--- license: apache-2.0 model-index: - name: Homer-v1.0-Qwen2.5-7B results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 63.93 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=newsbang/Homer-v1.0-Qwen2.5-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 37.81 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=newsbang/Homer-v1.0-Qwen2.5-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 30.36 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=newsbang/Homer-v1.0-Qwen2.5-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 9.62 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=newsbang/Homer-v1.0-Qwen2.5-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 11.88 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=newsbang/Homer-v1.0-Qwen2.5-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 39.27 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=newsbang/Homer-v1.0-Qwen2.5-7B name: Open LLM Leaderboard --- Homer-v1.0-Qwen2.5-7B is a fine-tuned version of Qwen2.5-7B using a large amount of instruction-based data. We released the math subset of our dataset (https://huggingface.co/datasets/newsbang/homer_math_v0.1), and we also analyzed the data leakage of current open-source math datasets on the benchmark (https://huggingface.co/datasets/newsbang/math_benbench_data_leak_analysis). ### How to use ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "newsbang/Homer-v1.0-Qwen2.5-7B" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) messages = [ {"role": "system", "content": "You are a very helpful assistant."}, {"role": "user", "content": "Hello"} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_newsbang__Homer-v1.0-Qwen2.5-7B) | Metric |Value| |-------------------|----:| |Avg. |32.15| |IFEval (0-Shot) |63.93| |BBH (3-Shot) |37.81| |MATH Lvl 5 (4-Shot)|30.36| |GPQA (0-shot) | 9.62| |MuSR (0-shot) |11.88| |MMLU-PRO (5-shot) |39.27|