File size: 24,288 Bytes
a8c5691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
---
base_model: Snowflake/snowflake-arctic-embed-m
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:600
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: How does the Blueprint for an AI Bill of Rights aim to protect
    the rights of the American public?
  sentences:
  - "and use prohibitions. You and your communities should be free from unchecked\
    \ surveillance; surveillance \ntechnologies should be subject to heightened oversight\
    \ that includes at least pre-deployment assessment of their \npotential harms\
    \ and scope limits to protect privacy and civil liberties. Continuous surveillance\
    \ and monitoring"
  - "steps to move these principles into practice and promote common approaches that\
    \ allow technological \ninnovation to flourish while protecting people from harm.\
    \ \n9"
  - "ABOUT THIS FRAMEWORK­­­­­\nThe Blueprint for an AI Bill of Rights is a set of\
    \ five principles and associated practices to help guide the \ndesign, use, and\
    \ deployment of automated systems to protect the rights of the American public\
    \ in the age of \nartificial intel-ligence. Developed through extensive consultation\
    \ with the American public, these principles are"
- source_sentence: How can organizations monitor the impact of proxy features on algorithmic
    discrimination?
  sentences:
  - "sociodemographic variables that adjust or “correct” the algorithm’s output on\
    \ the basis of a patient’s race or\nethnicity, which can lead to race-based health\
    \ inequities.47\n25\nAlgorithmic \nDiscrimination \nProtections"
  - "proxy; if needed, it may be possible to identify alternative attributes that\
    \ can be used instead. At a minimum, \norganizations should ensure a proxy feature\
    \ is not given undue weight and should monitor the system closely \nfor any resulting\
    \ algorithmic discrimination.   \n26\nAlgorithmic \nDiscrimination \nProtections"
  - "velopment, and deployment of automated systems, and from the \ncompounded harm\
    \ of its reuse. Independent evaluation and report­\ning that confirms that the\
    \ system is safe and effective, including re­\nporting of steps taken to mitigate\
    \ potential harms, should be per­\nformed and the results made public whenever\
    \ possible. \n15"
- source_sentence: What measures can be taken to ensure that AI systems are designed
    to be accessible for people with disabilities?
  sentences:
  - "potential for meaningful impact on people’s rights, opportunities, or access\
    \ and include those to impacted \ncommunities that may not be direct users of\
    \ the automated system, risks resulting from purposeful misuse of \nthe system,\
    \ and other concerns identified via the consultation process. Assessment and,\
    \ where possible, mea­"
  - "and as a lifecycle minimum performance standard. Decision possibilities resulting\
    \ from performance testing \nshould include the possibility of not deploying the\
    \ system. \nRisk identification and mitigation. Before deployment, and in a proactive\
    \ and ongoing manner, poten­\ntial risks of the automated system should be identified\
    \ and mitigated. Identified risks should focus on the"
  - "individuals \nand \ncommunities \nfrom algorithmic \ndiscrimination and to use\
    \ and design systems in an equitable way. This protection should include proactive\
    \ \nequity assessments as part of the system design, use of representative data\
    \ and protection against proxies \nfor demographic features, ensuring accessibility\
    \ for people with disabilities in design and development,"
- source_sentence: 'How should organizations address concerns raised during public
    consultations regarding AI data processing and interpretation?  '
  sentences:
  - "and testing and evaluation of AI technologies and systems. It is expected to\
    \ be released in the winter of 2022-23. \n21"
  - "provide guidance whenever automated systems can meaningfully impact the public’s\
    \ rights, opportunities, \nor access to critical needs. \n3"
  - "learning models or for other purposes, including how data sources were processed\
    \ and interpreted, a \nsummary of what data might be missing, incomplete, or erroneous,\
    \ and data relevancy justifications; the \nresults of public consultation such\
    \ as concerns raised and any decisions made due to these concerns; risk"
- source_sentence: What role do ethical considerations play in the development and
    implementation of automated systems?
  sentences:
  - "tial to meaningfully impact rights, opportunities, or access. Additionally, this\
    \ framework does not analyze or \ntake a position on legislative and regulatory\
    \ proposals in municipal, state, and federal government, or those in \nother countries.\
    \ \nWe have seen modest progress in recent years, with some state and local governments\
    \ responding to these prob­"
  - '•

    Searches for “Black girls,” “Asian girls,” or “Latina girls” return predominantly39
    sexualized content, rather

    than role models, toys, or activities.40 Some search engines have been working
    to reduce the prevalence of

    these results, but the problem remains.41



    Advertisement delivery systems that predict who is most likely to click on a job
    advertisement end up deliv-'
  - "particularly relevant to automated systems, without articulating a specific set\
    \ of FIPPs or scoping \napplicability or the interests served to a single particular\
    \ domain, like privacy, civil rights and civil liberties, \nethics, or risk management.\
    \ The Technical Companion builds on this prior work to provide practical next"
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: cosine_accuracy@1
      value: 0.83
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.96
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.98
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.99
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.83
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.31999999999999995
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.19599999999999995
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09899999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.83
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.96
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.98
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.99
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9195971547817925
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8960000000000001
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8966666666666666
      name: Cosine Map@100
    - type: dot_accuracy@1
      value: 0.83
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.96
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.98
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.99
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.83
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.31999999999999995
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.19599999999999995
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.09899999999999999
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.83
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.96
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.98
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.99
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.9195971547817925
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.8960000000000001
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.8966666666666666
      name: Dot Map@100
---

# SentenceTransformer based on Snowflake/snowflake-arctic-embed-m

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision e2b128b9fa60c82b4585512b33e1544224ffff42 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("niting089/finetuned_arctic")
# Run inference
sentences = [
    'What role do ethical considerations play in the development and implementation of automated systems?',
    'particularly relevant to automated systems, without articulating a specific set of FIPPs or scoping \napplicability or the interests served to a single particular domain, like privacy, civil rights and civil liberties, \nethics, or risk management. The Technical Companion builds on this prior work to provide practical next',
    '•\nSearches for “Black girls,” “Asian girls,” or “Latina girls” return predominantly39 sexualized content, rather\nthan role models, toys, or activities.40 Some search engines have been working to reduce the prevalence of\nthese results, but the problem remains.41\n•\nAdvertisement delivery systems that predict who is most likely to click on a job advertisement end up deliv-',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.83       |
| cosine_accuracy@3   | 0.96       |
| cosine_accuracy@5   | 0.98       |
| cosine_accuracy@10  | 0.99       |
| cosine_precision@1  | 0.83       |
| cosine_precision@3  | 0.32       |
| cosine_precision@5  | 0.196      |
| cosine_precision@10 | 0.099      |
| cosine_recall@1     | 0.83       |
| cosine_recall@3     | 0.96       |
| cosine_recall@5     | 0.98       |
| cosine_recall@10    | 0.99       |
| cosine_ndcg@10      | 0.9196     |
| cosine_mrr@10       | 0.896      |
| **cosine_map@100**  | **0.8967** |
| dot_accuracy@1      | 0.83       |
| dot_accuracy@3      | 0.96       |
| dot_accuracy@5      | 0.98       |
| dot_accuracy@10     | 0.99       |
| dot_precision@1     | 0.83       |
| dot_precision@3     | 0.32       |
| dot_precision@5     | 0.196      |
| dot_precision@10    | 0.099      |
| dot_recall@1        | 0.83       |
| dot_recall@3        | 0.96       |
| dot_recall@5        | 0.98       |
| dot_recall@10       | 0.99       |
| dot_ndcg@10         | 0.9196     |
| dot_mrr@10          | 0.896      |
| dot_map@100         | 0.8967     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 600 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 600 samples:
  |         | sentence_0                                                                         | sentence_1                                                                         |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             |
  | details | <ul><li>min: 11 tokens</li><li>mean: 19.86 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 60.47 tokens</li><li>max: 94 tokens</li></ul> |
* Samples:
  | sentence_0                                                                                                                                           | sentence_1                                                                                                                                                                                                                                                                                                                                                            |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What are the key principles outlined in the AI Bill of Rights aimed at ensuring automated systems benefit the American people?  </code>        | <code>BLUEPRINT FOR AN <br>AI BILL OF <br>RIGHTS <br>MAKING AUTOMATED <br>SYSTEMS WORK FOR <br>THE AMERICAN PEOPLE <br>OCTOBER 2022</code>                                                                                                                                                                                                                            |
  | <code>How does the AI Bill of Rights address potential ethical concerns related to automated decision-making systems?</code>                         | <code>BLUEPRINT FOR AN <br>AI BILL OF <br>RIGHTS <br>MAKING AUTOMATED <br>SYSTEMS WORK FOR <br>THE AMERICAN PEOPLE <br>OCTOBER 2022</code>                                                                                                                                                                                                                            |
  | <code>What is the purpose of the Blueprint for an AI Bill of Rights as outlined by the White House Office of Science and Technology Policy?  </code> | <code>About this Document <br>The Blueprint for an AI Bill of Rights: Making Automated Systems Work for the American People was <br>published by the White House Office of Science and Technology Policy in October 2022. This framework was <br>released one year after OSTP announced the launch of a process to develop “a bill of rights for an AI-powered</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 20
- `per_device_eval_batch_size`: 20
- `num_train_epochs`: 5
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 20
- `per_device_eval_batch_size`: 20
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin

</details>

### Training Logs
| Epoch  | Step | cosine_map@100 |
|:------:|:----:|:--------------:|
| 1.0    | 30   | 0.8731         |
| 1.6667 | 50   | 0.89           |
| 2.0    | 60   | 0.895          |
| 3.0    | 90   | 0.8959         |
| 3.3333 | 100  | 0.8967         |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->