alexmarques
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -32,7 +32,7 @@ base_model: meta-llama/Meta-Llama-3.1-405B-Instruct
|
|
32 |
- **Model Developers:** Neural Magic
|
33 |
|
34 |
Quantized version of [Meta-Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct).
|
35 |
-
It achieves scores within
|
36 |
|
37 |
### Model Optimizations
|
38 |
|
@@ -145,6 +145,8 @@ The model was evaluated on MMLU, ARC-Challenge, GSM-8K, Hellaswag, Winogrande an
|
|
145 |
Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine.
|
146 |
This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challenge and GSM-8K that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-405B-Instruct-evals).
|
147 |
|
|
|
|
|
148 |
### Accuracy
|
149 |
|
150 |
#### Open LLM Leaderboard evaluation scores
|
@@ -162,11 +164,11 @@ This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challen
|
|
162 |
<tr>
|
163 |
<td>MMLU (5-shot)
|
164 |
</td>
|
165 |
-
<td>87.
|
166 |
</td>
|
167 |
-
<td>87.
|
168 |
</td>
|
169 |
-
<td>100.
|
170 |
</td>
|
171 |
</tr>
|
172 |
<tr>
|
@@ -174,9 +176,9 @@ This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challen
|
|
174 |
</td>
|
175 |
<td>88.26
|
176 |
</td>
|
177 |
-
<td>88.
|
178 |
</td>
|
179 |
-
<td>
|
180 |
</td>
|
181 |
</tr>
|
182 |
<tr>
|
@@ -184,9 +186,9 @@ This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challen
|
|
184 |
</td>
|
185 |
<td>94.97
|
186 |
</td>
|
187 |
-
<td>94.
|
188 |
</td>
|
189 |
-
<td>99.
|
190 |
</td>
|
191 |
</tr>
|
192 |
<tr>
|
@@ -196,7 +198,7 @@ This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challen
|
|
196 |
</td>
|
197 |
<td>96.13
|
198 |
</td>
|
199 |
-
<td>
|
200 |
</td>
|
201 |
</tr>
|
202 |
<tr>
|
@@ -204,7 +206,7 @@ This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challen
|
|
204 |
</td>
|
205 |
<td>88.33
|
206 |
</td>
|
207 |
-
<td>88.
|
208 |
</td>
|
209 |
<td>100.2%
|
210 |
</td>
|
@@ -214,9 +216,9 @@ This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challen
|
|
214 |
</td>
|
215 |
<td>87.21
|
216 |
</td>
|
217 |
-
<td>87.
|
218 |
</td>
|
219 |
-
<td>100.
|
220 |
</td>
|
221 |
</tr>
|
222 |
<tr>
|
@@ -224,7 +226,7 @@ This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challen
|
|
224 |
</td>
|
225 |
<td>64.64
|
226 |
</td>
|
227 |
-
<td>65.
|
228 |
</td>
|
229 |
<td>101.2%
|
230 |
</td>
|
@@ -234,7 +236,7 @@ This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challen
|
|
234 |
</td>
|
235 |
<td><strong>86.75</strong>
|
236 |
</td>
|
237 |
-
<td><strong>86.
|
238 |
</td>
|
239 |
<td><strong>100.2%</strong>
|
240 |
</td>
|
@@ -249,7 +251,7 @@ The results were obtained using the following commands:
|
|
249 |
```
|
250 |
lm_eval \
|
251 |
--model vllm \
|
252 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w8a16",dtype=auto,
|
253 |
--tasks mmlu_llama_3.1_instruct \
|
254 |
--fewshot_as_multiturn \
|
255 |
--apply_chat_template \
|
@@ -261,7 +263,7 @@ lm_eval \
|
|
261 |
```
|
262 |
lm_eval \
|
263 |
--model vllm \
|
264 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w8a16",dtype=auto,
|
265 |
--tasks mmlu_cot_0shot_llama_3.1_instruct \
|
266 |
--apply_chat_template \
|
267 |
--num_fewshot 0 \
|
@@ -272,7 +274,7 @@ lm_eval \
|
|
272 |
```
|
273 |
lm_eval \
|
274 |
--model vllm \
|
275 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w8a16",dtype=auto,
|
276 |
--tasks arc_challenge_llama_3.1_instruct \
|
277 |
--apply_chat_template \
|
278 |
--num_fewshot 0 \
|
@@ -283,7 +285,7 @@ lm_eval \
|
|
283 |
```
|
284 |
lm_eval \
|
285 |
--model vllm \
|
286 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w8a16",dtype=auto,
|
287 |
--tasks gsm8k_cot_llama_3.1_instruct \
|
288 |
--fewshot_as_multiturn \
|
289 |
--apply_chat_template \
|
|
|
32 |
- **Model Developers:** Neural Magic
|
33 |
|
34 |
Quantized version of [Meta-Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct).
|
35 |
+
It achieves scores within 0.3% of the scores of the unquantized model for MMLU, ARC-Challenge, GSM-8k, Hellaswag, Winogrande and TruthfulQA.
|
36 |
|
37 |
### Model Optimizations
|
38 |
|
|
|
145 |
Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine.
|
146 |
This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challenge and GSM-8K that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-405B-Instruct-evals).
|
147 |
|
148 |
+
**Note:** Results have been updated after Meta modified the chat template.
|
149 |
+
|
150 |
### Accuracy
|
151 |
|
152 |
#### Open LLM Leaderboard evaluation scores
|
|
|
164 |
<tr>
|
165 |
<td>MMLU (5-shot)
|
166 |
</td>
|
167 |
+
<td>87.38
|
168 |
</td>
|
169 |
+
<td>87.59
|
170 |
</td>
|
171 |
+
<td>100.2%
|
172 |
</td>
|
173 |
</tr>
|
174 |
<tr>
|
|
|
176 |
</td>
|
177 |
<td>88.26
|
178 |
</td>
|
179 |
+
<td>88.19
|
180 |
</td>
|
181 |
+
<td>99.9%
|
182 |
</td>
|
183 |
</tr>
|
184 |
<tr>
|
|
|
186 |
</td>
|
187 |
<td>94.97
|
188 |
</td>
|
189 |
+
<td>94.80
|
190 |
</td>
|
191 |
+
<td>99.8%
|
192 |
</td>
|
193 |
</tr>
|
194 |
<tr>
|
|
|
198 |
</td>
|
199 |
<td>96.13
|
200 |
</td>
|
201 |
+
<td>100.8%
|
202 |
</td>
|
203 |
</tr>
|
204 |
<tr>
|
|
|
206 |
</td>
|
207 |
<td>88.33
|
208 |
</td>
|
209 |
+
<td>88.52
|
210 |
</td>
|
211 |
<td>100.2%
|
212 |
</td>
|
|
|
216 |
</td>
|
217 |
<td>87.21
|
218 |
</td>
|
219 |
+
<td>87.92
|
220 |
</td>
|
221 |
+
<td>100.8%
|
222 |
</td>
|
223 |
</tr>
|
224 |
<tr>
|
|
|
226 |
</td>
|
227 |
<td>64.64
|
228 |
</td>
|
229 |
+
<td>65.41
|
230 |
</td>
|
231 |
<td>101.2%
|
232 |
</td>
|
|
|
236 |
</td>
|
237 |
<td><strong>86.75</strong>
|
238 |
</td>
|
239 |
+
<td><strong>86.94</strong>
|
240 |
</td>
|
241 |
<td><strong>100.2%</strong>
|
242 |
</td>
|
|
|
251 |
```
|
252 |
lm_eval \
|
253 |
--model vllm \
|
254 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w8a16",dtype=auto,max_model_len=3850,max_gen_toks=10,enable_chunked_prefill=True,tensor_parallel_size=8 \
|
255 |
--tasks mmlu_llama_3.1_instruct \
|
256 |
--fewshot_as_multiturn \
|
257 |
--apply_chat_template \
|
|
|
263 |
```
|
264 |
lm_eval \
|
265 |
--model vllm \
|
266 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w8a16",dtype=auto,max_model_len=4064,max_gen_toks=1024,enable_chunked_prefill=True,tensor_parallel_size=8 \
|
267 |
--tasks mmlu_cot_0shot_llama_3.1_instruct \
|
268 |
--apply_chat_template \
|
269 |
--num_fewshot 0 \
|
|
|
274 |
```
|
275 |
lm_eval \
|
276 |
--model vllm \
|
277 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w8a16",dtype=auto,max_model_len=3940,max_gen_toks=100,enable_chunked_prefill=True,tensor_parallel_size=8 \
|
278 |
--tasks arc_challenge_llama_3.1_instruct \
|
279 |
--apply_chat_template \
|
280 |
--num_fewshot 0 \
|
|
|
285 |
```
|
286 |
lm_eval \
|
287 |
--model vllm \
|
288 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w8a16",dtype=auto,max_model_len=4096,max_gen_toks=1024,enable_chunked_prefill=True,tensor_parallel_size=8 \
|
289 |
--tasks gsm8k_cot_llama_3.1_instruct \
|
290 |
--fewshot_as_multiturn \
|
291 |
--apply_chat_template \
|