abhinavnmagic
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,21 +1,16 @@
|
|
1 |
---
|
2 |
tags:
|
3 |
- fp8
|
|
|
4 |
---
|
5 |
|
6 |
-
Mixtral-8x7B-Instruct-v0.1
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|mmlu |N/A |none | 0|acc |0.7008|± |0.0036|
|
14 |
-
| - humanities |N/A |none | 5|acc |0.6453|± |0.0065|
|
15 |
-
| - other |N/A |none | 5|acc |0.7692|± |0.0072|
|
16 |
-
| - social_sciences|N/A |none | 5|acc |0.8083|± |0.0070|
|
17 |
-
| - stem |N/A |none | 5|acc |0.6115|± |0.0083|
|
18 |
-
```
|
19 |
|
20 |
Quantized using the script below:
|
21 |
|
@@ -313,4 +308,23 @@ if __name__ == "__main__":
|
|
313 |
|
314 |
print("Exporting model with static weights and static activations")
|
315 |
save_quantized_model(model, args.activation_scheme, args.save_dir)
|
316 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
tags:
|
3 |
- fp8
|
4 |
+
- vllm
|
5 |
---
|
6 |
|
7 |
+
# Mixtral-8x7B-Instruct-v0.1-FP8
|
8 |
|
9 |
+
## Model Overview
|
10 |
+
Mixtral-8x7B-Instruct-v0.1 quantized to FP8 weights and activations, ready for inference with vLLM >= 0.5.0.
|
11 |
+
|
12 |
+
## Usage and Creation
|
13 |
+
Produced using [AutoFP8 with calibration samples from ultrachat](https://github.com/neuralmagic/AutoFP8/blob/147fa4d9e1a90ef8a93f96fc7d9c33056ddc017a/example_dataset.py).
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
Quantized using the script below:
|
16 |
|
|
|
308 |
|
309 |
print("Exporting model with static weights and static activations")
|
310 |
save_quantized_model(model, args.activation_scheme, args.save_dir)
|
311 |
+
```
|
312 |
+
|
313 |
+
## Evaluation
|
314 |
+
|
315 |
+
### Open LLM Leaderboard evaluation scores
|
316 |
+
| | Mixtral-8x7B-Instruct-v0.1 | Mixtral-8x7B-Instruct-v0.1-FP8<br>(this model) |
|
317 |
+
| :------------------: | :----------------------: | :------------------------------------------------: |
|
318 |
+
| arc-c<br>25-shot | 71.50 | 70.05 |
|
319 |
+
| hellaswag<br>10-shot | 87.53 | 86.30 |
|
320 |
+
| mmlu<br>5-shot | 70.33 | 68.81 |
|
321 |
+
| truthfulqa<br>0-shot | 64.79 | 63.69 |
|
322 |
+
| winogrande<br>5-shot | 82.40 | 81.69 |
|
323 |
+
| gsm8k<br>5-shot | 64.36 | 59.82 |
|
324 |
+
| **Average<br>Accuracy** | **73.48** | **71.72** |
|
325 |
+
| **Recovery** | **100%** | **97.60%** |
|
326 |
+
|
327 |
+
|
328 |
+
|
329 |
+
|
330 |
+
|