nishita commited on
Commit
dcc3254
·
1 Parent(s): 458b256

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +62 -0
README.md ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: segformer-b0-finetuned-segments-sidewalk-2
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # segformer-b0-finetuned-segments-sidewalk-2
14
+
15
+ This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the None dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 2.6306
18
+ - Mean Iou: 0.1027
19
+ - Mean Accuracy: 0.1574
20
+ - Overall Accuracy: 0.6552
21
+ - Per Category Iou: [0.0, 0.40932069741697885, 0.6666047315185674, 0.0015527279135260222, 0.000557997451181134, 0.004734463745284192, 0.0, 0.00024311836753505628, 0.0, 0.0, 0.5448608416905849, 0.005644290758731727, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4689142754019952, 0.0, 0.00039031599380590526, 0.010175747938072128, 0.0, 0.0, 0.0, 0.0008842445754996234, 0.0, 0.0, 0.6689560919488968, 0.10178439680971307, 0.7089823411348399, 0.0, 0.0, 0.0, 0.0]
22
+ - Per Category Accuracy: [nan, 0.6798160901382586, 0.8601972223213155, 0.001563543652833044, 0.0005586801134972854, 0.004789605465686377, nan, 0.00024743825184288725, 0.0, 0.0, 0.8407289173400536, 0.012641370267169317, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7574833533176979, 0.0, 0.00039110009377117975, 0.013959849889225483, 0.0, nan, 0.0, 0.0009309900323061499, 0.0, 0.0, 0.9337304207449932, 0.12865528611713883, 0.8019892660736478, 0.0, 0.0, 0.0, 0.0]
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 6e-05
42
+ - train_batch_size: 16
43
+ - eval_batch_size: 16
44
+ - seed: 42
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - num_epochs: 1
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
52
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
53
+ | 2.8872 | 0.5 | 20 | 3.1018 | 0.0995 | 0.1523 | 0.6415 | [0.0, 0.3982872425364927, 0.6582689116809847, 0.0, 0.00044314555867048773, 0.019651883205738383, 0.0, 0.0006528617866575068, 0.0, 0.0, 0.4861235900758522, 0.003961411405960721, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4437814560942763, 0.0, 1.1600860783870164e-06, 0.019965880301918204, 0.0, 0.0, 0.0, 0.0074026601990928, 0.0, 0.0, 0.666238976894996, 0.13012673492067245, 0.6486315429686865, 0.0, 2.0656177918545805e-05, 0.0001944735843164534, 0.0] | [nan, 0.6263716501798601, 0.8841421548179447, 0.0, 0.00044410334445801165, 0.020659891877382746, nan, 0.0006731258604635891, 0.0, 0.0, 0.8403154629142631, 0.017886412063596133, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6324385775164868, 0.0, 1.160534402881839e-06, 0.06036834410935781, 0.0, nan, 0.0, 0.010232933175604348, 0.0, 0.0, 0.9320173945724101, 0.15828224740687694, 0.6884182010535304, 0.0, 2.3169780427714147e-05, 0.00019505205451704924, 0.0] |
54
+ | 2.6167 | 1.0 | 40 | 2.6306 | 0.1027 | 0.1574 | 0.6552 | [0.0, 0.40932069741697885, 0.6666047315185674, 0.0015527279135260222, 0.000557997451181134, 0.004734463745284192, 0.0, 0.00024311836753505628, 0.0, 0.0, 0.5448608416905849, 0.005644290758731727, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4689142754019952, 0.0, 0.00039031599380590526, 0.010175747938072128, 0.0, 0.0, 0.0, 0.0008842445754996234, 0.0, 0.0, 0.6689560919488968, 0.10178439680971307, 0.7089823411348399, 0.0, 0.0, 0.0, 0.0] | [nan, 0.6798160901382586, 0.8601972223213155, 0.001563543652833044, 0.0005586801134972854, 0.004789605465686377, nan, 0.00024743825184288725, 0.0, 0.0, 0.8407289173400536, 0.012641370267169317, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7574833533176979, 0.0, 0.00039110009377117975, 0.013959849889225483, 0.0, nan, 0.0, 0.0009309900323061499, 0.0, 0.0, 0.9337304207449932, 0.12865528611713883, 0.8019892660736478, 0.0, 0.0, 0.0, 0.0] |
55
+
56
+
57
+ ### Framework versions
58
+
59
+ - Transformers 4.20.1
60
+ - Pytorch 1.11.0
61
+ - Datasets 2.1.0
62
+ - Tokenizers 0.12.1