not None, we only want output for the subset of the sequence.
        This means that we only compute the last layer output for these tokens.
        subset_mask: (batch, seqlen), dtype=torch.bool
        """
        hidden_states2 = None
        residual = None


        for _, layer in enumerate(self.layers):
            if self.gradient_checkpointing and self.training:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        # None for past_key_value
                        return module(*inputs)

                    return custom_forward

                hidden_states, hidden_states2, residual = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(layer),
                    hidden_states,
                    hidden_states2,
                    residual,
                    attention_mask,
                    None,
                    None,
                    is_padded_inputs,
                    # if you freeze ANY layers, you need `use_reentrant=False`
                    # https://github.com/huggingface/transformers/issues/21381
                    # https://discuss.pytorch.org/t/checkpoint-with-no-grad-requiring-inputs-problem/19117/7
                    use_reentrant=False,
                )

            else:
                hidden_states, hidden_states2, residual = layer(
                    hidden_states,
                    hidden_states2,
                    residual,
                    attention_mask,
                    position_ids,
                    None,
                    is_padded_inputs,
                    output_attentions,
                    use_cache,
                )
        return hidden_states


class NomicBertPooler(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.n_embd, config.n_embd)
        self.activation = nn.Tanh()

    def forward(self, hidden_states, pool=True):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0] if pool else hidden_states
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


class NomicBertPredictionHeadTransform(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.n_embd, config.n_embd, bias=config.mlp_fc1_bias)
        approximate = (
            "tanh"
            if config.activation_function in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"]
            else "none"
        )
        if config.activation_function == "swiglu":
            self.transform_act_fn = F.silu
        else:
            self.transform_act_fn = nn.GELU(approximate=approximate)

        self.layer_norm = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.dense(hidden_states)
        hidden_states = self.transform_act_fn(hidden_states)
        hidden_states = self.layer_norm(hidden_states)

        return hidden_states


class NomicBertLMPredictionHead(nn.Module):
    def __init__(self, config):
        super().__init__()

        self.transform = NomicBertPredictionHeadTransform(config)

        self.decoder = nn.Linear(config.n_embd, config.vocab_size, bias=config.mlp_fc1_bias)

    def forward(self, hidden_states):
        hidden_states = self.transform(hidden_states)
        hidden_states = self.decoder(hidden_states)
        return hidden_states


class NomicBertPreTrainingHeads(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.predictions = NomicBertLMPredictionHead(config)

    def forward(self, sequence_output):
        prediction_scores = self.predictions(sequence_output)
        return prediction_scores


class NomicBertModel(NomicBertPreTrainedModel):
    def __init__(self, config: GPT2Config, add_pooling_layer=True):
        super().__init__(config)
        self.pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
        if config.vocab_size % self.pad_vocab_size_multiple != 0:
            config.vocab_size += self.pad_vocab_size_multiple - (
                config.vocab_size % self.pad_vocab_size_multiple
            )

        assert config.activation_function in ["gelu", "gelu_new", "gelu_fast", "gelu_pytorch_tanh", "swiglu", "geglu", "glu"]

        self.embeddings = NomicBertEmbeddings(
            config
        )
        self.emb_drop = nn.Dropout(config.resid_pdrop)
        self.emb_ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
        self.encoder = NomicBertEncoder(config)
        self.pooler = NomicBertPooler(config) if add_pooling_layer else None

        self.apply(partial(_init_weights, initializer_range=config.initializer_range))

    def forward(
        self,
        input_ids,
        position_ids=None,
        token_type_ids=None,
        attention_mask=None,
    ):
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)
        hidden_states = self.embeddings(
            input_ids, position_ids=position_ids, token_type_ids=token_type_ids
        )
        hidden_states = self.emb_ln(hidden_states)
        hidden_states = self.emb_drop(hidden_states)

        attention_mask = self.get_extended_attention_mask(attention_mask, input_ids.shape)
        sequence_output = self.encoder(
            hidden_states, attention_mask=attention_mask
        )

        pooled_output = self.pooler(sequence_output) if self.pooler is not None else None

        return BaseModelOutputWithPoolingAndCrossAttentions(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
        )


class NomicBertForPreTraining(NomicBertPreTrainedModel):
    _tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"]

    def __init__(self, config: GPT2Config):
        super().__init__(config)

        self.bert = NomicBertModel(config, add_pooling_layer=getattr(config, "add_pooling_layer", False))
        self.cls = NomicBertPreTrainingHeads(config)
        self.mlm_loss = nn.CrossEntropyLoss()

        # Initialize weights and apply final processing
        self.apply(partial(_init_weights, initializer_range=config.initializer_range))
        self.tie_weights()

    def tie_weights(self):
        self.cls.predictions.decoder.weight = self.bert.embeddings.word_embeddings.weight

    def forward(
        self,
        input_ids,
        position_ids=None,
        token_type_ids=None,
        attention_mask=None,
        labels=None,
    ):
        """
        If labels are provided, they must be -100 for masked out tokens (as specified in the attention
        mask).
        Outputs:
            if `labels` and `next_sentence_label` are not `None`:
                Outputs the total_loss which is the sum of the masked language modeling loss and the next
                sentence classification loss.
            if `labels` or `next_sentence_label` is `None`:
                Outputs a tuple comprising
                - the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and
                - the next sentence classification logits of shape [batch_size, 2].

        """
        outputs = self.bert(
            input_ids,
            position_ids=position_ids,
            token_type_ids=token_type_ids,
            attention_mask=attention_mask.bool() if attention_mask is not None else None,
        )
        sequence_output, _ = outputs.last_hidden_state, outputs.pooler_output

        prediction_scores = self.cls(sequence_output)

        total_loss = None
        if labels is not None:
            masked_lm_loss = self.mlm_loss(
                rearrange(prediction_scores, "... v -> (...) v"),
                rearrange(labels, "... -> (...)"),
            )
            total_loss = masked_lm_loss.float()

        return MaskedLMOutput(
            loss=total_loss,
            logits=prediction_scores,
            hidden_states=outputs.hidden_states,
            attentions=None, 
        )

        
class NomicBertForSequenceClassification(NomicBertPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.config = config

        self.bert = NomicBertModel(config)
        classifier_dropout = (
            getattr(config, "classifier_dropout", config.embd_pdrop)
        )
        self.dropout = nn.Dropout(classifier_dropout)
        self.classifier = nn.Linear(config.n_embd, config.num_labels)

        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ):
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        outputs = self.bert(
            input_ids,
            position_ids=position_ids,
            token_type_ids=token_type_ids,
            attention_mask=attention_mask.bool() if attention_mask is not None else None,
        )

        pooled_output = outputs[1]

        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = nn.MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = nn.CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = nn.BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)
        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )