nmarafo commited on
Commit
ccc0919
·
verified ·
1 Parent(s): 3be84c9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -27
README.md CHANGED
@@ -98,41 +98,33 @@ from transformers import GenerationConfig, AutoTokenizer
98
  import torch
99
 
100
  model_id = "TheBloke/Mistral-7B-Instruct-v0.2-GPTQ"
101
- adapter="nmarafo/Mistral-7B-Instruct-v0.2-TrueFalse-Feedback-GPTQ"
102
 
103
- # To perform inference on the test dataset example load the model from the checkpoint
104
- persisted_model = AutoPeftModelForCausalLM.from_pretrained(
105
- adapter,
106
- low_cpu_mem_usage=True,
107
- return_dict=True,
108
- torch_dtype=torch.float16,
109
- device_map="cuda")
110
 
111
- def generate_prompt(data_point):
112
- system_message = "Analyze the question, the expected answer, and the student's response. Determine if the student's answer is conceptually correct in relation to the expected answer, regardless of the exact wording. An answer will be considered correct if it accurately identifies the key information requested in the question, even if expressed differently. Return True if the student's answer is correct or False otherwise. Add a brief comment explaining the rationale behind the answer being correct or incorrect."
113
- question = data_point["question"][0]
114
- best_answer = data_point["best_answer"][0]
115
- student_answer = data_point["student_answer"][0]
116
- prompt = f"{system_message}\n\nQuestion: {question}\nExpected Answer: {best_answer}\nStudent Answer: {student_answer}"
117
 
118
- return prompt
 
 
 
119
 
120
- tokenizer = AutoTokenizer.from_pretrained(
121
- model_id,
122
- trust_remote_code=True,
123
- return_token_type_ids=False)
124
- tokenizer.pad_token = tokenizer.eos_token
125
 
126
- question="Name of Canary Island"
 
 
 
 
 
 
127
  best_answer="Tenerife, Fuerteventura, Gran Canaria, Lanzarote, La Palma, La Gomera, El Hierro, La Graciosa"
128
  student_answer="Tenerife"
129
 
130
- prompt = generate_prompt([{"question":question, "best_answer":best_answer,"student_answer":student_answer}])
131
- prompt_template=f'''<s>[INST] {prompt} [/INST]'''
132
-
133
- input_ids = tokenizer(prompt, return_tensors='pt').input_ids.cuda()
134
- output = persisted_model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
135
- print(tokenizer.decode(output[0]))
136
 
137
  ```
138
 
 
98
  import torch
99
 
100
  model_id = "TheBloke/Mistral-7B-Instruct-v0.2-GPTQ"
101
+ adapter = "nmarafo/Mistral-7B-Instruct-v0.2-TrueFalse-Feedback-GPTQ"
102
 
103
+ tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True, return_token_type_ids=False)
104
+ tokenizer.pad_token = tokenizer.eos_token
 
 
 
 
 
105
 
106
+ model = AutoPeftModelForCausalLM.from_pretrained(adapter, low_cpu_mem_usage=True, return_dict=True, torch_dtype=torch.float16, device_map="cuda")
 
 
 
 
 
107
 
108
+ def predict(question, best_answer, student_answer):
109
+ system_message = "Analyze the question, the expected answer, and the student's response. Determine if the student's answer is conceptually correct in relation to the expected answer, regardless of the exact wording. Return True if the student's answer is correct or False otherwise. Add a brief comment explaining the rationale behind the answer being correct or incorrect."
110
+ prompt = f"{system_message}\n\nQuestion: {question}\nBest Answer: {best_answer}\nStudent Answer: {student_answer}"
111
+ prompt_template=f"<s>[INST]{prompt}[/INST]"
112
 
113
+ encoding = tokenizer(prompt_template, return_tensors='pt', padding=True, truncation=True, max_length=512)
114
+ input_ids = encoding['input_ids'].cuda()
115
+ attention_mask = encoding['attention_mask'].cuda()
 
 
116
 
117
+ output = model.generate(input_ids, attention_mask=attention_mask,
118
+ temperature=0.7, do_sample=True, top_p=0.95,
119
+ top_k=40, max_new_tokens=512, pad_token_id=tokenizer.eos_token_id)
120
+ response = tokenizer.decode(output[0], skip_special_tokens=True)
121
+ return response
122
+
123
+ question="Mention all the Canary Island"
124
  best_answer="Tenerife, Fuerteventura, Gran Canaria, Lanzarote, La Palma, La Gomera, El Hierro, La Graciosa"
125
  student_answer="Tenerife"
126
 
127
+ print(predict(question, best_answer, student_answer))
 
 
 
 
 
128
 
129
  ```
130