Add OpenLLM Leaderboard V1 and V2 evals (#1)
Browse files- Add OpenLLM Leaderboard V1 and V2 evals (632548784324a4fe188f974229181291dfb9bdca)
Co-authored-by: Neural Magic Research <[email protected]>
README.md
CHANGED
@@ -1,14 +1,16 @@
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
-
datasets:
|
4 |
-
- openai/gsm8k
|
5 |
language:
|
6 |
- en
|
7 |
tags:
|
8 |
-
-
|
9 |
- mistral-small
|
10 |
- fp8
|
11 |
- vllm
|
|
|
|
|
12 |
---
|
13 |
|
14 |
# Mistral-Small-24B-Instruct-2501-FP8-Dynamic
|
@@ -25,12 +27,12 @@ tags:
|
|
25 |
- **Model Developers:** Neural Magic
|
26 |
|
27 |
Quantized version of [Mistral-Small-24B-Instruct-2501](https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501).
|
28 |
-
It achieves
|
29 |
|
30 |
### Model Optimizations
|
31 |
|
32 |
-
This model was obtained by quantizing the weights and activations to FP8 data type, ready for inference with vLLM
|
33 |
-
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks are quantized.
|
34 |
|
35 |
## Deployment
|
36 |
|
@@ -43,7 +45,7 @@ from transformers import AutoTokenizer
|
|
43 |
from vllm import LLM, SamplingParams
|
44 |
|
45 |
max_model_len, tp_size = 4096, 1
|
46 |
-
model_name = "
|
47 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
48 |
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True)
|
49 |
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])
|
@@ -64,7 +66,7 @@ vLLM also supports OpenAI-compatible serving. See the [documentation](https://do
|
|
64 |
|
65 |
## Creation
|
66 |
|
67 |
-
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
|
68 |
|
69 |
|
70 |
```python
|
@@ -77,7 +79,7 @@ import os
|
|
77 |
def main():
|
78 |
parser = argparse.ArgumentParser(description='Quantize a transformer model to FP8')
|
79 |
parser.add_argument('--model_id', type=str, required=True,
|
80 |
-
help='The model ID from HuggingFace (e.g., "
|
81 |
parser.add_argument('--save_path', type=str, default='.',
|
82 |
help='Custom path to save the quantized model. If not provided, will use model_name-FP8-dynamic')
|
83 |
args = parser.parse_args()
|
@@ -110,41 +112,61 @@ if __name__ == "__main__":
|
|
110 |
|
111 |
## Evaluation
|
112 |
|
113 |
-
The
|
114 |
-
|
115 |
-
Evaluations were carried out using the following commands.
|
116 |
|
117 |
-
|
118 |
```
|
119 |
lm_eval \
|
120 |
--model vllm \
|
121 |
-
--model_args pretrained="
|
122 |
-
--tasks
|
123 |
-
--
|
|
|
|
|
|
|
124 |
```
|
125 |
|
126 |
-
|
127 |
```
|
128 |
lm_eval \
|
129 |
--model vllm \
|
130 |
-
--model_args pretrained="
|
131 |
-
--
|
132 |
-
--
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
```
|
135 |
|
136 |
### Accuracy
|
137 |
|
138 |
-
####
|
139 |
-
|
140 |
-
|
|
141 |
-
|
142 |
-
|
|
143 |
-
|
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
|
148 |
-
|
149 |
-
|
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
---
|
4 |
license: apache-2.0
|
|
|
|
|
5 |
language:
|
6 |
- en
|
7 |
tags:
|
8 |
+
- mistral
|
9 |
- mistral-small
|
10 |
- fp8
|
11 |
- vllm
|
12 |
+
base_model: mistralai/Mistral-Small-24B-Instruct-2501
|
13 |
+
library_name: transformers
|
14 |
---
|
15 |
|
16 |
# Mistral-Small-24B-Instruct-2501-FP8-Dynamic
|
|
|
27 |
- **Model Developers:** Neural Magic
|
28 |
|
29 |
Quantized version of [Mistral-Small-24B-Instruct-2501](https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501).
|
30 |
+
It achieves an average score of 78.88 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 79.45.
|
31 |
|
32 |
### Model Optimizations
|
33 |
|
34 |
+
This model was obtained by quantizing the weights and activations to FP8 data type, ready for inference with vLLM.
|
35 |
+
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks are quantized.
|
36 |
|
37 |
## Deployment
|
38 |
|
|
|
45 |
from vllm import LLM, SamplingParams
|
46 |
|
47 |
max_model_len, tp_size = 4096, 1
|
48 |
+
model_name = "neuralmagic/Mistral-Small-24B-Instruct-2501-FP8-Dynamic"
|
49 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
50 |
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True)
|
51 |
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])
|
|
|
66 |
|
67 |
## Creation
|
68 |
|
69 |
+
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
|
70 |
|
71 |
|
72 |
```python
|
|
|
79 |
def main():
|
80 |
parser = argparse.ArgumentParser(description='Quantize a transformer model to FP8')
|
81 |
parser.add_argument('--model_id', type=str, required=True,
|
82 |
+
help='The model ID from HuggingFace (e.g., "meta-llama/Meta-Llama-3-8B-Instruct")')
|
83 |
parser.add_argument('--save_path', type=str, default='.',
|
84 |
help='Custom path to save the quantized model. If not provided, will use model_name-FP8-dynamic')
|
85 |
args = parser.parse_args()
|
|
|
112 |
|
113 |
## Evaluation
|
114 |
|
115 |
+
The model was evaluated on OpenLLM Leaderboard [V1](https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard) and [V2](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/), using the following commands:
|
|
|
|
|
116 |
|
117 |
+
OpenLLM Leaderboard V1:
|
118 |
```
|
119 |
lm_eval \
|
120 |
--model vllm \
|
121 |
+
--model_args pretrained="neuralmagic/Mistral-Small-24B-Instruct-2501-FP8-Dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \
|
122 |
+
--tasks openllm \
|
123 |
+
--write_out \
|
124 |
+
--batch_size auto \
|
125 |
+
--output_path output_dir \
|
126 |
+
--show_config
|
127 |
```
|
128 |
|
129 |
+
OpenLLM Leaderboard V2:
|
130 |
```
|
131 |
lm_eval \
|
132 |
--model vllm \
|
133 |
+
--model_args pretrained="neuralmagic/Mistral-Small-24B-Instruct-2501-FP8-Dynamic",dtype=auto,add_bos_token=False,max_model_len=4096,tensor_parallel_size=1,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \
|
134 |
+
--apply_chat_template \
|
135 |
+
--fewshot_as_multiturn \
|
136 |
+
--tasks leaderboard \
|
137 |
+
--write_out \
|
138 |
+
--batch_size auto \
|
139 |
+
--output_path output_dir \
|
140 |
+
--show_config
|
141 |
|
142 |
```
|
143 |
|
144 |
### Accuracy
|
145 |
|
146 |
+
#### OpenLLM Leaderboard V1 evaluation scores
|
147 |
+
|
148 |
+
| Metric | mistralai/Mistral-Small-24B-Instruct-2501 | nm-testing/Mistral-Small-24B-Instruct-2501-FP8-dynamic |
|
149 |
+
|-----------------------------------------|:---------------------------------:|:-------------------------------------------:|
|
150 |
+
| ARC-Challenge (Acc-Norm, 25-shot) | 72.18 | 71.76 |
|
151 |
+
| GSM8K (Strict-Match, 5-shot) | 90.14 | 89.01 |
|
152 |
+
| HellaSwag (Acc-Norm, 10-shot) | 85.05 | 84.65 |
|
153 |
+
| MMLU (Acc, 5-shot) | 80.69 | 80.55 |
|
154 |
+
| TruthfulQA (MC2, 0-shot) | 65.55 | 64.85 |
|
155 |
+
| Winogrande (Acc, 5-shot) | 83.11 | 82.48 |
|
156 |
+
| **Average Score** | **79.45** | **78.88** |
|
157 |
+
| **Recovery (%)** | **100.00** | **99.28** |
|
158 |
+
|
159 |
+
#### OpenLLM Leaderboard V2 evaluation scores
|
160 |
+
|
161 |
+
| Metric | mistralai/Mistral-Small-24B-Instruct-2501 | nm-testing/Mistral-Small-24B-Instruct-2501-FP8-dynamic |
|
162 |
+
|---------------------------------------------------------|:---------------------------------:|:-------------------------------------------:|
|
163 |
+
| IFEval (Inst-and-Prompt Level Strict Acc, 0-shot) | 73.27 | 73.53 |
|
164 |
+
| BBH (Acc-Norm, 3-shot) | 45.18 | 44.39 |
|
165 |
+
| MMLU-Pro (Acc, 5-shot) | 38.83 | 37.28 |
|
166 |
+
| **Average Score** | **52.42** | **51.73** |
|
167 |
+
| **Recovery (%)** | **100.00** | **98.68** |
|
168 |
+
| Math-Hard (Exact-Match, 4-shot) | 6.35 | 2.99 |
|
169 |
+
| GPQA (Acc-Norm, 0-shot) | 8.29 | 6.97 |
|
170 |
+
| MUSR (Acc-Norm, 0-shot) | 7.84 | 8.04 |
|
171 |
+
|
172 |
+
Results on Math-Hard, GPQA, and MUSR are not considred for accuracy recovery calculation because the unquantized model has close to random prediction accuracy (6.35, 8.29, 7.84) which doesn't provide a reliable baseline for recovery calculation.
|