nmarafo commited on
Commit
9321ef3
·
verified ·
1 Parent(s): dcbc42f

Upload 8 files

Browse files
README.md CHANGED
@@ -1,3 +1,204 @@
1
  ---
2
- license: apache-2.0
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: peft
3
+ base_model: TheBloke/Mistral-7B-Instruct-v0.2-GPTQ
4
  ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.8.2
adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "TheBloke/Mistral-7B-Instruct-v0.2-GPTQ",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 32,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 8,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "v_proj",
23
+ "k_proj",
24
+ "q_proj",
25
+ "o_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM",
28
+ "use_rslora": false
29
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2821e58e4766148205fc02c3a1d78b0291712513e84eb5f6267c569eb90d94bf
3
+ size 27297032
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:083ffbeacbe364e796ffdbcbc4c469c9b38b47ce178a9017bc74f07fb7a24001
3
+ size 54677370
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:15c2c912a0e2f92605e69e0d56b5dfa9f1aeeee55635efc1e788e0693364b113
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be21d965a9b70ceab538048e025580a84ed12e9126c075ca06532fcfaadd5e27
3
+ size 1064
trainer_state.json ADDED
@@ -0,0 +1,2979 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 493,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 0.0001,
14
+ "loss": 2.3484,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "learning_rate": 0.0001,
20
+ "loss": 2.5463,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 0.0002,
26
+ "loss": 2.6055,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 0.0001995983935742972,
32
+ "loss": 2.3676,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.01,
37
+ "learning_rate": 0.0001991967871485944,
38
+ "loss": 1.8278,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.01,
43
+ "learning_rate": 0.0001991967871485944,
44
+ "loss": 1.6644,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.01,
49
+ "learning_rate": 0.00019879518072289158,
50
+ "loss": 1.5494,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.02,
55
+ "learning_rate": 0.00019839357429718877,
56
+ "loss": 1.2689,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.02,
61
+ "learning_rate": 0.00019799196787148596,
62
+ "loss": 1.0911,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.02,
67
+ "learning_rate": 0.00019759036144578314,
68
+ "loss": 0.8925,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.02,
73
+ "learning_rate": 0.00019718875502008033,
74
+ "loss": 0.8251,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.02,
79
+ "learning_rate": 0.00019678714859437752,
80
+ "loss": 0.8871,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.03,
85
+ "learning_rate": 0.0001963855421686747,
86
+ "loss": 0.6684,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.03,
91
+ "learning_rate": 0.0001959839357429719,
92
+ "loss": 0.7377,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.03,
97
+ "learning_rate": 0.00019558232931726906,
98
+ "loss": 0.7108,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.03,
103
+ "learning_rate": 0.00019518072289156628,
104
+ "loss": 0.5971,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.03,
109
+ "learning_rate": 0.00019477911646586347,
110
+ "loss": 0.6384,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.04,
115
+ "learning_rate": 0.00019437751004016066,
116
+ "loss": 0.6022,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.04,
121
+ "learning_rate": 0.00019397590361445782,
122
+ "loss": 0.6303,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.04,
127
+ "learning_rate": 0.00019357429718875504,
128
+ "loss": 0.6137,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.04,
133
+ "learning_rate": 0.00019317269076305223,
134
+ "loss": 0.7437,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.04,
139
+ "learning_rate": 0.00019277108433734942,
140
+ "loss": 0.7448,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.05,
145
+ "learning_rate": 0.00019236947791164658,
146
+ "loss": 0.7302,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.05,
151
+ "learning_rate": 0.00019196787148594377,
152
+ "loss": 0.6401,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.05,
157
+ "learning_rate": 0.00019156626506024098,
158
+ "loss": 0.4414,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.05,
163
+ "learning_rate": 0.00019116465863453817,
164
+ "loss": 0.5489,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.05,
169
+ "learning_rate": 0.00019076305220883533,
170
+ "loss": 0.579,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.06,
175
+ "learning_rate": 0.00019036144578313252,
176
+ "loss": 0.575,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.06,
181
+ "learning_rate": 0.00018995983935742974,
182
+ "loss": 0.7082,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.06,
187
+ "learning_rate": 0.00018955823293172693,
188
+ "loss": 0.5186,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.06,
193
+ "learning_rate": 0.0001891566265060241,
194
+ "loss": 0.5562,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.06,
199
+ "learning_rate": 0.00018875502008032128,
200
+ "loss": 0.644,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.07,
205
+ "learning_rate": 0.0001883534136546185,
206
+ "loss": 0.5768,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.07,
211
+ "learning_rate": 0.00018795180722891569,
212
+ "loss": 0.5801,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.07,
217
+ "learning_rate": 0.00018755020080321285,
218
+ "loss": 0.609,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.07,
223
+ "learning_rate": 0.00018714859437751004,
224
+ "loss": 0.5588,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.08,
229
+ "learning_rate": 0.00018674698795180723,
230
+ "loss": 0.6599,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.08,
235
+ "learning_rate": 0.00018634538152610444,
236
+ "loss": 0.6691,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.08,
241
+ "learning_rate": 0.0001859437751004016,
242
+ "loss": 0.5768,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.08,
247
+ "learning_rate": 0.0001855421686746988,
248
+ "loss": 0.5547,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.08,
253
+ "learning_rate": 0.00018514056224899598,
254
+ "loss": 0.5434,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.09,
259
+ "learning_rate": 0.0001847389558232932,
260
+ "loss": 0.5808,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.09,
265
+ "learning_rate": 0.00018433734939759036,
266
+ "loss": 0.6528,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.09,
271
+ "learning_rate": 0.00018393574297188755,
272
+ "loss": 0.6594,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.09,
277
+ "learning_rate": 0.00018353413654618474,
278
+ "loss": 0.5752,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.09,
283
+ "learning_rate": 0.00018313253012048193,
284
+ "loss": 0.7312,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.1,
289
+ "learning_rate": 0.00018273092369477912,
290
+ "loss": 0.5985,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.1,
295
+ "learning_rate": 0.0001823293172690763,
296
+ "loss": 0.528,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.1,
301
+ "learning_rate": 0.0001819277108433735,
302
+ "loss": 0.5257,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.1,
307
+ "learning_rate": 0.0001815261044176707,
308
+ "loss": 0.5592,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.1,
313
+ "learning_rate": 0.0001811244979919679,
314
+ "loss": 0.5552,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.11,
319
+ "learning_rate": 0.00018072289156626507,
320
+ "loss": 0.6648,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.11,
325
+ "learning_rate": 0.00018032128514056225,
326
+ "loss": 0.7509,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.11,
331
+ "learning_rate": 0.00017991967871485944,
332
+ "loss": 0.4606,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.11,
337
+ "learning_rate": 0.00017951807228915663,
338
+ "loss": 0.5747,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.11,
343
+ "learning_rate": 0.00017911646586345382,
344
+ "loss": 0.5779,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.12,
349
+ "learning_rate": 0.000178714859437751,
350
+ "loss": 0.4876,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.12,
355
+ "learning_rate": 0.0001783132530120482,
356
+ "loss": 0.58,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.12,
361
+ "learning_rate": 0.0001779116465863454,
362
+ "loss": 0.5961,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.12,
367
+ "learning_rate": 0.00017751004016064258,
368
+ "loss": 0.4444,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.12,
373
+ "learning_rate": 0.00017710843373493977,
374
+ "loss": 0.6475,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.13,
379
+ "learning_rate": 0.00017670682730923696,
380
+ "loss": 0.5423,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.13,
385
+ "learning_rate": 0.00017630522088353415,
386
+ "loss": 0.5865,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.13,
391
+ "learning_rate": 0.00017590361445783134,
392
+ "loss": 0.5563,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.13,
397
+ "learning_rate": 0.00017550200803212853,
398
+ "loss": 0.4826,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.13,
403
+ "learning_rate": 0.00017510040160642571,
404
+ "loss": 0.5253,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.14,
409
+ "learning_rate": 0.0001746987951807229,
410
+ "loss": 0.6209,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.14,
415
+ "learning_rate": 0.0001742971887550201,
416
+ "loss": 0.4979,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.14,
421
+ "learning_rate": 0.00017389558232931728,
422
+ "loss": 0.6658,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.14,
427
+ "learning_rate": 0.00017349397590361447,
428
+ "loss": 0.4918,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.14,
433
+ "learning_rate": 0.00017309236947791166,
434
+ "loss": 0.6668,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.15,
439
+ "learning_rate": 0.00017269076305220885,
440
+ "loss": 0.5992,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.15,
445
+ "learning_rate": 0.00017228915662650604,
446
+ "loss": 0.6433,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.15,
451
+ "learning_rate": 0.00017188755020080323,
452
+ "loss": 0.647,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.15,
457
+ "learning_rate": 0.00017148594377510042,
458
+ "loss": 0.5385,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.15,
463
+ "learning_rate": 0.0001710843373493976,
464
+ "loss": 0.5451,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.16,
469
+ "learning_rate": 0.00017068273092369477,
470
+ "loss": 0.4437,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.16,
475
+ "learning_rate": 0.00017028112449799199,
476
+ "loss": 0.4511,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.16,
481
+ "learning_rate": 0.00016987951807228917,
482
+ "loss": 0.5662,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.16,
487
+ "learning_rate": 0.00016947791164658636,
488
+ "loss": 0.6221,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.16,
493
+ "learning_rate": 0.00016907630522088353,
494
+ "loss": 0.567,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.17,
499
+ "learning_rate": 0.00016867469879518074,
500
+ "loss": 0.5783,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.17,
505
+ "learning_rate": 0.00016827309236947793,
506
+ "loss": 0.5302,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.17,
511
+ "learning_rate": 0.00016787148594377512,
512
+ "loss": 0.6094,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.17,
517
+ "learning_rate": 0.00016746987951807228,
518
+ "loss": 0.588,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.17,
523
+ "learning_rate": 0.00016706827309236947,
524
+ "loss": 0.5507,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.18,
529
+ "learning_rate": 0.0001666666666666667,
530
+ "loss": 0.4017,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.18,
535
+ "learning_rate": 0.00016626506024096388,
536
+ "loss": 0.5631,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.18,
541
+ "learning_rate": 0.00016586345381526104,
542
+ "loss": 0.5022,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.18,
547
+ "learning_rate": 0.00016546184738955823,
548
+ "loss": 0.4663,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.18,
553
+ "learning_rate": 0.00016506024096385545,
554
+ "loss": 0.4863,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.19,
559
+ "learning_rate": 0.00016465863453815263,
560
+ "loss": 0.5595,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.19,
565
+ "learning_rate": 0.0001642570281124498,
566
+ "loss": 0.5928,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.19,
571
+ "learning_rate": 0.00016385542168674699,
572
+ "loss": 0.5443,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.19,
577
+ "learning_rate": 0.00016345381526104417,
578
+ "loss": 0.6472,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.19,
583
+ "learning_rate": 0.0001630522088353414,
584
+ "loss": 0.5789,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.2,
589
+ "learning_rate": 0.00016265060240963855,
590
+ "loss": 0.4732,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.2,
595
+ "learning_rate": 0.00016224899598393574,
596
+ "loss": 0.4843,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.2,
601
+ "learning_rate": 0.00016184738955823293,
602
+ "loss": 0.6245,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.2,
607
+ "learning_rate": 0.00016144578313253015,
608
+ "loss": 0.6005,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.2,
613
+ "learning_rate": 0.0001610441767068273,
614
+ "loss": 0.7296,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.21,
619
+ "learning_rate": 0.0001606425702811245,
620
+ "loss": 0.5073,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.21,
625
+ "learning_rate": 0.0001602409638554217,
626
+ "loss": 0.4158,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.21,
631
+ "learning_rate": 0.00015983935742971888,
632
+ "loss": 0.6197,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.21,
637
+ "learning_rate": 0.00015943775100401607,
638
+ "loss": 0.6124,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.22,
643
+ "learning_rate": 0.00015903614457831326,
644
+ "loss": 0.3915,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.22,
649
+ "learning_rate": 0.00015863453815261045,
650
+ "loss": 0.5916,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.22,
655
+ "learning_rate": 0.00015823293172690763,
656
+ "loss": 0.4174,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.22,
661
+ "learning_rate": 0.00015783132530120482,
662
+ "loss": 0.4335,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.22,
667
+ "learning_rate": 0.000157429718875502,
668
+ "loss": 0.5405,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.23,
673
+ "learning_rate": 0.0001570281124497992,
674
+ "loss": 0.5486,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.23,
679
+ "learning_rate": 0.0001566265060240964,
680
+ "loss": 0.5357,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.23,
685
+ "learning_rate": 0.00015622489959839358,
686
+ "loss": 0.4446,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.23,
691
+ "learning_rate": 0.00015582329317269077,
692
+ "loss": 0.4985,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.23,
697
+ "learning_rate": 0.00015542168674698796,
698
+ "loss": 0.5429,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.24,
703
+ "learning_rate": 0.00015502008032128515,
704
+ "loss": 0.5076,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.24,
709
+ "learning_rate": 0.00015461847389558234,
710
+ "loss": 0.5397,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.24,
715
+ "learning_rate": 0.00015421686746987953,
716
+ "loss": 0.5309,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.24,
721
+ "learning_rate": 0.00015381526104417672,
722
+ "loss": 0.5043,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.24,
727
+ "learning_rate": 0.0001534136546184739,
728
+ "loss": 0.5628,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.25,
733
+ "learning_rate": 0.0001530120481927711,
734
+ "loss": 0.5627,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.25,
739
+ "learning_rate": 0.00015261044176706828,
740
+ "loss": 0.4973,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.25,
745
+ "learning_rate": 0.00015220883534136547,
746
+ "loss": 0.6026,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.25,
751
+ "learning_rate": 0.00015180722891566266,
752
+ "loss": 0.5615,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.25,
757
+ "learning_rate": 0.00015140562248995985,
758
+ "loss": 0.5713,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.26,
763
+ "learning_rate": 0.00015100401606425701,
764
+ "loss": 0.4732,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.26,
769
+ "learning_rate": 0.00015060240963855423,
770
+ "loss": 0.6171,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.26,
775
+ "learning_rate": 0.00015020080321285142,
776
+ "loss": 0.4272,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.26,
781
+ "learning_rate": 0.0001497991967871486,
782
+ "loss": 0.5087,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.26,
787
+ "learning_rate": 0.00014939759036144577,
788
+ "loss": 0.4022,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.27,
793
+ "learning_rate": 0.000148995983935743,
794
+ "loss": 0.6336,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.27,
799
+ "learning_rate": 0.00014859437751004018,
800
+ "loss": 0.4404,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.27,
805
+ "learning_rate": 0.00014819277108433737,
806
+ "loss": 0.5488,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.27,
811
+ "learning_rate": 0.00014779116465863453,
812
+ "loss": 0.5313,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.27,
817
+ "learning_rate": 0.00014738955823293172,
818
+ "loss": 0.4526,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.28,
823
+ "learning_rate": 0.00014698795180722893,
824
+ "loss": 0.434,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.28,
829
+ "learning_rate": 0.00014658634538152612,
830
+ "loss": 0.5141,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.28,
835
+ "learning_rate": 0.00014618473895582328,
836
+ "loss": 0.4783,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.28,
841
+ "learning_rate": 0.00014578313253012047,
842
+ "loss": 0.5319,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.28,
847
+ "learning_rate": 0.0001453815261044177,
848
+ "loss": 0.509,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.29,
853
+ "learning_rate": 0.00014497991967871488,
854
+ "loss": 0.6049,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.29,
859
+ "learning_rate": 0.00014457831325301204,
860
+ "loss": 0.6876,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.29,
865
+ "learning_rate": 0.00014417670682730923,
866
+ "loss": 0.5849,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.29,
871
+ "learning_rate": 0.00014377510040160642,
872
+ "loss": 0.5415,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.29,
877
+ "learning_rate": 0.00014337349397590364,
878
+ "loss": 0.5939,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.3,
883
+ "learning_rate": 0.0001429718875502008,
884
+ "loss": 0.4664,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.3,
889
+ "learning_rate": 0.000142570281124498,
890
+ "loss": 0.527,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.3,
895
+ "learning_rate": 0.00014216867469879518,
896
+ "loss": 0.4095,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.3,
901
+ "learning_rate": 0.0001417670682730924,
902
+ "loss": 0.5033,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.3,
907
+ "learning_rate": 0.00014136546184738956,
908
+ "loss": 0.6287,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 0.31,
913
+ "learning_rate": 0.00014096385542168674,
914
+ "loss": 0.5513,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 0.31,
919
+ "learning_rate": 0.00014056224899598393,
920
+ "loss": 0.4836,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 0.31,
925
+ "learning_rate": 0.00014016064257028115,
926
+ "loss": 0.4919,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 0.31,
931
+ "learning_rate": 0.00013975903614457834,
932
+ "loss": 0.4779,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 0.31,
937
+ "learning_rate": 0.0001393574297188755,
938
+ "loss": 0.5458,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 0.32,
943
+ "learning_rate": 0.0001389558232931727,
944
+ "loss": 0.5449,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 0.32,
949
+ "learning_rate": 0.00013855421686746988,
950
+ "loss": 0.5182,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 0.32,
955
+ "learning_rate": 0.0001381526104417671,
956
+ "loss": 0.6282,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 0.32,
961
+ "learning_rate": 0.00013775100401606426,
962
+ "loss": 0.365,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 0.32,
967
+ "learning_rate": 0.00013734939759036145,
968
+ "loss": 0.5731,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 0.33,
973
+ "learning_rate": 0.00013694779116465864,
974
+ "loss": 0.4345,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 0.33,
979
+ "learning_rate": 0.00013654618473895585,
980
+ "loss": 0.5463,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 0.33,
985
+ "learning_rate": 0.00013614457831325302,
986
+ "loss": 0.4878,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 0.33,
991
+ "learning_rate": 0.0001357429718875502,
992
+ "loss": 0.5038,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 0.33,
997
+ "learning_rate": 0.0001353413654618474,
998
+ "loss": 0.4764,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 0.34,
1003
+ "learning_rate": 0.00013493975903614458,
1004
+ "loss": 0.5113,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 0.34,
1009
+ "learning_rate": 0.00013453815261044177,
1010
+ "loss": 0.4931,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 0.34,
1015
+ "learning_rate": 0.00013413654618473896,
1016
+ "loss": 0.5509,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 0.34,
1021
+ "learning_rate": 0.00013373493975903615,
1022
+ "loss": 0.5908,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 0.34,
1027
+ "learning_rate": 0.00013333333333333334,
1028
+ "loss": 0.4747,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 0.35,
1033
+ "learning_rate": 0.00013293172690763053,
1034
+ "loss": 0.4458,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 0.35,
1039
+ "learning_rate": 0.00013253012048192772,
1040
+ "loss": 0.449,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 0.35,
1045
+ "learning_rate": 0.0001321285140562249,
1046
+ "loss": 0.4831,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 0.35,
1051
+ "learning_rate": 0.0001317269076305221,
1052
+ "loss": 0.3903,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 0.35,
1057
+ "learning_rate": 0.00013132530120481929,
1058
+ "loss": 0.363,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 0.36,
1063
+ "learning_rate": 0.00013092369477911648,
1064
+ "loss": 0.5235,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 0.36,
1069
+ "learning_rate": 0.00013052208835341366,
1070
+ "loss": 0.4631,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 0.36,
1075
+ "learning_rate": 0.00013012048192771085,
1076
+ "loss": 0.5049,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 0.36,
1081
+ "learning_rate": 0.00012971887550200804,
1082
+ "loss": 0.531,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 0.37,
1087
+ "learning_rate": 0.00012931726907630523,
1088
+ "loss": 0.4807,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 0.37,
1093
+ "learning_rate": 0.00012891566265060242,
1094
+ "loss": 0.5766,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 0.37,
1099
+ "learning_rate": 0.0001285140562248996,
1100
+ "loss": 0.5113,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 0.37,
1105
+ "learning_rate": 0.0001281124497991968,
1106
+ "loss": 0.5385,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 0.37,
1111
+ "learning_rate": 0.00012771084337349396,
1112
+ "loss": 0.4967,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 0.38,
1117
+ "learning_rate": 0.00012730923694779118,
1118
+ "loss": 0.4895,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 0.38,
1123
+ "learning_rate": 0.00012690763052208837,
1124
+ "loss": 0.3827,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 0.38,
1129
+ "learning_rate": 0.00012650602409638556,
1130
+ "loss": 0.4897,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 0.38,
1135
+ "learning_rate": 0.00012610441767068272,
1136
+ "loss": 0.5642,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 0.38,
1141
+ "learning_rate": 0.00012570281124497994,
1142
+ "loss": 0.4989,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 0.39,
1147
+ "learning_rate": 0.00012530120481927712,
1148
+ "loss": 0.5212,
1149
+ "step": 190
1150
+ },
1151
+ {
1152
+ "epoch": 0.39,
1153
+ "learning_rate": 0.0001248995983935743,
1154
+ "loss": 0.6401,
1155
+ "step": 191
1156
+ },
1157
+ {
1158
+ "epoch": 0.39,
1159
+ "learning_rate": 0.00012449799196787148,
1160
+ "loss": 0.4974,
1161
+ "step": 192
1162
+ },
1163
+ {
1164
+ "epoch": 0.39,
1165
+ "learning_rate": 0.0001240963855421687,
1166
+ "loss": 0.4409,
1167
+ "step": 193
1168
+ },
1169
+ {
1170
+ "epoch": 0.39,
1171
+ "learning_rate": 0.00012369477911646588,
1172
+ "loss": 0.5508,
1173
+ "step": 194
1174
+ },
1175
+ {
1176
+ "epoch": 0.4,
1177
+ "learning_rate": 0.00012329317269076307,
1178
+ "loss": 0.738,
1179
+ "step": 195
1180
+ },
1181
+ {
1182
+ "epoch": 0.4,
1183
+ "learning_rate": 0.00012289156626506023,
1184
+ "loss": 0.4174,
1185
+ "step": 196
1186
+ },
1187
+ {
1188
+ "epoch": 0.4,
1189
+ "learning_rate": 0.00012248995983935742,
1190
+ "loss": 0.4254,
1191
+ "step": 197
1192
+ },
1193
+ {
1194
+ "epoch": 0.4,
1195
+ "learning_rate": 0.00012208835341365464,
1196
+ "loss": 0.6255,
1197
+ "step": 198
1198
+ },
1199
+ {
1200
+ "epoch": 0.4,
1201
+ "learning_rate": 0.00012168674698795181,
1202
+ "loss": 0.5013,
1203
+ "step": 199
1204
+ },
1205
+ {
1206
+ "epoch": 0.41,
1207
+ "learning_rate": 0.000121285140562249,
1208
+ "loss": 0.4475,
1209
+ "step": 200
1210
+ },
1211
+ {
1212
+ "epoch": 0.41,
1213
+ "learning_rate": 0.00012088353413654618,
1214
+ "loss": 0.463,
1215
+ "step": 201
1216
+ },
1217
+ {
1218
+ "epoch": 0.41,
1219
+ "learning_rate": 0.0001204819277108434,
1220
+ "loss": 0.475,
1221
+ "step": 202
1222
+ },
1223
+ {
1224
+ "epoch": 0.41,
1225
+ "learning_rate": 0.00012008032128514057,
1226
+ "loss": 0.4786,
1227
+ "step": 203
1228
+ },
1229
+ {
1230
+ "epoch": 0.41,
1231
+ "learning_rate": 0.00011967871485943776,
1232
+ "loss": 0.5241,
1233
+ "step": 204
1234
+ },
1235
+ {
1236
+ "epoch": 0.42,
1237
+ "learning_rate": 0.00011927710843373494,
1238
+ "loss": 0.529,
1239
+ "step": 205
1240
+ },
1241
+ {
1242
+ "epoch": 0.42,
1243
+ "learning_rate": 0.00011887550200803212,
1244
+ "loss": 0.5723,
1245
+ "step": 206
1246
+ },
1247
+ {
1248
+ "epoch": 0.42,
1249
+ "learning_rate": 0.00011847389558232933,
1250
+ "loss": 0.4576,
1251
+ "step": 207
1252
+ },
1253
+ {
1254
+ "epoch": 0.42,
1255
+ "learning_rate": 0.00011807228915662652,
1256
+ "loss": 0.542,
1257
+ "step": 208
1258
+ },
1259
+ {
1260
+ "epoch": 0.42,
1261
+ "learning_rate": 0.00011767068273092369,
1262
+ "loss": 0.4835,
1263
+ "step": 209
1264
+ },
1265
+ {
1266
+ "epoch": 0.43,
1267
+ "learning_rate": 0.00011726907630522088,
1268
+ "loss": 0.581,
1269
+ "step": 210
1270
+ },
1271
+ {
1272
+ "epoch": 0.43,
1273
+ "learning_rate": 0.00011686746987951808,
1274
+ "loss": 0.5406,
1275
+ "step": 211
1276
+ },
1277
+ {
1278
+ "epoch": 0.43,
1279
+ "learning_rate": 0.00011646586345381527,
1280
+ "loss": 0.4382,
1281
+ "step": 212
1282
+ },
1283
+ {
1284
+ "epoch": 0.43,
1285
+ "learning_rate": 0.00011606425702811245,
1286
+ "loss": 0.5514,
1287
+ "step": 213
1288
+ },
1289
+ {
1290
+ "epoch": 0.43,
1291
+ "learning_rate": 0.00011566265060240964,
1292
+ "loss": 0.5362,
1293
+ "step": 214
1294
+ },
1295
+ {
1296
+ "epoch": 0.44,
1297
+ "learning_rate": 0.00011526104417670683,
1298
+ "loss": 0.53,
1299
+ "step": 215
1300
+ },
1301
+ {
1302
+ "epoch": 0.44,
1303
+ "learning_rate": 0.00011485943775100403,
1304
+ "loss": 0.6346,
1305
+ "step": 216
1306
+ },
1307
+ {
1308
+ "epoch": 0.44,
1309
+ "learning_rate": 0.0001144578313253012,
1310
+ "loss": 0.517,
1311
+ "step": 217
1312
+ },
1313
+ {
1314
+ "epoch": 0.44,
1315
+ "learning_rate": 0.0001140562248995984,
1316
+ "loss": 0.6743,
1317
+ "step": 218
1318
+ },
1319
+ {
1320
+ "epoch": 0.44,
1321
+ "learning_rate": 0.00011365461847389558,
1322
+ "loss": 0.5228,
1323
+ "step": 219
1324
+ },
1325
+ {
1326
+ "epoch": 0.45,
1327
+ "learning_rate": 0.00011325301204819279,
1328
+ "loss": 0.4498,
1329
+ "step": 220
1330
+ },
1331
+ {
1332
+ "epoch": 0.45,
1333
+ "learning_rate": 0.00011285140562248996,
1334
+ "loss": 0.3413,
1335
+ "step": 221
1336
+ },
1337
+ {
1338
+ "epoch": 0.45,
1339
+ "learning_rate": 0.00011244979919678715,
1340
+ "loss": 0.5713,
1341
+ "step": 222
1342
+ },
1343
+ {
1344
+ "epoch": 0.45,
1345
+ "learning_rate": 0.00011204819277108434,
1346
+ "loss": 0.3474,
1347
+ "step": 223
1348
+ },
1349
+ {
1350
+ "epoch": 0.45,
1351
+ "learning_rate": 0.00011164658634538152,
1352
+ "loss": 0.4452,
1353
+ "step": 224
1354
+ },
1355
+ {
1356
+ "epoch": 0.46,
1357
+ "learning_rate": 0.00011124497991967872,
1358
+ "loss": 0.5386,
1359
+ "step": 225
1360
+ },
1361
+ {
1362
+ "epoch": 0.46,
1363
+ "learning_rate": 0.00011084337349397591,
1364
+ "loss": 0.5245,
1365
+ "step": 226
1366
+ },
1367
+ {
1368
+ "epoch": 0.46,
1369
+ "learning_rate": 0.0001104417670682731,
1370
+ "loss": 0.5415,
1371
+ "step": 227
1372
+ },
1373
+ {
1374
+ "epoch": 0.46,
1375
+ "learning_rate": 0.00011004016064257027,
1376
+ "loss": 0.6118,
1377
+ "step": 228
1378
+ },
1379
+ {
1380
+ "epoch": 0.46,
1381
+ "learning_rate": 0.00010963855421686749,
1382
+ "loss": 0.5373,
1383
+ "step": 229
1384
+ },
1385
+ {
1386
+ "epoch": 0.47,
1387
+ "learning_rate": 0.00010923694779116467,
1388
+ "loss": 0.524,
1389
+ "step": 230
1390
+ },
1391
+ {
1392
+ "epoch": 0.47,
1393
+ "learning_rate": 0.00010883534136546186,
1394
+ "loss": 0.402,
1395
+ "step": 231
1396
+ },
1397
+ {
1398
+ "epoch": 0.47,
1399
+ "learning_rate": 0.00010843373493975903,
1400
+ "loss": 0.4581,
1401
+ "step": 232
1402
+ },
1403
+ {
1404
+ "epoch": 0.47,
1405
+ "learning_rate": 0.00010803212851405625,
1406
+ "loss": 0.585,
1407
+ "step": 233
1408
+ },
1409
+ {
1410
+ "epoch": 0.47,
1411
+ "learning_rate": 0.00010763052208835342,
1412
+ "loss": 0.4727,
1413
+ "step": 234
1414
+ },
1415
+ {
1416
+ "epoch": 0.48,
1417
+ "learning_rate": 0.00010722891566265061,
1418
+ "loss": 0.5338,
1419
+ "step": 235
1420
+ },
1421
+ {
1422
+ "epoch": 0.48,
1423
+ "learning_rate": 0.00010682730923694779,
1424
+ "loss": 0.4985,
1425
+ "step": 236
1426
+ },
1427
+ {
1428
+ "epoch": 0.48,
1429
+ "learning_rate": 0.00010642570281124498,
1430
+ "loss": 0.4611,
1431
+ "step": 237
1432
+ },
1433
+ {
1434
+ "epoch": 0.48,
1435
+ "learning_rate": 0.00010602409638554218,
1436
+ "loss": 0.5,
1437
+ "step": 238
1438
+ },
1439
+ {
1440
+ "epoch": 0.48,
1441
+ "learning_rate": 0.00010562248995983937,
1442
+ "loss": 0.4257,
1443
+ "step": 239
1444
+ },
1445
+ {
1446
+ "epoch": 0.49,
1447
+ "learning_rate": 0.00010522088353413654,
1448
+ "loss": 0.5235,
1449
+ "step": 240
1450
+ },
1451
+ {
1452
+ "epoch": 0.49,
1453
+ "learning_rate": 0.00010481927710843373,
1454
+ "loss": 0.4891,
1455
+ "step": 241
1456
+ },
1457
+ {
1458
+ "epoch": 0.49,
1459
+ "learning_rate": 0.00010441767068273094,
1460
+ "loss": 0.589,
1461
+ "step": 242
1462
+ },
1463
+ {
1464
+ "epoch": 0.49,
1465
+ "learning_rate": 0.00010401606425702813,
1466
+ "loss": 0.6157,
1467
+ "step": 243
1468
+ },
1469
+ {
1470
+ "epoch": 0.49,
1471
+ "learning_rate": 0.0001036144578313253,
1472
+ "loss": 0.4803,
1473
+ "step": 244
1474
+ },
1475
+ {
1476
+ "epoch": 0.5,
1477
+ "learning_rate": 0.00010321285140562249,
1478
+ "loss": 0.5102,
1479
+ "step": 245
1480
+ },
1481
+ {
1482
+ "epoch": 0.5,
1483
+ "learning_rate": 0.00010281124497991968,
1484
+ "loss": 0.5567,
1485
+ "step": 246
1486
+ },
1487
+ {
1488
+ "epoch": 0.5,
1489
+ "learning_rate": 0.00010240963855421688,
1490
+ "loss": 0.4538,
1491
+ "step": 247
1492
+ },
1493
+ {
1494
+ "epoch": 0.5,
1495
+ "learning_rate": 0.00010200803212851406,
1496
+ "loss": 0.4877,
1497
+ "step": 248
1498
+ },
1499
+ {
1500
+ "epoch": 0.51,
1501
+ "learning_rate": 0.00010160642570281125,
1502
+ "loss": 0.5516,
1503
+ "step": 249
1504
+ },
1505
+ {
1506
+ "epoch": 0.51,
1507
+ "learning_rate": 0.00010120481927710844,
1508
+ "loss": 0.4773,
1509
+ "step": 250
1510
+ },
1511
+ {
1512
+ "epoch": 0.51,
1513
+ "learning_rate": 0.00010080321285140564,
1514
+ "loss": 0.476,
1515
+ "step": 251
1516
+ },
1517
+ {
1518
+ "epoch": 0.51,
1519
+ "learning_rate": 0.00010040160642570282,
1520
+ "loss": 0.5584,
1521
+ "step": 252
1522
+ },
1523
+ {
1524
+ "epoch": 0.51,
1525
+ "learning_rate": 0.0001,
1526
+ "loss": 0.4742,
1527
+ "step": 253
1528
+ },
1529
+ {
1530
+ "epoch": 0.52,
1531
+ "learning_rate": 9.95983935742972e-05,
1532
+ "loss": 0.4615,
1533
+ "step": 254
1534
+ },
1535
+ {
1536
+ "epoch": 0.52,
1537
+ "learning_rate": 9.919678714859438e-05,
1538
+ "loss": 0.4471,
1539
+ "step": 255
1540
+ },
1541
+ {
1542
+ "epoch": 0.52,
1543
+ "learning_rate": 9.879518072289157e-05,
1544
+ "loss": 0.4661,
1545
+ "step": 256
1546
+ },
1547
+ {
1548
+ "epoch": 0.52,
1549
+ "learning_rate": 9.839357429718876e-05,
1550
+ "loss": 0.3569,
1551
+ "step": 257
1552
+ },
1553
+ {
1554
+ "epoch": 0.52,
1555
+ "learning_rate": 9.799196787148595e-05,
1556
+ "loss": 0.4938,
1557
+ "step": 258
1558
+ },
1559
+ {
1560
+ "epoch": 0.53,
1561
+ "learning_rate": 9.759036144578314e-05,
1562
+ "loss": 0.5879,
1563
+ "step": 259
1564
+ },
1565
+ {
1566
+ "epoch": 0.53,
1567
+ "learning_rate": 9.718875502008033e-05,
1568
+ "loss": 0.493,
1569
+ "step": 260
1570
+ },
1571
+ {
1572
+ "epoch": 0.53,
1573
+ "learning_rate": 9.678714859437752e-05,
1574
+ "loss": 0.385,
1575
+ "step": 261
1576
+ },
1577
+ {
1578
+ "epoch": 0.53,
1579
+ "learning_rate": 9.638554216867471e-05,
1580
+ "loss": 0.485,
1581
+ "step": 262
1582
+ },
1583
+ {
1584
+ "epoch": 0.53,
1585
+ "learning_rate": 9.598393574297188e-05,
1586
+ "loss": 0.4833,
1587
+ "step": 263
1588
+ },
1589
+ {
1590
+ "epoch": 0.54,
1591
+ "learning_rate": 9.558232931726909e-05,
1592
+ "loss": 0.5572,
1593
+ "step": 264
1594
+ },
1595
+ {
1596
+ "epoch": 0.54,
1597
+ "learning_rate": 9.518072289156626e-05,
1598
+ "loss": 0.5039,
1599
+ "step": 265
1600
+ },
1601
+ {
1602
+ "epoch": 0.54,
1603
+ "learning_rate": 9.477911646586346e-05,
1604
+ "loss": 0.5308,
1605
+ "step": 266
1606
+ },
1607
+ {
1608
+ "epoch": 0.54,
1609
+ "learning_rate": 9.437751004016064e-05,
1610
+ "loss": 0.3708,
1611
+ "step": 267
1612
+ },
1613
+ {
1614
+ "epoch": 0.54,
1615
+ "learning_rate": 9.397590361445784e-05,
1616
+ "loss": 0.4779,
1617
+ "step": 268
1618
+ },
1619
+ {
1620
+ "epoch": 0.55,
1621
+ "learning_rate": 9.357429718875502e-05,
1622
+ "loss": 0.4807,
1623
+ "step": 269
1624
+ },
1625
+ {
1626
+ "epoch": 0.55,
1627
+ "learning_rate": 9.317269076305222e-05,
1628
+ "loss": 0.5036,
1629
+ "step": 270
1630
+ },
1631
+ {
1632
+ "epoch": 0.55,
1633
+ "learning_rate": 9.27710843373494e-05,
1634
+ "loss": 0.5056,
1635
+ "step": 271
1636
+ },
1637
+ {
1638
+ "epoch": 0.55,
1639
+ "learning_rate": 9.23694779116466e-05,
1640
+ "loss": 0.5143,
1641
+ "step": 272
1642
+ },
1643
+ {
1644
+ "epoch": 0.55,
1645
+ "learning_rate": 9.196787148594378e-05,
1646
+ "loss": 0.5403,
1647
+ "step": 273
1648
+ },
1649
+ {
1650
+ "epoch": 0.56,
1651
+ "learning_rate": 9.156626506024096e-05,
1652
+ "loss": 0.4212,
1653
+ "step": 274
1654
+ },
1655
+ {
1656
+ "epoch": 0.56,
1657
+ "learning_rate": 9.116465863453815e-05,
1658
+ "loss": 0.4461,
1659
+ "step": 275
1660
+ },
1661
+ {
1662
+ "epoch": 0.56,
1663
+ "learning_rate": 9.076305220883534e-05,
1664
+ "loss": 0.4122,
1665
+ "step": 276
1666
+ },
1667
+ {
1668
+ "epoch": 0.56,
1669
+ "learning_rate": 9.036144578313253e-05,
1670
+ "loss": 0.4249,
1671
+ "step": 277
1672
+ },
1673
+ {
1674
+ "epoch": 0.56,
1675
+ "learning_rate": 8.995983935742972e-05,
1676
+ "loss": 0.4376,
1677
+ "step": 278
1678
+ },
1679
+ {
1680
+ "epoch": 0.57,
1681
+ "learning_rate": 8.955823293172691e-05,
1682
+ "loss": 0.5155,
1683
+ "step": 279
1684
+ },
1685
+ {
1686
+ "epoch": 0.57,
1687
+ "learning_rate": 8.91566265060241e-05,
1688
+ "loss": 0.4269,
1689
+ "step": 280
1690
+ },
1691
+ {
1692
+ "epoch": 0.57,
1693
+ "learning_rate": 8.875502008032129e-05,
1694
+ "loss": 0.5717,
1695
+ "step": 281
1696
+ },
1697
+ {
1698
+ "epoch": 0.57,
1699
+ "learning_rate": 8.835341365461848e-05,
1700
+ "loss": 0.5976,
1701
+ "step": 282
1702
+ },
1703
+ {
1704
+ "epoch": 0.57,
1705
+ "learning_rate": 8.795180722891567e-05,
1706
+ "loss": 0.3902,
1707
+ "step": 283
1708
+ },
1709
+ {
1710
+ "epoch": 0.58,
1711
+ "learning_rate": 8.755020080321286e-05,
1712
+ "loss": 0.543,
1713
+ "step": 284
1714
+ },
1715
+ {
1716
+ "epoch": 0.58,
1717
+ "learning_rate": 8.714859437751005e-05,
1718
+ "loss": 0.4176,
1719
+ "step": 285
1720
+ },
1721
+ {
1722
+ "epoch": 0.58,
1723
+ "learning_rate": 8.674698795180724e-05,
1724
+ "loss": 0.5327,
1725
+ "step": 286
1726
+ },
1727
+ {
1728
+ "epoch": 0.58,
1729
+ "learning_rate": 8.634538152610442e-05,
1730
+ "loss": 0.4426,
1731
+ "step": 287
1732
+ },
1733
+ {
1734
+ "epoch": 0.58,
1735
+ "learning_rate": 8.594377510040161e-05,
1736
+ "loss": 0.5193,
1737
+ "step": 288
1738
+ },
1739
+ {
1740
+ "epoch": 0.59,
1741
+ "learning_rate": 8.55421686746988e-05,
1742
+ "loss": 0.4712,
1743
+ "step": 289
1744
+ },
1745
+ {
1746
+ "epoch": 0.59,
1747
+ "learning_rate": 8.514056224899599e-05,
1748
+ "loss": 0.4665,
1749
+ "step": 290
1750
+ },
1751
+ {
1752
+ "epoch": 0.59,
1753
+ "learning_rate": 8.473895582329318e-05,
1754
+ "loss": 0.3824,
1755
+ "step": 291
1756
+ },
1757
+ {
1758
+ "epoch": 0.59,
1759
+ "learning_rate": 8.433734939759037e-05,
1760
+ "loss": 0.5133,
1761
+ "step": 292
1762
+ },
1763
+ {
1764
+ "epoch": 0.59,
1765
+ "learning_rate": 8.393574297188756e-05,
1766
+ "loss": 0.516,
1767
+ "step": 293
1768
+ },
1769
+ {
1770
+ "epoch": 0.6,
1771
+ "learning_rate": 8.353413654618474e-05,
1772
+ "loss": 0.4913,
1773
+ "step": 294
1774
+ },
1775
+ {
1776
+ "epoch": 0.6,
1777
+ "learning_rate": 8.313253012048194e-05,
1778
+ "loss": 0.486,
1779
+ "step": 295
1780
+ },
1781
+ {
1782
+ "epoch": 0.6,
1783
+ "learning_rate": 8.273092369477911e-05,
1784
+ "loss": 0.4943,
1785
+ "step": 296
1786
+ },
1787
+ {
1788
+ "epoch": 0.6,
1789
+ "learning_rate": 8.232931726907632e-05,
1790
+ "loss": 0.5291,
1791
+ "step": 297
1792
+ },
1793
+ {
1794
+ "epoch": 0.6,
1795
+ "learning_rate": 8.192771084337349e-05,
1796
+ "loss": 0.4005,
1797
+ "step": 298
1798
+ },
1799
+ {
1800
+ "epoch": 0.61,
1801
+ "learning_rate": 8.15261044176707e-05,
1802
+ "loss": 0.4921,
1803
+ "step": 299
1804
+ },
1805
+ {
1806
+ "epoch": 0.61,
1807
+ "learning_rate": 8.112449799196787e-05,
1808
+ "loss": 0.5235,
1809
+ "step": 300
1810
+ },
1811
+ {
1812
+ "epoch": 0.61,
1813
+ "learning_rate": 8.072289156626507e-05,
1814
+ "loss": 0.5263,
1815
+ "step": 301
1816
+ },
1817
+ {
1818
+ "epoch": 0.61,
1819
+ "learning_rate": 8.032128514056225e-05,
1820
+ "loss": 0.3585,
1821
+ "step": 302
1822
+ },
1823
+ {
1824
+ "epoch": 0.61,
1825
+ "learning_rate": 7.991967871485944e-05,
1826
+ "loss": 0.4826,
1827
+ "step": 303
1828
+ },
1829
+ {
1830
+ "epoch": 0.62,
1831
+ "learning_rate": 7.951807228915663e-05,
1832
+ "loss": 0.4486,
1833
+ "step": 304
1834
+ },
1835
+ {
1836
+ "epoch": 0.62,
1837
+ "learning_rate": 7.911646586345382e-05,
1838
+ "loss": 0.4879,
1839
+ "step": 305
1840
+ },
1841
+ {
1842
+ "epoch": 0.62,
1843
+ "learning_rate": 7.8714859437751e-05,
1844
+ "loss": 0.5017,
1845
+ "step": 306
1846
+ },
1847
+ {
1848
+ "epoch": 0.62,
1849
+ "learning_rate": 7.83132530120482e-05,
1850
+ "loss": 0.5536,
1851
+ "step": 307
1852
+ },
1853
+ {
1854
+ "epoch": 0.62,
1855
+ "learning_rate": 7.791164658634539e-05,
1856
+ "loss": 0.5105,
1857
+ "step": 308
1858
+ },
1859
+ {
1860
+ "epoch": 0.63,
1861
+ "learning_rate": 7.751004016064257e-05,
1862
+ "loss": 0.4379,
1863
+ "step": 309
1864
+ },
1865
+ {
1866
+ "epoch": 0.63,
1867
+ "learning_rate": 7.710843373493976e-05,
1868
+ "loss": 0.5182,
1869
+ "step": 310
1870
+ },
1871
+ {
1872
+ "epoch": 0.63,
1873
+ "learning_rate": 7.670682730923695e-05,
1874
+ "loss": 0.5573,
1875
+ "step": 311
1876
+ },
1877
+ {
1878
+ "epoch": 0.63,
1879
+ "learning_rate": 7.630522088353414e-05,
1880
+ "loss": 0.5426,
1881
+ "step": 312
1882
+ },
1883
+ {
1884
+ "epoch": 0.63,
1885
+ "learning_rate": 7.590361445783133e-05,
1886
+ "loss": 0.4325,
1887
+ "step": 313
1888
+ },
1889
+ {
1890
+ "epoch": 0.64,
1891
+ "learning_rate": 7.550200803212851e-05,
1892
+ "loss": 0.4559,
1893
+ "step": 314
1894
+ },
1895
+ {
1896
+ "epoch": 0.64,
1897
+ "learning_rate": 7.510040160642571e-05,
1898
+ "loss": 0.3663,
1899
+ "step": 315
1900
+ },
1901
+ {
1902
+ "epoch": 0.64,
1903
+ "learning_rate": 7.469879518072289e-05,
1904
+ "loss": 0.4276,
1905
+ "step": 316
1906
+ },
1907
+ {
1908
+ "epoch": 0.64,
1909
+ "learning_rate": 7.429718875502009e-05,
1910
+ "loss": 0.4663,
1911
+ "step": 317
1912
+ },
1913
+ {
1914
+ "epoch": 0.65,
1915
+ "learning_rate": 7.389558232931726e-05,
1916
+ "loss": 0.5068,
1917
+ "step": 318
1918
+ },
1919
+ {
1920
+ "epoch": 0.65,
1921
+ "learning_rate": 7.349397590361447e-05,
1922
+ "loss": 0.5,
1923
+ "step": 319
1924
+ },
1925
+ {
1926
+ "epoch": 0.65,
1927
+ "learning_rate": 7.309236947791164e-05,
1928
+ "loss": 0.431,
1929
+ "step": 320
1930
+ },
1931
+ {
1932
+ "epoch": 0.65,
1933
+ "learning_rate": 7.269076305220885e-05,
1934
+ "loss": 0.4133,
1935
+ "step": 321
1936
+ },
1937
+ {
1938
+ "epoch": 0.65,
1939
+ "learning_rate": 7.228915662650602e-05,
1940
+ "loss": 0.3705,
1941
+ "step": 322
1942
+ },
1943
+ {
1944
+ "epoch": 0.66,
1945
+ "learning_rate": 7.188755020080321e-05,
1946
+ "loss": 0.419,
1947
+ "step": 323
1948
+ },
1949
+ {
1950
+ "epoch": 0.66,
1951
+ "learning_rate": 7.14859437751004e-05,
1952
+ "loss": 0.5409,
1953
+ "step": 324
1954
+ },
1955
+ {
1956
+ "epoch": 0.66,
1957
+ "learning_rate": 7.108433734939759e-05,
1958
+ "loss": 0.5186,
1959
+ "step": 325
1960
+ },
1961
+ {
1962
+ "epoch": 0.66,
1963
+ "learning_rate": 7.068273092369478e-05,
1964
+ "loss": 0.438,
1965
+ "step": 326
1966
+ },
1967
+ {
1968
+ "epoch": 0.66,
1969
+ "learning_rate": 7.028112449799197e-05,
1970
+ "loss": 0.4709,
1971
+ "step": 327
1972
+ },
1973
+ {
1974
+ "epoch": 0.67,
1975
+ "learning_rate": 6.987951807228917e-05,
1976
+ "loss": 0.3494,
1977
+ "step": 328
1978
+ },
1979
+ {
1980
+ "epoch": 0.67,
1981
+ "learning_rate": 6.947791164658635e-05,
1982
+ "loss": 0.4782,
1983
+ "step": 329
1984
+ },
1985
+ {
1986
+ "epoch": 0.67,
1987
+ "learning_rate": 6.907630522088355e-05,
1988
+ "loss": 0.4365,
1989
+ "step": 330
1990
+ },
1991
+ {
1992
+ "epoch": 0.67,
1993
+ "learning_rate": 6.867469879518072e-05,
1994
+ "loss": 0.4108,
1995
+ "step": 331
1996
+ },
1997
+ {
1998
+ "epoch": 0.67,
1999
+ "learning_rate": 6.827309236947793e-05,
2000
+ "loss": 0.429,
2001
+ "step": 332
2002
+ },
2003
+ {
2004
+ "epoch": 0.68,
2005
+ "learning_rate": 6.78714859437751e-05,
2006
+ "loss": 0.3968,
2007
+ "step": 333
2008
+ },
2009
+ {
2010
+ "epoch": 0.68,
2011
+ "learning_rate": 6.746987951807229e-05,
2012
+ "loss": 0.5652,
2013
+ "step": 334
2014
+ },
2015
+ {
2016
+ "epoch": 0.68,
2017
+ "learning_rate": 6.706827309236948e-05,
2018
+ "loss": 0.435,
2019
+ "step": 335
2020
+ },
2021
+ {
2022
+ "epoch": 0.68,
2023
+ "learning_rate": 6.666666666666667e-05,
2024
+ "loss": 0.3639,
2025
+ "step": 336
2026
+ },
2027
+ {
2028
+ "epoch": 0.68,
2029
+ "learning_rate": 6.626506024096386e-05,
2030
+ "loss": 0.4134,
2031
+ "step": 337
2032
+ },
2033
+ {
2034
+ "epoch": 0.69,
2035
+ "learning_rate": 6.586345381526105e-05,
2036
+ "loss": 0.5979,
2037
+ "step": 338
2038
+ },
2039
+ {
2040
+ "epoch": 0.69,
2041
+ "learning_rate": 6.546184738955824e-05,
2042
+ "loss": 0.4856,
2043
+ "step": 339
2044
+ },
2045
+ {
2046
+ "epoch": 0.69,
2047
+ "learning_rate": 6.506024096385543e-05,
2048
+ "loss": 0.4834,
2049
+ "step": 340
2050
+ },
2051
+ {
2052
+ "epoch": 0.69,
2053
+ "learning_rate": 6.465863453815262e-05,
2054
+ "loss": 0.5589,
2055
+ "step": 341
2056
+ },
2057
+ {
2058
+ "epoch": 0.69,
2059
+ "learning_rate": 6.42570281124498e-05,
2060
+ "loss": 0.4846,
2061
+ "step": 342
2062
+ },
2063
+ {
2064
+ "epoch": 0.7,
2065
+ "learning_rate": 6.385542168674698e-05,
2066
+ "loss": 0.3595,
2067
+ "step": 343
2068
+ },
2069
+ {
2070
+ "epoch": 0.7,
2071
+ "learning_rate": 6.345381526104418e-05,
2072
+ "loss": 0.4102,
2073
+ "step": 344
2074
+ },
2075
+ {
2076
+ "epoch": 0.7,
2077
+ "learning_rate": 6.305220883534136e-05,
2078
+ "loss": 0.3999,
2079
+ "step": 345
2080
+ },
2081
+ {
2082
+ "epoch": 0.7,
2083
+ "learning_rate": 6.265060240963856e-05,
2084
+ "loss": 0.3772,
2085
+ "step": 346
2086
+ },
2087
+ {
2088
+ "epoch": 0.7,
2089
+ "learning_rate": 6.224899598393574e-05,
2090
+ "loss": 0.4575,
2091
+ "step": 347
2092
+ },
2093
+ {
2094
+ "epoch": 0.71,
2095
+ "learning_rate": 6.184738955823294e-05,
2096
+ "loss": 0.4095,
2097
+ "step": 348
2098
+ },
2099
+ {
2100
+ "epoch": 0.71,
2101
+ "learning_rate": 6.144578313253012e-05,
2102
+ "loss": 0.4449,
2103
+ "step": 349
2104
+ },
2105
+ {
2106
+ "epoch": 0.71,
2107
+ "learning_rate": 6.104417670682732e-05,
2108
+ "loss": 0.5009,
2109
+ "step": 350
2110
+ },
2111
+ {
2112
+ "epoch": 0.71,
2113
+ "learning_rate": 6.06425702811245e-05,
2114
+ "loss": 0.3336,
2115
+ "step": 351
2116
+ },
2117
+ {
2118
+ "epoch": 0.71,
2119
+ "learning_rate": 6.02409638554217e-05,
2120
+ "loss": 0.4671,
2121
+ "step": 352
2122
+ },
2123
+ {
2124
+ "epoch": 0.72,
2125
+ "learning_rate": 5.983935742971888e-05,
2126
+ "loss": 0.4137,
2127
+ "step": 353
2128
+ },
2129
+ {
2130
+ "epoch": 0.72,
2131
+ "learning_rate": 5.943775100401606e-05,
2132
+ "loss": 0.5014,
2133
+ "step": 354
2134
+ },
2135
+ {
2136
+ "epoch": 0.72,
2137
+ "learning_rate": 5.903614457831326e-05,
2138
+ "loss": 0.557,
2139
+ "step": 355
2140
+ },
2141
+ {
2142
+ "epoch": 0.72,
2143
+ "learning_rate": 5.863453815261044e-05,
2144
+ "loss": 0.5651,
2145
+ "step": 356
2146
+ },
2147
+ {
2148
+ "epoch": 0.72,
2149
+ "learning_rate": 5.823293172690764e-05,
2150
+ "loss": 0.5723,
2151
+ "step": 357
2152
+ },
2153
+ {
2154
+ "epoch": 0.73,
2155
+ "learning_rate": 5.783132530120482e-05,
2156
+ "loss": 0.559,
2157
+ "step": 358
2158
+ },
2159
+ {
2160
+ "epoch": 0.73,
2161
+ "learning_rate": 5.7429718875502015e-05,
2162
+ "loss": 0.4025,
2163
+ "step": 359
2164
+ },
2165
+ {
2166
+ "epoch": 0.73,
2167
+ "learning_rate": 5.70281124497992e-05,
2168
+ "loss": 0.4925,
2169
+ "step": 360
2170
+ },
2171
+ {
2172
+ "epoch": 0.73,
2173
+ "learning_rate": 5.6626506024096394e-05,
2174
+ "loss": 0.377,
2175
+ "step": 361
2176
+ },
2177
+ {
2178
+ "epoch": 0.73,
2179
+ "learning_rate": 5.6224899598393576e-05,
2180
+ "loss": 0.2866,
2181
+ "step": 362
2182
+ },
2183
+ {
2184
+ "epoch": 0.74,
2185
+ "learning_rate": 5.582329317269076e-05,
2186
+ "loss": 0.5416,
2187
+ "step": 363
2188
+ },
2189
+ {
2190
+ "epoch": 0.74,
2191
+ "learning_rate": 5.5421686746987955e-05,
2192
+ "loss": 0.487,
2193
+ "step": 364
2194
+ },
2195
+ {
2196
+ "epoch": 0.74,
2197
+ "learning_rate": 5.502008032128514e-05,
2198
+ "loss": 0.417,
2199
+ "step": 365
2200
+ },
2201
+ {
2202
+ "epoch": 0.74,
2203
+ "learning_rate": 5.461847389558233e-05,
2204
+ "loss": 0.4206,
2205
+ "step": 366
2206
+ },
2207
+ {
2208
+ "epoch": 0.74,
2209
+ "learning_rate": 5.4216867469879516e-05,
2210
+ "loss": 0.4299,
2211
+ "step": 367
2212
+ },
2213
+ {
2214
+ "epoch": 0.75,
2215
+ "learning_rate": 5.381526104417671e-05,
2216
+ "loss": 0.5043,
2217
+ "step": 368
2218
+ },
2219
+ {
2220
+ "epoch": 0.75,
2221
+ "learning_rate": 5.3413654618473894e-05,
2222
+ "loss": 0.3499,
2223
+ "step": 369
2224
+ },
2225
+ {
2226
+ "epoch": 0.75,
2227
+ "learning_rate": 5.301204819277109e-05,
2228
+ "loss": 0.3456,
2229
+ "step": 370
2230
+ },
2231
+ {
2232
+ "epoch": 0.75,
2233
+ "learning_rate": 5.261044176706827e-05,
2234
+ "loss": 0.3828,
2235
+ "step": 371
2236
+ },
2237
+ {
2238
+ "epoch": 0.75,
2239
+ "learning_rate": 5.220883534136547e-05,
2240
+ "loss": 0.4296,
2241
+ "step": 372
2242
+ },
2243
+ {
2244
+ "epoch": 0.76,
2245
+ "learning_rate": 5.180722891566265e-05,
2246
+ "loss": 0.3614,
2247
+ "step": 373
2248
+ },
2249
+ {
2250
+ "epoch": 0.76,
2251
+ "learning_rate": 5.140562248995984e-05,
2252
+ "loss": 0.5085,
2253
+ "step": 374
2254
+ },
2255
+ {
2256
+ "epoch": 0.76,
2257
+ "learning_rate": 5.100401606425703e-05,
2258
+ "loss": 0.4497,
2259
+ "step": 375
2260
+ },
2261
+ {
2262
+ "epoch": 0.76,
2263
+ "learning_rate": 5.060240963855422e-05,
2264
+ "loss": 0.4421,
2265
+ "step": 376
2266
+ },
2267
+ {
2268
+ "epoch": 0.76,
2269
+ "learning_rate": 5.020080321285141e-05,
2270
+ "loss": 0.411,
2271
+ "step": 377
2272
+ },
2273
+ {
2274
+ "epoch": 0.77,
2275
+ "learning_rate": 4.97991967871486e-05,
2276
+ "loss": 0.4727,
2277
+ "step": 378
2278
+ },
2279
+ {
2280
+ "epoch": 0.77,
2281
+ "learning_rate": 4.9397590361445786e-05,
2282
+ "loss": 0.4739,
2283
+ "step": 379
2284
+ },
2285
+ {
2286
+ "epoch": 0.77,
2287
+ "learning_rate": 4.8995983935742975e-05,
2288
+ "loss": 0.5005,
2289
+ "step": 380
2290
+ },
2291
+ {
2292
+ "epoch": 0.77,
2293
+ "learning_rate": 4.8594377510040165e-05,
2294
+ "loss": 0.4776,
2295
+ "step": 381
2296
+ },
2297
+ {
2298
+ "epoch": 0.77,
2299
+ "learning_rate": 4.8192771084337354e-05,
2300
+ "loss": 0.4337,
2301
+ "step": 382
2302
+ },
2303
+ {
2304
+ "epoch": 0.78,
2305
+ "learning_rate": 4.779116465863454e-05,
2306
+ "loss": 0.3575,
2307
+ "step": 383
2308
+ },
2309
+ {
2310
+ "epoch": 0.78,
2311
+ "learning_rate": 4.738955823293173e-05,
2312
+ "loss": 0.5325,
2313
+ "step": 384
2314
+ },
2315
+ {
2316
+ "epoch": 0.78,
2317
+ "learning_rate": 4.698795180722892e-05,
2318
+ "loss": 0.4765,
2319
+ "step": 385
2320
+ },
2321
+ {
2322
+ "epoch": 0.78,
2323
+ "learning_rate": 4.658634538152611e-05,
2324
+ "loss": 0.4794,
2325
+ "step": 386
2326
+ },
2327
+ {
2328
+ "epoch": 0.78,
2329
+ "learning_rate": 4.61847389558233e-05,
2330
+ "loss": 0.5106,
2331
+ "step": 387
2332
+ },
2333
+ {
2334
+ "epoch": 0.79,
2335
+ "learning_rate": 4.578313253012048e-05,
2336
+ "loss": 0.3883,
2337
+ "step": 388
2338
+ },
2339
+ {
2340
+ "epoch": 0.79,
2341
+ "learning_rate": 4.538152610441767e-05,
2342
+ "loss": 0.4342,
2343
+ "step": 389
2344
+ },
2345
+ {
2346
+ "epoch": 0.79,
2347
+ "learning_rate": 4.497991967871486e-05,
2348
+ "loss": 0.4893,
2349
+ "step": 390
2350
+ },
2351
+ {
2352
+ "epoch": 0.79,
2353
+ "learning_rate": 4.457831325301205e-05,
2354
+ "loss": 0.4752,
2355
+ "step": 391
2356
+ },
2357
+ {
2358
+ "epoch": 0.8,
2359
+ "learning_rate": 4.417670682730924e-05,
2360
+ "loss": 0.4855,
2361
+ "step": 392
2362
+ },
2363
+ {
2364
+ "epoch": 0.8,
2365
+ "learning_rate": 4.377510040160643e-05,
2366
+ "loss": 0.4693,
2367
+ "step": 393
2368
+ },
2369
+ {
2370
+ "epoch": 0.8,
2371
+ "learning_rate": 4.337349397590362e-05,
2372
+ "loss": 0.3851,
2373
+ "step": 394
2374
+ },
2375
+ {
2376
+ "epoch": 0.8,
2377
+ "learning_rate": 4.297188755020081e-05,
2378
+ "loss": 0.5259,
2379
+ "step": 395
2380
+ },
2381
+ {
2382
+ "epoch": 0.8,
2383
+ "learning_rate": 4.2570281124497996e-05,
2384
+ "loss": 0.476,
2385
+ "step": 396
2386
+ },
2387
+ {
2388
+ "epoch": 0.81,
2389
+ "learning_rate": 4.2168674698795186e-05,
2390
+ "loss": 0.4004,
2391
+ "step": 397
2392
+ },
2393
+ {
2394
+ "epoch": 0.81,
2395
+ "learning_rate": 4.176706827309237e-05,
2396
+ "loss": 0.4326,
2397
+ "step": 398
2398
+ },
2399
+ {
2400
+ "epoch": 0.81,
2401
+ "learning_rate": 4.136546184738956e-05,
2402
+ "loss": 0.423,
2403
+ "step": 399
2404
+ },
2405
+ {
2406
+ "epoch": 0.81,
2407
+ "learning_rate": 4.0963855421686746e-05,
2408
+ "loss": 0.4768,
2409
+ "step": 400
2410
+ },
2411
+ {
2412
+ "epoch": 0.81,
2413
+ "learning_rate": 4.0562248995983936e-05,
2414
+ "loss": 0.5186,
2415
+ "step": 401
2416
+ },
2417
+ {
2418
+ "epoch": 0.82,
2419
+ "learning_rate": 4.0160642570281125e-05,
2420
+ "loss": 0.495,
2421
+ "step": 402
2422
+ },
2423
+ {
2424
+ "epoch": 0.82,
2425
+ "learning_rate": 3.9759036144578314e-05,
2426
+ "loss": 0.3834,
2427
+ "step": 403
2428
+ },
2429
+ {
2430
+ "epoch": 0.82,
2431
+ "learning_rate": 3.93574297188755e-05,
2432
+ "loss": 0.3187,
2433
+ "step": 404
2434
+ },
2435
+ {
2436
+ "epoch": 0.82,
2437
+ "learning_rate": 3.895582329317269e-05,
2438
+ "loss": 0.4442,
2439
+ "step": 405
2440
+ },
2441
+ {
2442
+ "epoch": 0.82,
2443
+ "learning_rate": 3.855421686746988e-05,
2444
+ "loss": 0.4514,
2445
+ "step": 406
2446
+ },
2447
+ {
2448
+ "epoch": 0.83,
2449
+ "learning_rate": 3.815261044176707e-05,
2450
+ "loss": 0.4302,
2451
+ "step": 407
2452
+ },
2453
+ {
2454
+ "epoch": 0.83,
2455
+ "learning_rate": 3.7751004016064253e-05,
2456
+ "loss": 0.4411,
2457
+ "step": 408
2458
+ },
2459
+ {
2460
+ "epoch": 0.83,
2461
+ "learning_rate": 3.734939759036144e-05,
2462
+ "loss": 0.5643,
2463
+ "step": 409
2464
+ },
2465
+ {
2466
+ "epoch": 0.83,
2467
+ "learning_rate": 3.694779116465863e-05,
2468
+ "loss": 0.4168,
2469
+ "step": 410
2470
+ },
2471
+ {
2472
+ "epoch": 0.83,
2473
+ "learning_rate": 3.654618473895582e-05,
2474
+ "loss": 0.5073,
2475
+ "step": 411
2476
+ },
2477
+ {
2478
+ "epoch": 0.84,
2479
+ "learning_rate": 3.614457831325301e-05,
2480
+ "loss": 0.5055,
2481
+ "step": 412
2482
+ },
2483
+ {
2484
+ "epoch": 0.84,
2485
+ "learning_rate": 3.57429718875502e-05,
2486
+ "loss": 0.451,
2487
+ "step": 413
2488
+ },
2489
+ {
2490
+ "epoch": 0.84,
2491
+ "learning_rate": 3.534136546184739e-05,
2492
+ "loss": 0.529,
2493
+ "step": 414
2494
+ },
2495
+ {
2496
+ "epoch": 0.84,
2497
+ "learning_rate": 3.4939759036144585e-05,
2498
+ "loss": 0.4821,
2499
+ "step": 415
2500
+ },
2501
+ {
2502
+ "epoch": 0.84,
2503
+ "learning_rate": 3.4538152610441774e-05,
2504
+ "loss": 0.4862,
2505
+ "step": 416
2506
+ },
2507
+ {
2508
+ "epoch": 0.85,
2509
+ "learning_rate": 3.413654618473896e-05,
2510
+ "loss": 0.4247,
2511
+ "step": 417
2512
+ },
2513
+ {
2514
+ "epoch": 0.85,
2515
+ "learning_rate": 3.3734939759036146e-05,
2516
+ "loss": 0.4721,
2517
+ "step": 418
2518
+ },
2519
+ {
2520
+ "epoch": 0.85,
2521
+ "learning_rate": 3.3333333333333335e-05,
2522
+ "loss": 0.4703,
2523
+ "step": 419
2524
+ },
2525
+ {
2526
+ "epoch": 0.85,
2527
+ "learning_rate": 3.2931726907630524e-05,
2528
+ "loss": 0.3788,
2529
+ "step": 420
2530
+ },
2531
+ {
2532
+ "epoch": 0.85,
2533
+ "learning_rate": 3.253012048192771e-05,
2534
+ "loss": 0.4845,
2535
+ "step": 421
2536
+ },
2537
+ {
2538
+ "epoch": 0.86,
2539
+ "learning_rate": 3.21285140562249e-05,
2540
+ "loss": 0.3343,
2541
+ "step": 422
2542
+ },
2543
+ {
2544
+ "epoch": 0.86,
2545
+ "learning_rate": 3.172690763052209e-05,
2546
+ "loss": 0.498,
2547
+ "step": 423
2548
+ },
2549
+ {
2550
+ "epoch": 0.86,
2551
+ "learning_rate": 3.132530120481928e-05,
2552
+ "loss": 0.5233,
2553
+ "step": 424
2554
+ },
2555
+ {
2556
+ "epoch": 0.86,
2557
+ "learning_rate": 3.092369477911647e-05,
2558
+ "loss": 0.4114,
2559
+ "step": 425
2560
+ },
2561
+ {
2562
+ "epoch": 0.86,
2563
+ "learning_rate": 3.052208835341366e-05,
2564
+ "loss": 0.5315,
2565
+ "step": 426
2566
+ },
2567
+ {
2568
+ "epoch": 0.87,
2569
+ "learning_rate": 3.012048192771085e-05,
2570
+ "loss": 0.4946,
2571
+ "step": 427
2572
+ },
2573
+ {
2574
+ "epoch": 0.87,
2575
+ "learning_rate": 2.971887550200803e-05,
2576
+ "loss": 0.4793,
2577
+ "step": 428
2578
+ },
2579
+ {
2580
+ "epoch": 0.87,
2581
+ "learning_rate": 2.931726907630522e-05,
2582
+ "loss": 0.4833,
2583
+ "step": 429
2584
+ },
2585
+ {
2586
+ "epoch": 0.87,
2587
+ "learning_rate": 2.891566265060241e-05,
2588
+ "loss": 0.5622,
2589
+ "step": 430
2590
+ },
2591
+ {
2592
+ "epoch": 0.87,
2593
+ "learning_rate": 2.85140562248996e-05,
2594
+ "loss": 0.609,
2595
+ "step": 431
2596
+ },
2597
+ {
2598
+ "epoch": 0.88,
2599
+ "learning_rate": 2.8112449799196788e-05,
2600
+ "loss": 0.4482,
2601
+ "step": 432
2602
+ },
2603
+ {
2604
+ "epoch": 0.88,
2605
+ "learning_rate": 2.7710843373493977e-05,
2606
+ "loss": 0.4253,
2607
+ "step": 433
2608
+ },
2609
+ {
2610
+ "epoch": 0.88,
2611
+ "learning_rate": 2.7309236947791167e-05,
2612
+ "loss": 0.3964,
2613
+ "step": 434
2614
+ },
2615
+ {
2616
+ "epoch": 0.88,
2617
+ "learning_rate": 2.6907630522088356e-05,
2618
+ "loss": 0.4911,
2619
+ "step": 435
2620
+ },
2621
+ {
2622
+ "epoch": 0.88,
2623
+ "learning_rate": 2.6506024096385545e-05,
2624
+ "loss": 0.5473,
2625
+ "step": 436
2626
+ },
2627
+ {
2628
+ "epoch": 0.89,
2629
+ "learning_rate": 2.6104417670682734e-05,
2630
+ "loss": 0.4132,
2631
+ "step": 437
2632
+ },
2633
+ {
2634
+ "epoch": 0.89,
2635
+ "learning_rate": 2.570281124497992e-05,
2636
+ "loss": 0.4096,
2637
+ "step": 438
2638
+ },
2639
+ {
2640
+ "epoch": 0.89,
2641
+ "learning_rate": 2.530120481927711e-05,
2642
+ "loss": 0.3632,
2643
+ "step": 439
2644
+ },
2645
+ {
2646
+ "epoch": 0.89,
2647
+ "learning_rate": 2.48995983935743e-05,
2648
+ "loss": 0.4207,
2649
+ "step": 440
2650
+ },
2651
+ {
2652
+ "epoch": 0.89,
2653
+ "learning_rate": 2.4497991967871488e-05,
2654
+ "loss": 0.4925,
2655
+ "step": 441
2656
+ },
2657
+ {
2658
+ "epoch": 0.9,
2659
+ "learning_rate": 2.4096385542168677e-05,
2660
+ "loss": 0.3735,
2661
+ "step": 442
2662
+ },
2663
+ {
2664
+ "epoch": 0.9,
2665
+ "learning_rate": 2.3694779116465866e-05,
2666
+ "loss": 0.5045,
2667
+ "step": 443
2668
+ },
2669
+ {
2670
+ "epoch": 0.9,
2671
+ "learning_rate": 2.3293172690763055e-05,
2672
+ "loss": 0.4654,
2673
+ "step": 444
2674
+ },
2675
+ {
2676
+ "epoch": 0.9,
2677
+ "learning_rate": 2.289156626506024e-05,
2678
+ "loss": 0.4929,
2679
+ "step": 445
2680
+ },
2681
+ {
2682
+ "epoch": 0.9,
2683
+ "learning_rate": 2.248995983935743e-05,
2684
+ "loss": 0.4846,
2685
+ "step": 446
2686
+ },
2687
+ {
2688
+ "epoch": 0.91,
2689
+ "learning_rate": 2.208835341365462e-05,
2690
+ "loss": 0.4246,
2691
+ "step": 447
2692
+ },
2693
+ {
2694
+ "epoch": 0.91,
2695
+ "learning_rate": 2.168674698795181e-05,
2696
+ "loss": 0.5278,
2697
+ "step": 448
2698
+ },
2699
+ {
2700
+ "epoch": 0.91,
2701
+ "learning_rate": 2.1285140562248998e-05,
2702
+ "loss": 0.4004,
2703
+ "step": 449
2704
+ },
2705
+ {
2706
+ "epoch": 0.91,
2707
+ "learning_rate": 2.0883534136546184e-05,
2708
+ "loss": 0.4441,
2709
+ "step": 450
2710
+ },
2711
+ {
2712
+ "epoch": 0.91,
2713
+ "learning_rate": 2.0481927710843373e-05,
2714
+ "loss": 0.4555,
2715
+ "step": 451
2716
+ },
2717
+ {
2718
+ "epoch": 0.92,
2719
+ "learning_rate": 2.0080321285140562e-05,
2720
+ "loss": 0.3512,
2721
+ "step": 452
2722
+ },
2723
+ {
2724
+ "epoch": 0.92,
2725
+ "learning_rate": 1.967871485943775e-05,
2726
+ "loss": 0.4559,
2727
+ "step": 453
2728
+ },
2729
+ {
2730
+ "epoch": 0.92,
2731
+ "learning_rate": 1.927710843373494e-05,
2732
+ "loss": 0.4225,
2733
+ "step": 454
2734
+ },
2735
+ {
2736
+ "epoch": 0.92,
2737
+ "learning_rate": 1.8875502008032127e-05,
2738
+ "loss": 0.483,
2739
+ "step": 455
2740
+ },
2741
+ {
2742
+ "epoch": 0.92,
2743
+ "learning_rate": 1.8473895582329316e-05,
2744
+ "loss": 0.4765,
2745
+ "step": 456
2746
+ },
2747
+ {
2748
+ "epoch": 0.93,
2749
+ "learning_rate": 1.8072289156626505e-05,
2750
+ "loss": 0.604,
2751
+ "step": 457
2752
+ },
2753
+ {
2754
+ "epoch": 0.93,
2755
+ "learning_rate": 1.7670682730923694e-05,
2756
+ "loss": 0.4636,
2757
+ "step": 458
2758
+ },
2759
+ {
2760
+ "epoch": 0.93,
2761
+ "learning_rate": 1.7269076305220887e-05,
2762
+ "loss": 0.4905,
2763
+ "step": 459
2764
+ },
2765
+ {
2766
+ "epoch": 0.93,
2767
+ "learning_rate": 1.6867469879518073e-05,
2768
+ "loss": 0.4039,
2769
+ "step": 460
2770
+ },
2771
+ {
2772
+ "epoch": 0.94,
2773
+ "learning_rate": 1.6465863453815262e-05,
2774
+ "loss": 0.3915,
2775
+ "step": 461
2776
+ },
2777
+ {
2778
+ "epoch": 0.94,
2779
+ "learning_rate": 1.606425702811245e-05,
2780
+ "loss": 0.3922,
2781
+ "step": 462
2782
+ },
2783
+ {
2784
+ "epoch": 0.94,
2785
+ "learning_rate": 1.566265060240964e-05,
2786
+ "loss": 0.579,
2787
+ "step": 463
2788
+ },
2789
+ {
2790
+ "epoch": 0.94,
2791
+ "learning_rate": 1.526104417670683e-05,
2792
+ "loss": 0.3441,
2793
+ "step": 464
2794
+ },
2795
+ {
2796
+ "epoch": 0.94,
2797
+ "learning_rate": 1.4859437751004016e-05,
2798
+ "loss": 0.4649,
2799
+ "step": 465
2800
+ },
2801
+ {
2802
+ "epoch": 0.95,
2803
+ "learning_rate": 1.4457831325301205e-05,
2804
+ "loss": 0.4807,
2805
+ "step": 466
2806
+ },
2807
+ {
2808
+ "epoch": 0.95,
2809
+ "learning_rate": 1.4056224899598394e-05,
2810
+ "loss": 0.4659,
2811
+ "step": 467
2812
+ },
2813
+ {
2814
+ "epoch": 0.95,
2815
+ "learning_rate": 1.3654618473895583e-05,
2816
+ "loss": 0.2945,
2817
+ "step": 468
2818
+ },
2819
+ {
2820
+ "epoch": 0.95,
2821
+ "learning_rate": 1.3253012048192772e-05,
2822
+ "loss": 0.4214,
2823
+ "step": 469
2824
+ },
2825
+ {
2826
+ "epoch": 0.95,
2827
+ "learning_rate": 1.285140562248996e-05,
2828
+ "loss": 0.4886,
2829
+ "step": 470
2830
+ },
2831
+ {
2832
+ "epoch": 0.96,
2833
+ "learning_rate": 1.244979919678715e-05,
2834
+ "loss": 0.5413,
2835
+ "step": 471
2836
+ },
2837
+ {
2838
+ "epoch": 0.96,
2839
+ "learning_rate": 1.2048192771084338e-05,
2840
+ "loss": 0.4392,
2841
+ "step": 472
2842
+ },
2843
+ {
2844
+ "epoch": 0.96,
2845
+ "learning_rate": 1.1646586345381528e-05,
2846
+ "loss": 0.5799,
2847
+ "step": 473
2848
+ },
2849
+ {
2850
+ "epoch": 0.96,
2851
+ "learning_rate": 1.1244979919678715e-05,
2852
+ "loss": 0.4651,
2853
+ "step": 474
2854
+ },
2855
+ {
2856
+ "epoch": 0.96,
2857
+ "learning_rate": 1.0843373493975904e-05,
2858
+ "loss": 0.4336,
2859
+ "step": 475
2860
+ },
2861
+ {
2862
+ "epoch": 0.97,
2863
+ "learning_rate": 1.0441767068273092e-05,
2864
+ "loss": 0.6531,
2865
+ "step": 476
2866
+ },
2867
+ {
2868
+ "epoch": 0.97,
2869
+ "learning_rate": 1.0040160642570281e-05,
2870
+ "loss": 0.4463,
2871
+ "step": 477
2872
+ },
2873
+ {
2874
+ "epoch": 0.97,
2875
+ "learning_rate": 9.63855421686747e-06,
2876
+ "loss": 0.3375,
2877
+ "step": 478
2878
+ },
2879
+ {
2880
+ "epoch": 0.97,
2881
+ "learning_rate": 9.236947791164658e-06,
2882
+ "loss": 0.3812,
2883
+ "step": 479
2884
+ },
2885
+ {
2886
+ "epoch": 0.97,
2887
+ "learning_rate": 8.835341365461847e-06,
2888
+ "loss": 0.3803,
2889
+ "step": 480
2890
+ },
2891
+ {
2892
+ "epoch": 0.98,
2893
+ "learning_rate": 8.433734939759036e-06,
2894
+ "loss": 0.5742,
2895
+ "step": 481
2896
+ },
2897
+ {
2898
+ "epoch": 0.98,
2899
+ "learning_rate": 8.032128514056226e-06,
2900
+ "loss": 0.4986,
2901
+ "step": 482
2902
+ },
2903
+ {
2904
+ "epoch": 0.98,
2905
+ "learning_rate": 7.630522088353415e-06,
2906
+ "loss": 0.3414,
2907
+ "step": 483
2908
+ },
2909
+ {
2910
+ "epoch": 0.98,
2911
+ "learning_rate": 7.228915662650602e-06,
2912
+ "loss": 0.3588,
2913
+ "step": 484
2914
+ },
2915
+ {
2916
+ "epoch": 0.98,
2917
+ "learning_rate": 6.827309236947792e-06,
2918
+ "loss": 0.4386,
2919
+ "step": 485
2920
+ },
2921
+ {
2922
+ "epoch": 0.99,
2923
+ "learning_rate": 6.42570281124498e-06,
2924
+ "loss": 0.35,
2925
+ "step": 486
2926
+ },
2927
+ {
2928
+ "epoch": 0.99,
2929
+ "learning_rate": 6.024096385542169e-06,
2930
+ "loss": 0.3784,
2931
+ "step": 487
2932
+ },
2933
+ {
2934
+ "epoch": 0.99,
2935
+ "learning_rate": 5.622489959839358e-06,
2936
+ "loss": 0.4395,
2937
+ "step": 488
2938
+ },
2939
+ {
2940
+ "epoch": 0.99,
2941
+ "learning_rate": 5.220883534136546e-06,
2942
+ "loss": 0.4529,
2943
+ "step": 489
2944
+ },
2945
+ {
2946
+ "epoch": 0.99,
2947
+ "learning_rate": 4.819277108433735e-06,
2948
+ "loss": 0.3706,
2949
+ "step": 490
2950
+ },
2951
+ {
2952
+ "epoch": 1.0,
2953
+ "learning_rate": 4.417670682730924e-06,
2954
+ "loss": 0.4192,
2955
+ "step": 491
2956
+ },
2957
+ {
2958
+ "epoch": 1.0,
2959
+ "learning_rate": 4.016064257028113e-06,
2960
+ "loss": 0.4437,
2961
+ "step": 492
2962
+ },
2963
+ {
2964
+ "epoch": 1.0,
2965
+ "learning_rate": 3.614457831325301e-06,
2966
+ "loss": 0.4391,
2967
+ "step": 493
2968
+ }
2969
+ ],
2970
+ "logging_steps": 1,
2971
+ "max_steps": 500,
2972
+ "num_input_tokens_seen": 0,
2973
+ "num_train_epochs": 2,
2974
+ "save_steps": 500,
2975
+ "total_flos": 418467312304128.0,
2976
+ "train_batch_size": 1,
2977
+ "trial_name": null,
2978
+ "trial_params": null
2979
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:411c050bf4916b5dee4df037464b1294dd3db03a9fec0b0dff16aead402c79d7
3
+ size 4792