robertgshaw2
commited on
Create quantization/apply_gptq_save_marlin.py
Browse files
quantization/apply_gptq_save_marlin.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse, gc, shutil
|
2 |
+
from transformers import AutoTokenizer
|
3 |
+
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
|
4 |
+
from datasets import load_dataset
|
5 |
+
|
6 |
+
parser = argparse.ArgumentParser()
|
7 |
+
parser.add_argument("--model-id", type=str)
|
8 |
+
parser.add_argument("--save-dir", type=str)
|
9 |
+
parser.add_argument("--channelwise", action="store_true")
|
10 |
+
parser.add_argument("--num-samples", type=int, default=512)
|
11 |
+
parser.add_argument("--max-seq-len", type=int, default=2048)
|
12 |
+
|
13 |
+
|
14 |
+
def preprocess(example):
|
15 |
+
return {"text": tokenizer.apply_chat_template(example["messages"], tokenize=False)}
|
16 |
+
|
17 |
+
if __name__ == "__main__":
|
18 |
+
args = parser.parse_args()
|
19 |
+
|
20 |
+
dataset = load_dataset("HuggingFaceH4/ultrachat_200k", split="train_sft[:5%]")
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model_id)
|
22 |
+
ds = dataset.shuffle().select(range(args.num_samples))
|
23 |
+
ds = ds.map(preprocess)
|
24 |
+
|
25 |
+
examples = [
|
26 |
+
tokenizer(
|
27 |
+
example["text"], padding=False, max_length=args.max_seq_len, truncation=True,
|
28 |
+
) for example in ds
|
29 |
+
]
|
30 |
+
|
31 |
+
if args.channelwise:
|
32 |
+
group_size = -1
|
33 |
+
else:
|
34 |
+
group_size = 128
|
35 |
+
|
36 |
+
quantize_config = BaseQuantizeConfig(
|
37 |
+
bits=4, # Only support 4 bit
|
38 |
+
group_size=group_size, # Set to g=128 or -1 (for channelwise)
|
39 |
+
desc_act=False, # Marlin does not suport act_order=True
|
40 |
+
model_file_base_name="model" # Name of the model.safetensors when we call save_pretrained
|
41 |
+
)
|
42 |
+
|
43 |
+
model = AutoGPTQForCausalLM.from_pretrained(
|
44 |
+
args.model_id,
|
45 |
+
quantize_config,
|
46 |
+
device_map="auto")
|
47 |
+
model.quantize(examples)
|
48 |
+
|
49 |
+
gptq_save_dir = args.gptq_save_dir
|
50 |
+
print(f"Saving gptq model to {gptq_save_dir}")
|
51 |
+
model.save_pretrained(gptq_save_dir)
|
52 |
+
tokenizer.save_pretrained(gptq_save_dir)
|
53 |
+
|
54 |
+
del model
|
55 |
+
gc.collect()
|
56 |
+
|
57 |
+
print("Reloading in marlin format")
|
58 |
+
gptq_save_dir = "./tmp-gptq"
|
59 |
+
marlin_model = AutoGPTQForCausalLM.from_quantized(
|
60 |
+
gptq_save_dir,
|
61 |
+
use_marlin=True,
|
62 |
+
device_map="auto")
|
63 |
+
|
64 |
+
print("Saving in marlin format")
|
65 |
+
marlin_model.save_pretrained(args.marlin_save_dir)
|
66 |
+
tokenizer.save_pretrained(args.marlin_save_dir)
|
67 |
+
|
68 |
+
shutil.rmtree(gptq_save_dir)
|