update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: segformer-b0-finetuned-segments-sidewalk-2
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# segformer-b0-finetuned-segments-sidewalk-2
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 2.6306
|
18 |
+
- Mean Iou: 0.1027
|
19 |
+
- Mean Accuracy: 0.1574
|
20 |
+
- Overall Accuracy: 0.6552
|
21 |
+
- Per Category Iou: [0.0, 0.40932069741697885, 0.6666047315185674, 0.0015527279135260222, 0.000557997451181134, 0.004734463745284192, 0.0, 0.00024311836753505628, 0.0, 0.0, 0.5448608416905849, 0.005644290758731727, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4689142754019952, 0.0, 0.00039031599380590526, 0.010175747938072128, 0.0, 0.0, 0.0, 0.0008842445754996234, 0.0, 0.0, 0.6689560919488968, 0.10178439680971307, 0.7089823411348399, 0.0, 0.0, 0.0, 0.0]
|
22 |
+
- Per Category Accuracy: [nan, 0.6798160901382586, 0.8601972223213155, 0.001563543652833044, 0.0005586801134972854, 0.004789605465686377, nan, 0.00024743825184288725, 0.0, 0.0, 0.8407289173400536, 0.012641370267169317, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7574833533176979, 0.0, 0.00039110009377117975, 0.013959849889225483, 0.0, nan, 0.0, 0.0009309900323061499, 0.0, 0.0, 0.9337304207449932, 0.12865528611713883, 0.8019892660736478, 0.0, 0.0, 0.0, 0.0]
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 6e-05
|
42 |
+
- train_batch_size: 16
|
43 |
+
- eval_batch_size: 16
|
44 |
+
- seed: 42
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- num_epochs: 1
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
|
52 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
|
53 |
+
| 2.8872 | 0.5 | 20 | 3.1018 | 0.0995 | 0.1523 | 0.6415 | [0.0, 0.3982872425364927, 0.6582689116809847, 0.0, 0.00044314555867048773, 0.019651883205738383, 0.0, 0.0006528617866575068, 0.0, 0.0, 0.4861235900758522, 0.003961411405960721, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4437814560942763, 0.0, 1.1600860783870164e-06, 0.019965880301918204, 0.0, 0.0, 0.0, 0.0074026601990928, 0.0, 0.0, 0.666238976894996, 0.13012673492067245, 0.6486315429686865, 0.0, 2.0656177918545805e-05, 0.0001944735843164534, 0.0] | [nan, 0.6263716501798601, 0.8841421548179447, 0.0, 0.00044410334445801165, 0.020659891877382746, nan, 0.0006731258604635891, 0.0, 0.0, 0.8403154629142631, 0.017886412063596133, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6324385775164868, 0.0, 1.160534402881839e-06, 0.06036834410935781, 0.0, nan, 0.0, 0.010232933175604348, 0.0, 0.0, 0.9320173945724101, 0.15828224740687694, 0.6884182010535304, 0.0, 2.3169780427714147e-05, 0.00019505205451704924, 0.0] |
|
54 |
+
| 2.6167 | 1.0 | 40 | 2.6306 | 0.1027 | 0.1574 | 0.6552 | [0.0, 0.40932069741697885, 0.6666047315185674, 0.0015527279135260222, 0.000557997451181134, 0.004734463745284192, 0.0, 0.00024311836753505628, 0.0, 0.0, 0.5448608416905849, 0.005644290758731727, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4689142754019952, 0.0, 0.00039031599380590526, 0.010175747938072128, 0.0, 0.0, 0.0, 0.0008842445754996234, 0.0, 0.0, 0.6689560919488968, 0.10178439680971307, 0.7089823411348399, 0.0, 0.0, 0.0, 0.0] | [nan, 0.6798160901382586, 0.8601972223213155, 0.001563543652833044, 0.0005586801134972854, 0.004789605465686377, nan, 0.00024743825184288725, 0.0, 0.0, 0.8407289173400536, 0.012641370267169317, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7574833533176979, 0.0, 0.00039110009377117975, 0.013959849889225483, 0.0, nan, 0.0, 0.0009309900323061499, 0.0, 0.0, 0.9337304207449932, 0.12865528611713883, 0.8019892660736478, 0.0, 0.0, 0.0, 0.0] |
|
55 |
+
|
56 |
+
|
57 |
+
### Framework versions
|
58 |
+
|
59 |
+
- Transformers 4.20.1
|
60 |
+
- Pytorch 1.11.0
|
61 |
+
- Datasets 2.1.0
|
62 |
+
- Tokenizers 0.12.1
|