File size: 5,898 Bytes
6b438fd 81825c5 6b438fd 607f078 93ad4ce 063a736 607f078 063a736 7610e80 b198789 17680c0 b198789 17680c0 b198789 43517d5 b198789 43517d5 b198789 43517d5 17680c0 43517d5 0f08637 b198789 43517d5 17680c0 43517d5 b198789 81bfb1c 43517d5 b198789 43517d5 b198789 6b438fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
---
pipeline_tag: zero-shot-classification
base_model: laion/CLIP-ViT-B-32-256x256-DataComp-s34B-b86K
inference: false
tags:
- deepsparse
---
This is a [SparseML](https://github.com/neuralmagic/sparseml) quantized version of
https://huggingface.co/laion/CLIP-ViT-B-32-256x256-DataComp-s34B-b86K that is ready to use with
the [DeepSparse](https://github.com/neuralmagic/deepsparse) CPU inference engine.
It achieves **71.1%** zero-shot top-1 accuracy on ImageNet and **95.6%** zero-shot top-1 accuracy on Imagenette.
For comparison the dense version (the original model) achieves **72.8%** on ImageNet and **95.7%** on Imagenette.
On an Intel avx512 CPU machine with 64 cores and VNNI support, this model achieves a **2.35x** speedup for textual
and **2.84x** speedup for visual inputs as compared to the full-precision model. With a batch size of 64,
the throughput was measured as **1230 items/sec** for images and **2009 items/sec** for text.
This model and the example pipeline were created by Eugenia Iofinova, Michael Goin, Chris Wendler, and Dan Alistarh.
Special thanks to Abhinav Agarwalla and Alexandre Marques for technical support with parts of the project.
Notebook for basic usage: [![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1ZvU9ZSHJKSeJyH5bgxo_A-GSVIUcSt2E?usp=sharing)
Notebook for Imagenette evaluation: [![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1-Duq0YNtjzOnmuXCYo-5DDiOzeCItXpN?usp=sharing)
## Setup for usage
First, install DeepSparse with extensions for CLIP:
```
pip install deepsparse-nightly[clip]>=1.7.0.20231210
```
Download some test images of a church, a dog, and elephants:
```
wget -O basilica.jpg https://raw.githubusercontent.com/neuralmagic/deepsparse/main/src/deepsparse/yolo/sample_images/basilica.jpg
wget -O buddy.jpeg https://raw.githubusercontent.com/neuralmagic/deepsparse/main/tests/deepsparse/pipelines/sample_images/buddy.jpeg
wget -O thailand.jpg https://raw.githubusercontent.com/neuralmagic/deepsparse/main/src/deepsparse/yolact/sample_images/thailand.jpg
```
For this model there is a second input that is the length of tokens, so run this input override code before making a text pipeline:
```python
import numpy as np
from deepsparse.clip import CLIPTextPipeline
def custom_process_inputs(self, inputs):
if not isinstance(inputs.text, list):
inputs.text = [inputs.text]
if not isinstance(inputs.text[0], str):
return inputs.text
tokens = [np.array(t).astype(np.int32) for t in self.tokenizer(inputs.text)]
tokens = np.stack(tokens, axis=0)
tokens_lengths = np.array(tokens.shape[0] * [tokens.shape[1] - 1])
return [tokens, tokens_lengths]
# This overrides the process_inputs function globally for all CLIPTextPipeline classes
CLIPTextPipeline.process_inputs = custom_process_inputs
```
## Text embedding pipeline
Here is an example of how to create and use a [DeepSparse pipeline for text embeddings](https://github.com/neuralmagic/deepsparse/blob/main/src/deepsparse/clip/text_pipeline.py).
```python
from deepsparse import Pipeline
from huggingface_hub import snapshot_download
# Download the model from HF
model_folder = snapshot_download(repo_id="neuralmagic/CLIP-ViT-B-32-256x256-DataComp-s34B-b86K-quant-ds")
text_embed_pipeline = Pipeline.create(task="clip_text", model_path=model_folder + "/textual.onnx")
text = ["ice cream", "an elephant", "a dog", "a building", "a church"]
embeddings = text_embed_pipeline(text=text).text_embeddings
for i in range(len(embeddings)):
print(embeddings[i].shape)
print(embeddings[i])
```
## Image embedding pipeline
Here is an example of how to create and use a [DeepSparse pipeline for image embeddings](https://github.com/neuralmagic/deepsparse/blob/main/src/deepsparse/clip/visual_pipeline.py).
```python
from deepsparse import Pipeline
from huggingface_hub import snapshot_download
# Download the model from HF
model_folder = snapshot_download(repo_id="neuralmagic/CLIP-ViT-B-32-256x256-DataComp-s34B-b86K-quant-ds")
image_embed_pipeline = Pipeline.create(task="clip_visual", model_path=model_folder + "/visual.onnx")
images = ["basilica.jpg", "buddy.jpeg", "thailand.jpg"]
embeddings = image_embed_pipeline(images=images).image_embeddings
for i in range(len(embeddings)):
print(embeddings[i].shape)
print(embeddings[i])
```
## Zero-shot image classification pipeline
Since CLIP trained both the text and image embedding models in tandem, we can generate embeddings for both and relate them together without retraining. Here is an example of how to create and use a [DeepSparse pipeline for zero-shot image classification](https://github.com/neuralmagic/deepsparse/blob/main/src/deepsparse/clip/zeroshot_pipeline.py).
```python
from deepsparse import Pipeline
from deepsparse.clip import (
CLIPTextInput,
CLIPVisualInput,
CLIPZeroShotInput
)
from huggingface_hub import snapshot_download
# Download the model from HF
model_folder = snapshot_download(repo_id="neuralmagic/CLIP-ViT-B-32-256x256-DataComp-s34B-b86K-quant-ds")
possible_classes = ["ice cream", "an elephant", "a dog", "a building", "a church"]
images = ["basilica.jpg", "buddy.jpeg", "thailand.jpg"]
# Load the model into DeepSparse
pipeline = Pipeline.create(
task="clip_zeroshot",
visual_model_path=model_folder + "/visual.onnx",
text_model_path=model_folder + "/textual.onnx"
)
# Infer
output = pipeline(
image=CLIPVisualInput(images=images),
text=CLIPTextInput(text=possible_classes),
).text_scores
for i in range(len(output)):
prediction = possible_classes[np.argmax(output[i])]
print(f"Image {images[i]} is a picture of {prediction}")
"""
Image basilica.jpg is a picture of a church
Image buddy.jpeg is a picture of a dog
Image thailand.jpg is a picture of an elephant
"""
``` |