--- library_name: transformers license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer model-index: - name: uaspeech-large-finetune-shorter-evals-29-11-8AM results: [] --- [Visualize in Weights & Biases](https://wandb.ai/neuronbit-tech/finetune_uaspeech_wandb_shorter_evals_29_11_8AM/runs/j3agl8d1) # uaspeech-large-finetune-shorter-evals-29-11-8AM This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2763 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 1500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.3168 | 0.0828 | 200 | 0.3934 | | 0.2478 | 0.1242 | 300 | 0.3321 | | 0.2151 | 0.1656 | 400 | 0.3295 | | 0.1683 | 0.2070 | 500 | 0.3064 | | 0.1469 | 0.2483 | 600 | 0.3344 | | 0.1183 | 0.2897 | 700 | 0.2818 | | 0.0982 | 0.3311 | 800 | 0.2951 | | 0.1028 | 0.3725 | 900 | 0.2737 | | 0.0901 | 0.4139 | 1000 | 0.2723 | | 0.0724 | 0.4553 | 1100 | 0.2761 | | 0.0668 | 0.4967 | 1200 | 0.2807 | | 0.0641 | 0.5381 | 1300 | 0.2699 | | 0.041 | 0.5795 | 1400 | 0.2727 | | 0.0438 | 0.6209 | 1500 | 0.2763 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3