Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
library_name: peft
|
5 |
+
pipeline_tag: text-generation
|
6 |
+
tags:
|
7 |
+
- medical
|
8 |
+
license: cc-by-nc-3.0
|
9 |
+
---
|
10 |
+
|
11 |
+
# MedFalcon 40b LoRA
|
12 |
+
|
13 |
+
|
14 |
+
## Model Description
|
15 |
+
|
16 |
+
### Architecture
|
17 |
+
`nmitchko/medfalcon-40b-lora` is a large language model LoRa specifically fine-tuned for medical domain tasks.
|
18 |
+
It is based on [`Falcon-40b-instruct`](https://huggingface.co/tiiuae/falcon-40b-instruct/) at 40 billion parameters.
|
19 |
+
|
20 |
+
The primary goal of this model is to improve question-answering and medical dialogue tasks.
|
21 |
+
It was trained using [LoRA](https://arxiv.org/abs/2106.09685), specifically [QLora](https://github.com/artidoro/qlora), to reduce memory footprint.
|
22 |
+
|
23 |
+
> This Lora supports 4-bit and 8-bit modes.
|
24 |
+
|
25 |
+
### Requirements
|
26 |
+
|
27 |
+
```
|
28 |
+
bitsandbytes>=0.39.0
|
29 |
+
peft
|
30 |
+
transformers
|
31 |
+
```
|
32 |
+
|
33 |
+
Steps to load this model:
|
34 |
+
1. Load base model using QLORA
|
35 |
+
2. Apply LoRA using peft
|
36 |
+
|
37 |
+
```python
|
38 |
+
#
|
39 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
40 |
+
import transformers
|
41 |
+
import torch
|
42 |
+
|
43 |
+
model = "tiiuae/falcon-40b-instruct/"
|
44 |
+
LoRA = "nmitchko/medfalcon-40b-lora"
|
45 |
+
|
46 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
47 |
+
|
48 |
+
model = AutoModelForCausalLM.from_pretrained(model,
|
49 |
+
load_in_8bit=load_8bit,
|
50 |
+
torch_dtype=torch.float16,
|
51 |
+
trust_remote_code=True,
|
52 |
+
)
|
53 |
+
|
54 |
+
model = PeftModel.from_pretrained(model, LoRA)
|
55 |
+
|
56 |
+
pipeline = transformers.pipeline(
|
57 |
+
"text-generation",
|
58 |
+
model=model,
|
59 |
+
tokenizer=tokenizer,
|
60 |
+
torch_dtype=torch.bfloat16,
|
61 |
+
trust_remote_code=True,
|
62 |
+
device_map="auto",
|
63 |
+
)
|
64 |
+
|
65 |
+
sequences = pipeline(
|
66 |
+
"What does the drug ceftrioxone do?\nDoctor:",
|
67 |
+
max_length=200,
|
68 |
+
do_sample=True,
|
69 |
+
top_k=40,
|
70 |
+
num_return_sequences=1,
|
71 |
+
eos_token_id=tokenizer.eos_token_id,
|
72 |
+
)
|
73 |
+
|
74 |
+
for seq in sequences:
|
75 |
+
print(f"Result: {seq['generated_text']}")
|
76 |
+
```
|