--- license: mit tags: - generated_from_trainer datasets: - tner/ontonotes5 metrics: - precision - recall - f1 - accuracy widget: - text: 'I am Jack. I live in California and I work at Apple ' example_title: Example 1 - text: 'Wow this book is amazing and costs only 4€ ' example_title: Example 2 base_model: distilbert-base-cased model-index: - name: distilbert-finetuned-ner-ontonotes results: - task: type: token-classification name: Token Classification dataset: name: ontonotes5 type: ontonotes5 config: ontonotes5 split: train args: ontonotes5 metrics: - type: precision value: 0.8535359959297889 name: Precision - type: recall value: 0.8788553467356427 name: Recall - type: f1 value: 0.8660106468785288 name: F1 - type: accuracy value: 0.9749625470373822 name: Accuracy --- # distilbert-finetuned-ner-ontonotes This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the ontonotes5 dataset. It achieves the following results on the evaluation set: - Loss: 0.1448 - Precision: 0.8535 - Recall: 0.8789 - F1: 0.8660 - Accuracy: 0.9750 ## Model description Token classification experiment, NER, on business topics. ## Intended uses & limitations The model can be used on token classification, in particular NER. It is fine tuned on business domain. ## Training and evaluation data The dataset used is [ontonotes5](https://huggingface.co/datasets/tner/ontonotes5) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0937 | 1.0 | 7491 | 0.0998 | 0.8367 | 0.8587 | 0.8475 | 0.9731 | | 0.0572 | 2.0 | 14982 | 0.1084 | 0.8338 | 0.8759 | 0.8543 | 0.9737 | | 0.0403 | 3.0 | 22473 | 0.1145 | 0.8521 | 0.8707 | 0.8613 | 0.9748 | | 0.0265 | 4.0 | 29964 | 0.1222 | 0.8535 | 0.8815 | 0.8672 | 0.9752 | | 0.0148 | 5.0 | 37455 | 0.1365 | 0.8536 | 0.8770 | 0.8651 | 0.9747 | | 0.0111 | 6.0 | 44946 | 0.1448 | 0.8535 | 0.8789 | 0.8660 | 0.9750 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1