niuwz
commited on
Commit
·
059744b
1
Parent(s):
d2528ab
upload model and config files for mini-Chinese-Phi3
Browse files- config.json +32 -0
- configuation_miniPhi3.py +111 -0
- generation_config.json +7 -0
- model.safetensors +3 -0
- modeling_miniphi3.py +369 -0
- special_tokens_map.json +28 -0
- tokenizer.json +0 -0
- tokenizer_config.json +79 -0
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "fine_tuned/sft",
|
3 |
+
"architectures": [
|
4 |
+
"MiniPhi3"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 2,
|
8 |
+
"embd_pdrop": 0.0,
|
9 |
+
"eos_token_id": 1,
|
10 |
+
"hidden_act": "silu",
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 2048,
|
14 |
+
"max_position_embeddings": 512,
|
15 |
+
"model_type": "phi3",
|
16 |
+
"num_attention_heads": 12,
|
17 |
+
"num_hidden_layers": 12,
|
18 |
+
"num_key_value_heads": 12,
|
19 |
+
"original_max_position_embeddings": 512,
|
20 |
+
"pad_token_id": 0,
|
21 |
+
"resid_pdrop": 0.0,
|
22 |
+
"rms_norm_eps": 1e-05,
|
23 |
+
"rope_scaling": null,
|
24 |
+
"rope_theta": 10000.0,
|
25 |
+
"sliding_window": null,
|
26 |
+
"tie_word_embeddings": false,
|
27 |
+
"torch_dtype": "float32",
|
28 |
+
"transformers_version": "4.41.2",
|
29 |
+
"use_cache": true,
|
30 |
+
"use_cope": false,
|
31 |
+
"vocab_size": 32064
|
32 |
+
}
|
configuation_miniPhi3.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.configuration_utils import PretrainedConfig
|
2 |
+
from transformers.utils import logging
|
3 |
+
|
4 |
+
logger = logging.get_logger(__name__)
|
5 |
+
|
6 |
+
|
7 |
+
class MiniPhiConfig(PretrainedConfig):
|
8 |
+
|
9 |
+
model_type = "phi3"
|
10 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
11 |
+
|
12 |
+
def __init__(
|
13 |
+
self,
|
14 |
+
vocab_size=32000,
|
15 |
+
hidden_size=768,
|
16 |
+
intermediate_size=2048,
|
17 |
+
num_hidden_layers=12,
|
18 |
+
num_attention_heads=12,
|
19 |
+
num_key_value_heads=None,
|
20 |
+
resid_pdrop=0.0,
|
21 |
+
embd_pdrop=0.0,
|
22 |
+
attention_dropout=0.0,
|
23 |
+
hidden_act="silu",
|
24 |
+
max_position_embeddings=512,
|
25 |
+
original_max_position_embeddings=512,
|
26 |
+
initializer_range=0.02,
|
27 |
+
rms_norm_eps=1e-5,
|
28 |
+
use_cache=True,
|
29 |
+
tie_word_embeddings=False,
|
30 |
+
rope_theta=10000.0,
|
31 |
+
rope_scaling=None,
|
32 |
+
bos_token_id=2,
|
33 |
+
eos_token_id=1,
|
34 |
+
pad_token_id=0,
|
35 |
+
sliding_window=None,
|
36 |
+
use_cope=True,
|
37 |
+
**kwargs,
|
38 |
+
):
|
39 |
+
self.vocab_size = vocab_size
|
40 |
+
self.hidden_size = hidden_size
|
41 |
+
self.intermediate_size = intermediate_size
|
42 |
+
self.num_hidden_layers = num_hidden_layers
|
43 |
+
self.num_attention_heads = num_attention_heads
|
44 |
+
|
45 |
+
if num_key_value_heads is None:
|
46 |
+
num_key_value_heads = num_attention_heads
|
47 |
+
|
48 |
+
self.num_key_value_heads = num_key_value_heads
|
49 |
+
self.resid_pdrop = resid_pdrop
|
50 |
+
self.embd_pdrop = embd_pdrop
|
51 |
+
self.attention_dropout = attention_dropout
|
52 |
+
self.hidden_act = hidden_act
|
53 |
+
self.max_position_embeddings = max_position_embeddings
|
54 |
+
self.original_max_position_embeddings = original_max_position_embeddings
|
55 |
+
self.initializer_range = initializer_range
|
56 |
+
self.rms_norm_eps = rms_norm_eps
|
57 |
+
self.use_cache = use_cache
|
58 |
+
self.rope_theta = rope_theta
|
59 |
+
self.rope_scaling = rope_scaling
|
60 |
+
self._rope_scaling_validation()
|
61 |
+
self.sliding_window = sliding_window
|
62 |
+
self.use_cope = use_cope
|
63 |
+
|
64 |
+
super().__init__(
|
65 |
+
bos_token_id=bos_token_id,
|
66 |
+
eos_token_id=eos_token_id,
|
67 |
+
pad_token_id=pad_token_id,
|
68 |
+
tie_word_embeddings=tie_word_embeddings,
|
69 |
+
**kwargs,
|
70 |
+
)
|
71 |
+
|
72 |
+
def _rope_scaling_validation(self):
|
73 |
+
"""
|
74 |
+
Validate the `rope_scaling` configuration.
|
75 |
+
"""
|
76 |
+
if self.rope_scaling is None:
|
77 |
+
return
|
78 |
+
|
79 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
|
80 |
+
raise ValueError(
|
81 |
+
"`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, "
|
82 |
+
f"got {self.rope_scaling}"
|
83 |
+
)
|
84 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
85 |
+
rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
|
86 |
+
rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
|
87 |
+
if rope_scaling_type is None or rope_scaling_type not in ["su", "yarn"]:
|
88 |
+
raise ValueError(
|
89 |
+
f"`rope_scaling`'s type field must be one of ['su', 'yarn'], got {rope_scaling_type}")
|
90 |
+
if not (
|
91 |
+
isinstance(rope_scaling_short_factor, list)
|
92 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
|
93 |
+
):
|
94 |
+
raise ValueError(
|
95 |
+
f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
|
96 |
+
)
|
97 |
+
if not len(rope_scaling_short_factor) == self.hidden_size // self.num_attention_heads // 2:
|
98 |
+
raise ValueError(
|
99 |
+
f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}"
|
100 |
+
)
|
101 |
+
if not (
|
102 |
+
isinstance(rope_scaling_long_factor, list)
|
103 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
|
104 |
+
):
|
105 |
+
raise ValueError(
|
106 |
+
f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
|
107 |
+
)
|
108 |
+
if not len(rope_scaling_long_factor) == self.hidden_size // self.num_attention_heads // 2:
|
109 |
+
raise ValueError(
|
110 |
+
f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}"
|
111 |
+
)
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 2,
|
4 |
+
"eos_token_id": 1,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"transformers_version": "4.41.2"
|
7 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:115b4d2487314a3395318200afd5c4f952d1a38a4bf28835ba38f7300eeeadfb
|
3 |
+
size 536825040
|
modeling_miniphi3.py
ADDED
@@ -0,0 +1,369 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.cache_utils import Cache
|
2 |
+
from transformers.models.phi3.configuration_phi3 import Phi3Config
|
3 |
+
from transformers.models.phi3.modeling_phi3 import repeat_kv, Phi3Attention, Phi3Model, Phi3ForCausalLM, apply_rotary_pos_emb, Phi3FlashAttention2
|
4 |
+
from configuation_miniPhi3 import MiniPhiConfig
|
5 |
+
from typing import List, Optional, Tuple, Union
|
6 |
+
from transformers.utils import (
|
7 |
+
add_code_sample_docstrings,
|
8 |
+
add_start_docstrings,
|
9 |
+
add_start_docstrings_to_model_forward,
|
10 |
+
is_flash_attn_2_available,
|
11 |
+
is_flash_attn_greater_or_equal_2_10,
|
12 |
+
logging,
|
13 |
+
replace_return_docstrings,
|
14 |
+
)
|
15 |
+
import warnings
|
16 |
+
|
17 |
+
import inspect
|
18 |
+
if is_flash_attn_2_available():
|
19 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
20 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
21 |
+
|
22 |
+
_flash_supports_window_size = "window_size" in list(
|
23 |
+
inspect.signature(flash_attn_func).parameters)
|
24 |
+
|
25 |
+
import math
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
import torch
|
28 |
+
import torch.nn as nn
|
29 |
+
|
30 |
+
from einops import einsum
|
31 |
+
|
32 |
+
|
33 |
+
class CoPE(nn.Module):
|
34 |
+
def __init__(self, npos_max, head_dim):
|
35 |
+
super().__init__()
|
36 |
+
self.npos_max = npos_max
|
37 |
+
self.pos_emb = nn.parameter.Parameter(
|
38 |
+
torch.zeros(1, head_dim, npos_max))
|
39 |
+
|
40 |
+
def forward(self, query, attn_logits):
|
41 |
+
# compute positions
|
42 |
+
gates = torch.sigmoid(attn_logits)
|
43 |
+
pos = gates.flip(-1).cumsum(dim=-1).flip(-1)
|
44 |
+
pos = pos.clamp(max=self.npos_max - 1)
|
45 |
+
# interpolate from integer positions
|
46 |
+
pos_ceil = pos.ceil().long()
|
47 |
+
pos_floor = pos.floor().long()
|
48 |
+
logits_int = torch.matmul(query, self.pos_emb)
|
49 |
+
logits_ceil = logits_int.gather(-1, pos_ceil)
|
50 |
+
logits_floor = logits_int.gather(-1, pos_floor)
|
51 |
+
w = pos - pos_floor
|
52 |
+
return logits_ceil * w + logits_floor * (1 - w)
|
53 |
+
|
54 |
+
|
55 |
+
class MiniPhi3Attention(Phi3Attention):
|
56 |
+
def __init__(self, config: MiniPhiConfig, origin_params):
|
57 |
+
super().__init__(config, layer_idx=0)
|
58 |
+
self.__replace_param(origin_params)
|
59 |
+
self.cope = CoPE(self.max_position_embeddings, self.head_dim)
|
60 |
+
|
61 |
+
def __replace_param(self, origin_params: dict):
|
62 |
+
self.__dict__.update(origin_params)
|
63 |
+
del self.rotary_emb
|
64 |
+
|
65 |
+
def forward(
|
66 |
+
self,
|
67 |
+
hidden_states: torch.Tensor,
|
68 |
+
attention_mask: Optional[torch.Tensor] = None,
|
69 |
+
position_ids: Optional[torch.LongTensor] = None,
|
70 |
+
past_key_value=None,
|
71 |
+
output_attentions: bool = False,
|
72 |
+
use_cache: bool = False,
|
73 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
74 |
+
|
75 |
+
bsz, q_len, _ = hidden_states.size()
|
76 |
+
|
77 |
+
qkv = self.qkv_proj(hidden_states)
|
78 |
+
query_pos = self.num_heads * self.head_dim
|
79 |
+
query_states = qkv[..., :query_pos]
|
80 |
+
key_states = qkv[..., query_pos: query_pos +
|
81 |
+
self.num_key_value_heads * self.head_dim]
|
82 |
+
value_states = qkv[..., query_pos +
|
83 |
+
self.num_key_value_heads * self.head_dim:]
|
84 |
+
|
85 |
+
query_states = query_states.view(
|
86 |
+
bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
87 |
+
key_states = key_states.view(
|
88 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
89 |
+
value_states = value_states.view(
|
90 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
91 |
+
|
92 |
+
kv_seq_len = key_states.shape[-2]
|
93 |
+
if past_key_value is not None:
|
94 |
+
if self.layer_idx is None:
|
95 |
+
raise ValueError(
|
96 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
97 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
98 |
+
"with a layer index."
|
99 |
+
)
|
100 |
+
kv_seq_len += past_key_value.get_usable_length(
|
101 |
+
kv_seq_len, self.layer_idx)
|
102 |
+
# cos, sin = self.rotary_emb(
|
103 |
+
# value_states, position_ids, seq_len=kv_seq_len)
|
104 |
+
|
105 |
+
# query_states, key_states = apply_rotary_pos_emb(
|
106 |
+
# query_states, key_states, cos, sin, position_ids)
|
107 |
+
|
108 |
+
if past_key_value is not None:
|
109 |
+
# cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
110 |
+
# key_states, value_states = past_key_value.update(
|
111 |
+
# key_states, value_states, self.layer_idx, cache_kwargs)
|
112 |
+
key_states, value_states = past_key_value.update(
|
113 |
+
key_states, value_states, self.layer_idx)
|
114 |
+
|
115 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
116 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
117 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
118 |
+
|
119 |
+
attn_weights = torch.matmul(
|
120 |
+
query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
121 |
+
|
122 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
123 |
+
raise ValueError(
|
124 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
125 |
+
f" {attn_weights.size()}"
|
126 |
+
)
|
127 |
+
|
128 |
+
if attention_mask is not None:
|
129 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
130 |
+
raise ValueError(
|
131 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
132 |
+
)
|
133 |
+
attn_weights = attn_weights + attention_mask
|
134 |
+
|
135 |
+
attn_weights = self.cope(query_states, attn_weights)
|
136 |
+
# upcast attention to fp32
|
137 |
+
attn_weights = nn.functional.softmax(
|
138 |
+
attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype)
|
139 |
+
attn_weights = nn.functional.dropout(
|
140 |
+
attn_weights, p=self.attention_dropout, training=self.training)
|
141 |
+
|
142 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
143 |
+
|
144 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
145 |
+
raise ValueError(
|
146 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
147 |
+
f" {attn_output.size()}"
|
148 |
+
)
|
149 |
+
|
150 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
151 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
152 |
+
|
153 |
+
attn_output = self.o_proj(attn_output)
|
154 |
+
|
155 |
+
if not output_attentions:
|
156 |
+
attn_weights = None
|
157 |
+
|
158 |
+
return attn_output, attn_weights, past_key_value
|
159 |
+
|
160 |
+
|
161 |
+
class MiniPhi3FlashAttention2(Phi3FlashAttention2):
|
162 |
+
def __init__(self, config: MiniPhiConfig, origin_params):
|
163 |
+
super().__init__(config, layer_idx=0)
|
164 |
+
self.__replace_param(origin_params)
|
165 |
+
"Flash attention does not support cope"
|
166 |
+
self.cope = CoPE(self.max_position_embeddings, self.head_dim)
|
167 |
+
|
168 |
+
def __replace_param(self, origin_params: dict):
|
169 |
+
self.__dict__.update(origin_params)
|
170 |
+
del self.rotary_emb
|
171 |
+
|
172 |
+
def forward(
|
173 |
+
self,
|
174 |
+
hidden_states: torch.Tensor,
|
175 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
176 |
+
position_ids: Optional[torch.LongTensor] = None,
|
177 |
+
past_key_value: Optional[Cache] = None,
|
178 |
+
output_attentions: bool = False,
|
179 |
+
use_cache: bool = False,
|
180 |
+
**kwargs,
|
181 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
182 |
+
# Phi3FlashAttention2 attention does not support output_attentions
|
183 |
+
|
184 |
+
if not _flash_supports_window_size:
|
185 |
+
logger.warning_once(
|
186 |
+
"The current flash attention version does not support sliding window attention. Please use `attn_implementation='eager'` or upgrade flash-attn library."
|
187 |
+
)
|
188 |
+
raise ValueError(
|
189 |
+
"The current flash attention version does not support sliding window attention.")
|
190 |
+
|
191 |
+
output_attentions = False
|
192 |
+
|
193 |
+
if "padding_mask" in kwargs:
|
194 |
+
warnings.warn(
|
195 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
196 |
+
)
|
197 |
+
|
198 |
+
# overwrite attention_mask with padding_mask
|
199 |
+
attention_mask = kwargs.pop("padding_mask")
|
200 |
+
|
201 |
+
bsz, q_len, _ = hidden_states.size()
|
202 |
+
|
203 |
+
qkv = self.qkv_proj(hidden_states)
|
204 |
+
query_pos = self.num_heads * self.head_dim
|
205 |
+
query_states = qkv[..., :query_pos]
|
206 |
+
key_states = qkv[..., query_pos: query_pos +
|
207 |
+
self.num_key_value_heads * self.head_dim]
|
208 |
+
value_states = qkv[..., query_pos +
|
209 |
+
self.num_key_value_heads * self.head_dim:]
|
210 |
+
|
211 |
+
# Flash attention requires the input to have the shape
|
212 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
213 |
+
# therefore we just need to keep the original shape
|
214 |
+
query_states = query_states.view(
|
215 |
+
bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
216 |
+
key_states = key_states.view(
|
217 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
218 |
+
value_states = value_states.view(
|
219 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
220 |
+
|
221 |
+
kv_seq_len = key_states.shape[-2]
|
222 |
+
if past_key_value is not None:
|
223 |
+
if self.layer_idx is None:
|
224 |
+
raise ValueError(
|
225 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
226 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
227 |
+
"with a layer index."
|
228 |
+
)
|
229 |
+
kv_seq_len += past_key_value.get_usable_length(
|
230 |
+
kv_seq_len, self.layer_idx)
|
231 |
+
|
232 |
+
# Because the input can be padded, the absolute sequence length depends on the max position id.
|
233 |
+
rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
|
234 |
+
# cos, sin = self.rotary_emb(
|
235 |
+
# value_states, position_ids, seq_len=rotary_seq_len)
|
236 |
+
|
237 |
+
# query_states, key_states = apply_rotary_pos_emb(
|
238 |
+
# query_states, key_states, cos, sin, position_ids)
|
239 |
+
|
240 |
+
use_sliding_windows = (
|
241 |
+
_flash_supports_window_size
|
242 |
+
and getattr(self.config, "sliding_window", None) is not None
|
243 |
+
and kv_seq_len > self.config.sliding_window
|
244 |
+
)
|
245 |
+
|
246 |
+
if past_key_value is not None:
|
247 |
+
# Activate slicing cache only if the config has a value `sliding_windows` attribute
|
248 |
+
cache_has_contents = past_key_value.get_seq_length(
|
249 |
+
self.layer_idx) > 0
|
250 |
+
if (
|
251 |
+
getattr(self.config, "sliding_window", None) is not None
|
252 |
+
and kv_seq_len > self.config.sliding_window
|
253 |
+
and cache_has_contents
|
254 |
+
):
|
255 |
+
slicing_tokens = 1 - self.config.sliding_window
|
256 |
+
|
257 |
+
past_key = past_key_value[self.layer_idx][0]
|
258 |
+
past_value = past_key_value[self.layer_idx][1]
|
259 |
+
|
260 |
+
past_key = past_key[:, :, slicing_tokens:, :].contiguous()
|
261 |
+
past_value = past_value[:, :, slicing_tokens:, :].contiguous()
|
262 |
+
|
263 |
+
if past_key.shape[-2] != self.config.sliding_window - 1:
|
264 |
+
raise ValueError(
|
265 |
+
f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
|
266 |
+
f" {past_key.shape}"
|
267 |
+
)
|
268 |
+
|
269 |
+
if attention_mask is not None:
|
270 |
+
attention_mask = attention_mask[:, slicing_tokens:]
|
271 |
+
attention_mask = torch.cat(
|
272 |
+
[attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
|
273 |
+
|
274 |
+
# cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
275 |
+
key_states, value_states = past_key_value.update(
|
276 |
+
key_states, value_states, self.layer_idx)
|
277 |
+
|
278 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
279 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
280 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
281 |
+
|
282 |
+
attn_dropout = self.attention_dropout if self.training else 0.0
|
283 |
+
|
284 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
285 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
286 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
287 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
288 |
+
# in fp32.
|
289 |
+
|
290 |
+
if query_states.dtype == torch.float32:
|
291 |
+
if torch.is_autocast_enabled():
|
292 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
293 |
+
# Handle the case where the model is quantized
|
294 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
295 |
+
target_dtype = self.config._pre_quantization_dtype
|
296 |
+
else:
|
297 |
+
target_dtype = self.qkv_proj.weight.dtype
|
298 |
+
|
299 |
+
logger.warning_once(
|
300 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
301 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
302 |
+
f" {target_dtype}."
|
303 |
+
)
|
304 |
+
|
305 |
+
query_states = query_states.to(target_dtype)
|
306 |
+
key_states = key_states.to(target_dtype)
|
307 |
+
value_states = value_states.to(target_dtype)
|
308 |
+
|
309 |
+
# Reashape to the expected shape for Flash Attention
|
310 |
+
query_states = query_states.transpose(1, 2)
|
311 |
+
key_states = key_states.transpose(1, 2)
|
312 |
+
value_states = value_states.transpose(1, 2)
|
313 |
+
|
314 |
+
attn_output = self._flash_attention_forward(
|
315 |
+
query_states,
|
316 |
+
key_states,
|
317 |
+
value_states,
|
318 |
+
attention_mask,
|
319 |
+
q_len,
|
320 |
+
dropout=attn_dropout,
|
321 |
+
use_sliding_windows=use_sliding_windows,
|
322 |
+
)
|
323 |
+
|
324 |
+
attn_output = attn_output.reshape(
|
325 |
+
bsz, q_len, self.hidden_size).contiguous()
|
326 |
+
attn_output = self.o_proj(attn_output)
|
327 |
+
|
328 |
+
if not output_attentions:
|
329 |
+
attn_weights = None
|
330 |
+
|
331 |
+
return attn_output, attn_weights, past_key_value
|
332 |
+
|
333 |
+
|
334 |
+
class MiniPhi3(Phi3ForCausalLM):
|
335 |
+
"""
|
336 |
+
参数量约0.13B
|
337 |
+
MiniPhi3(
|
338 |
+
(embed_tokens): Embedding(32000, 768, padding_idx=0)
|
339 |
+
(embed_dropout): Dropout(p=0.0, inplace=False)
|
340 |
+
(layers): ModuleList(
|
341 |
+
(0-11): 12 x Phi3DecoderLayer(
|
342 |
+
(self_attn): Phi3Attention(
|
343 |
+
(o_proj): Linear(in_features=768, out_features=768, bias=False)
|
344 |
+
(qkv_proj): Linear(in_features=768, out_features=2304, bias=False)
|
345 |
+
(rotary_emb): Phi3RotaryEmbedding()
|
346 |
+
)
|
347 |
+
(mlp): Phi3MLP(
|
348 |
+
(gate_up_proj): Linear(in_features=768, out_features=4096, bias=False)
|
349 |
+
(down_proj): Linear(in_features=2048, out_features=768, bias=False)
|
350 |
+
(activation_fn): SiLU()
|
351 |
+
)
|
352 |
+
(input_layernorm): Phi3RMSNorm()
|
353 |
+
(resid_attn_dropout): Dropout(p=0.0, inplace=False)
|
354 |
+
(resid_mlp_dropout): Dropout(p=0.0, inplace=False)
|
355 |
+
(post_attention_layernorm): Phi3RMSNorm()
|
356 |
+
)
|
357 |
+
)
|
358 |
+
(norm): Phi3RMSNorm()
|
359 |
+
)
|
360 |
+
"""
|
361 |
+
|
362 |
+
def __init__(self, config: MiniPhiConfig):
|
363 |
+
super().__init__(config)
|
364 |
+
"原计划将CoPE加入Phi3,但是因为其暂时不支持Flash Attention,因此暂时搁置"
|
365 |
+
if config.use_cope:
|
366 |
+
ATTN_CLS = MiniPhi3FlashAttention2 if config._attn_implementation == "flash_attention_2" else MiniPhi3Attention
|
367 |
+
for i, layer in enumerate(self.model.layers):
|
368 |
+
layer.self_attn = ATTN_CLS(
|
369 |
+
config, layer.self_attn.__dict__)
|
special_tokens_map.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"[user]",
|
4 |
+
"[end]",
|
5 |
+
"[assistant]"
|
6 |
+
],
|
7 |
+
"bos_token": {
|
8 |
+
"content": "[BOS]",
|
9 |
+
"lstrip": false,
|
10 |
+
"normalized": false,
|
11 |
+
"rstrip": false,
|
12 |
+
"single_word": false
|
13 |
+
},
|
14 |
+
"eos_token": {
|
15 |
+
"content": "[EOS]",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false
|
20 |
+
},
|
21 |
+
"pad_token": {
|
22 |
+
"content": "[PAD]",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false
|
27 |
+
}
|
28 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[EOS]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[BOS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"31998": {
|
28 |
+
"content": "\t",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": false
|
34 |
+
},
|
35 |
+
"31999": {
|
36 |
+
"content": "\n",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": true,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": false
|
42 |
+
},
|
43 |
+
"32000": {
|
44 |
+
"content": "[user]",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
},
|
51 |
+
"32001": {
|
52 |
+
"content": "[end]",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": true
|
58 |
+
},
|
59 |
+
"32002": {
|
60 |
+
"content": "[assistant]",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": false,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": true
|
66 |
+
}
|
67 |
+
},
|
68 |
+
"additional_special_tokens": [
|
69 |
+
"[user]",
|
70 |
+
"[end]",
|
71 |
+
"[assistant]"
|
72 |
+
],
|
73 |
+
"bos_token": "[BOS]",
|
74 |
+
"clean_up_tokenization_spaces": true,
|
75 |
+
"eos_token": "[EOS]",
|
76 |
+
"model_max_length": 1000000000000000019884624838656,
|
77 |
+
"pad_token": "[PAD]",
|
78 |
+
"tokenizer_class": "PreTrainedTokenizerFast"
|
79 |
+
}
|