--- base_model: NousResearch/Hermes-3-Llama-3.1-8B library_name: peft license: llama3 tags: - generated_from_trainer model-index: - name: lora-out results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml ### # Model Configuration: LLaMA-3 70B ### base_model: NousResearch/Hermes-3-Llama-3.1-8B # base_model: NousResearch/Hermes-3-Llama-3.1-70B sequence_len: 1024 # base model weight quantization load_in_8bit: true # load_in_4bit: true # attention implementation flash_attention: true # finetuned adapter config adapter: lora lora_model_dir: lora_r: 16 lora_alpha: 32 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_modules_to_save: # required when adding new tokens to LLaMA/Mistral - embed_tokens - lm_head # for details, see https://github.com/huggingface/peft/issues/334#issuecomment-1561727994 ### # Dataset Configuration: sqlqa ### # datasets: # - path: data.jsonl # type: alpaca datasets: - path: data.jsonl ds_type: json type: field_instruction: instruction field_input: input field_output: output format: |- [INST] {instruction} {input} [/INST] chat_template: llama3 tokens: - "[INST]" - " [/INST]" - "[QL]" - " [/QL]" - "[EXPLANATION]" - " [/EXPLANATION]" # dataset formatting config special_tokens: pad_token: <|end_of_text|> val_set_size: 0.05 ### # Training Configuration ### # masks the input messages so that the model learns and understands the language w/o being reliant on the input train_on_inputs: false # random seed for better reproducibility seed: 117 # optimizer config optimizer: adamw_bnb_8bit learning_rate: 0.0001 lr_scheduler: cosine num_epochs: 4 micro_batch_size: 4 gradient_accumulation_steps: 1 warmup_steps: 10 # axolotl saving config dataset_prepared_path: last_run_prepared output_dir: ./lora-out # logging and eval config logging_steps: 1 eval_steps: 0.05 # training performance optimization config bf16: auto tf32: false gradient_checkpointing: true ### # Miscellaneous Configuration ### # when true, prevents over-writing the config from the CLI strict: false # "Don't mess with this, it's here for accelerate and torchrun" -- axolotl docs local_rank: # WANDB wandb_mode: wandb_project: wandb_watch: wandb_name: wandb_run_id: # Multi-GPU # deepspeed: /root/axolotl/deepspeed_configs/zero3_bf16.json # deepspeed: zero3_bf16.json # deepspeed: /workspace/axolotl/deepspeed_configs/zero2.json deepspeed: fsdp: fsdp_config: ```

# lora-out This model is a fine-tuned version of [NousResearch/Hermes-3-Llama-3.1-8B](https://huggingface.co/NousResearch/Hermes-3-Llama-3.1-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0391 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 117 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.1647 | 0.0769 | 1 | 2.2016 | | 2.1505 | 0.2308 | 3 | 2.1168 | | 1.7332 | 0.4615 | 6 | 1.5604 | | 1.0807 | 0.6923 | 9 | 0.8788 | | 0.5284 | 0.9231 | 12 | 0.4853 | | 0.3215 | 1.1538 | 15 | 0.2911 | | 0.2114 | 1.3846 | 18 | 0.1958 | | 0.1493 | 1.6154 | 21 | 0.1374 | | 0.1081 | 1.8462 | 24 | 0.1066 | | 0.0751 | 2.0769 | 27 | 0.0821 | | 0.0782 | 2.3077 | 30 | 0.0689 | | 0.0524 | 2.5385 | 33 | 0.0602 | | 0.0538 | 2.7692 | 36 | 0.0523 | | 0.0442 | 3.0 | 39 | 0.0464 | | 0.0385 | 3.2308 | 42 | 0.0417 | | 0.0358 | 3.4615 | 45 | 0.0410 | | 0.0336 | 3.6923 | 48 | 0.0388 | | 0.0336 | 3.9231 | 51 | 0.0391 | ### Framework versions - PEFT 0.13.0 - Transformers 4.45.1 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.20.0