--- license: cc-by-sa-4.0 tags: - financial-sentiment-analysis - sentiment-analysis - sentence_50agree - generated_from_trainer - sentiment - finance datasets: - financial_phrasebank - Kaggle_Self_label - nickmuchi/financial-classification metrics: - accuracy - f1 - precision - recall widget: - text: The USD rallied by 10% last night example_title: Bullish Sentiment - text: >- Covid-19 cases have been increasing over the past few months impacting earnings for global firms example_title: Bearish Sentiment - text: the USD has been trending lower example_title: Mildly Bearish Sentiment model-index: - name: sec-bert-finetuned-finance-classification results: - task: name: Text Classification type: text-classification dataset: name: financial_phrasebank type: finance args: sentence_50agree metrics: - type: F1 name: F1 value: 0.8744 - type: accuracy name: accuracy value: 0.8755 language: - en --- # sec-bert-finetuned-finance-classification This model is a fine-tuned version of [nlpaueb/sec-bert-base](https://huggingface.co/nlpaueb/sec-bert-base) on the sentence_50Agree [financial-phrasebank + Kaggle Dataset](https://huggingface.co/datasets/nickmuchi/financial-classification), a dataset consisting of 4840 Financial News categorised by sentiment (negative, neutral, positive). The Kaggle dataset includes Covid-19 sentiment data and can be found here: [sentiment-classification-selflabel-dataset](https://www.kaggle.com/percyzheng/sentiment-classification-selflabel-dataset). It achieves the following results on the evaluation set: - Loss: 0.5277 - Accuracy: 0.8755 - F1: 0.8744 - Precision: 0.8754 - Recall: 0.8755 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.6005 | 0.99 | 71 | 0.3702 | 0.8478 | 0.8465 | 0.8491 | 0.8478 | | 0.3226 | 1.97 | 142 | 0.3172 | 0.8834 | 0.8822 | 0.8861 | 0.8834 | | 0.2299 | 2.96 | 213 | 0.3313 | 0.8814 | 0.8805 | 0.8821 | 0.8814 | | 0.1277 | 3.94 | 284 | 0.3925 | 0.8775 | 0.8771 | 0.8770 | 0.8775 | | 0.0764 | 4.93 | 355 | 0.4517 | 0.8715 | 0.8704 | 0.8717 | 0.8715 | | 0.0533 | 5.92 | 426 | 0.4851 | 0.8735 | 0.8728 | 0.8731 | 0.8735 | | 0.0363 | 6.9 | 497 | 0.5107 | 0.8755 | 0.8743 | 0.8757 | 0.8755 | | 0.0248 | 7.89 | 568 | 0.5277 | 0.8755 | 0.8744 | 0.8754 | 0.8755 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6