File size: 8,977 Bytes
5fe96cf
 
 
 
 
 
fc4ffcb
 
 
 
 
 
 
 
 
 
5fe96cf
 
 
 
 
 
 
 
 
 
 
b589a15
5fe96cf
 
 
 
 
 
 
019d944
5fe96cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
019d944
5fe96cf
 
 
019d944
5fe96cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9e995e
 
019d944
5fe96cf
 
 
 
 
 
 
 
 
 
019d944
5fe96cf
 
 
 
 
 
 
019d944
5fe96cf
019d944
5fe96cf
 
 
 
019d944
 
 
 
 
 
 
 
 
 
5fe96cf
3459f3c
5fe96cf
019d944
5fe96cf
019d944
5fe96cf
019d944
5fe96cf
 
 
019d944
5fe96cf
019d944
5fe96cf
019d944
5fe96cf
019d944
5fe96cf
 
 
 
 
019d944
5fe96cf
019d944
5fe96cf
019d944
5fe96cf
 
 
 
 
019d944
5fe96cf
019d944
5fe96cf
019d944
5fe96cf
 
 
893683d
5fe96cf
019d944
5fe96cf
019d944
5fe96cf
019d944
5fe96cf
 
 
 
 
019d944
5fe96cf
019d944
5fe96cf
019d944
5fe96cf
 
b9e995e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
019d944
 
 
 
 
 
 
 
 
 
 
b9e995e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
893683d
b9e995e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
893683d
b9e995e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
---
tags:
- fp8
- vllm
language:
- en
- de
- fr
- it
- pt
- hi
- es
- th
pipeline_tag: text-generation
license: llama3.1
base_model: meta-llama/Meta-Llama-3.1-70B-Instruct
---

# Meta-Llama-3.1-70B-Instruct-FP8-dynamic

## Model Overview
- **Model Architecture:** Meta-Llama-3.1
  - **Input:** Text
  - **Output:** Text
- **Model Optimizations:**
  - **Weight quantization:** FP8
  - **Activation quantization:** FP8
- **Intended Use Cases:** Intended for commercial and research use in multiple languages. Similarly to [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct), this models is intended for assistant-like chat.
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
- **Release Date:** 7/23/2024
- **Version:** 1.0
- **License(s):** [llama3.1](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B/blob/main/LICENSE)
- **Model Developers:** Neural Magic

Quantized version of [Meta-Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct).
It achieves an average score of 84.16 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 84.40.

### Model Optimizations

This model was obtained by quantizing the weights and activations of [Meta-Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct) to FP8 data type, ready for inference with vLLM built from source.
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%.

Only the weights and activations of the linear operators within transformers blocks are quantized. Symmetric per-channel quantization is applied, in which a linear scaling per output dimension maps the FP8 representations of the quantized weights and activations. Activations are also quantized on a per-token dynamic basis.
[LLM Compressor](https://github.com/vllm-project/llm-compressor) is used for quantization with 512 sequences of UltraChat.

## Deployment

### Use with vLLM

This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.

```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer

model_id = "neuralmagic/Meta-Llama-3.1-70B-Instruct-FP8-dynamic"
number_gpus = 2

sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)

tokenizer = AutoTokenizer.from_pretrained(model_id)

messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": "Who are you?"},
]

prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)

llm = LLM(model=model_id, tensor_parallel_size=number_gpus)

outputs = llm.generate(prompts, sampling_params)

generated_text = outputs[0].outputs[0].text
print(generated_text)
```

vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.

## Creation

This model was created by applying [LLM Compressor with calibration samples from UltraChat](https://github.com/vllm-project/llm-compressor/blob/sa/big_model_support/examples/big_model_offloading/big_model_w8a8_calibrate.py), as presented in the code snipet below.

```python
import torch

from transformers import AutoTokenizer

from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot
from llmcompressor.transformers.compression.helpers import (  # noqa
    calculate_offload_device_map,
    custom_offload_device_map,
)

recipe = """
quant_stage:
    quant_modifiers:
        QuantizationModifier:
            ignore: ["lm_head"]
            config_groups:
                group_0:
                    weights:
                        num_bits: 8
                        type: float
                        strategy: channel
                        dynamic: false
                        symmetric: true
                    input_activations:
                        num_bits: 8
                        type: float
                        strategy: token
                        dynamic: true
                        symmetric: true
                    targets: ["Linear"]
"""

model_stub = "meta-llama/Meta-Llama-3.1-70B-Instruct"
model_name = model_stub.split("/")[-1]

device_map = calculate_offload_device_map(
    model_stub, reserve_for_hessians=False, num_gpus=2, torch_dtype="auto"
)

model = SparseAutoModelForCausalLM.from_pretrained(
    model_stub, torch_dtype="auto", device_map=device_map
)

output_dir = f"./{model_name}-FP8-dynamic"

oneshot(
    model=model,
    recipe=recipe,
    output_dir=output_dir,
    save_compressed=True,
    tokenizer=AutoTokenizer.from_pretrained(model_stub),
)
```

## Evaluation

The model was evaluated on MMLU, ARC-Challenge, GSM-8K, Hellaswag, Winogrande and TruthfulQA.
Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine.
This version of the lm-evaluation-harness includes versions of ARC-Challenge, GSM-8K, MMLU, and MMLU-cot that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-8B-Instruct-evals).

### Accuracy

#### Open LLM Leaderboard evaluation scores
<table>
  <tr>
   <td><strong>Benchmark</strong>
   </td>
   <td><strong>Meta-Llama-3.1-70B-Instruct </strong>
   </td>
   <td><strong>Meta-Llama-3.1-70B-Instruct-FP8(this model)</strong>
   </td>
   <td><strong>Recovery</strong>
   </td>
  </tr>
  <tr>
   <td>MMLU (5-shot)
   </td>
   <td>83.83
   </td>
   <td>83.75
   </td>
   <td>99.90%
   </td>
  </tr>
  <tr>
   <td>MMLU-cot (0-shot)
   </td>
   <td>86.01
   </td>
   <td>85.48
   </td>
   <td>99.38%
   </td>
  </tr>
  <tr>
   <td>ARC Challenge (0-shot)
   </td>
   <td>93.26
   </td>
   <td>93.52
   </td>
   <td>100.2%
   </td>
  </tr>
  <tr>
   <td>GSM-8K-cot (8-shot, strict-match)
   </td>
   <td>94.92
   </td>
   <td>94.54
   </td>
   <td>99.60%
   </td>
  </tr>
  <tr>
   <td>Hellaswag (10-shot)
   </td>
   <td>86.75
   </td>
   <td>86.63
   </td>
   <td>99.86%
   </td>
  </tr>
  <tr>
   <td>Winogrande (5-shot)
   </td>
   <td>85.32
   </td>
   <td>84.61
   </td>
   <td>99.17%
   </td>
  </tr>
  <tr>
   <td>TruthfulQA (0-shot, mc2)
   </td>
   <td>60.68
   </td>
   <td>60.60
   </td>
   <td>99.87%
   </td>
  </tr>
  <tr>
   <td><strong>Average</strong>
   </td>
   <td><strong>84.40</strong>
   </td>
   <td><strong>84.16</strong>
   </td>
   <td><strong>99.72%</strong>
   </td>
  </tr>
</table>

### Reproduction

The results were obtained using the following commands:

#### MMLU
```
lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2 \
  --tasks mmlu \
  --num_fewshot 5 \
  --batch_size auto
```

#### MMLU-cot
```
lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2 \
  --tasks mmlu_cot_0shot_llama_3.1_instruct \
  --apply_chat_template \
  --num_fewshot 0 \
  --batch_size auto
```

#### ARC-Challenge
```
lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2 \
  --tasks arc_challenge_llama_3.1_instruct \
  --apply_chat_template \
  --num_fewshot 0 \
  --batch_size auto
```

#### GSM-8K
```
lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2 \
  --tasks gsm8k_cot_llama_3.1_instruct \
  --apply_chat_template \
  --fewshot_as_multiturn \
  --num_fewshot 8 \
  --batch_size auto
```

#### Hellaswag
```
lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2 \
  --tasks hellaswag \
  --num_fewshot 10 \
  --batch_size auto
```

#### Winogrande
```
lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2 \
  --tasks winogrande \
  --num_fewshot 5 \
  --batch_size auto
```

#### TruthfulQA
```
lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2 \
  --tasks truthfulqa \
  --num_fewshot 0 \
  --batch_size auto
```