nesemenpolkov commited on
Commit
2978268
·
verified ·
1 Parent(s): 3de2221

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +62 -168
README.md CHANGED
@@ -5,199 +5,93 @@ tags:
5
  - msu
6
  - wiki
7
  - fine-tuned
 
 
 
 
 
 
 
 
 
 
 
8
  ---
9
 
10
  # Model Card for Model ID
11
-
12
- <!-- Provide a quick summary of what the model is/does. -->
13
-
 
 
 
14
 
15
 
16
  ## Model Details
17
 
18
- ### Model Description
19
-
20
- <!-- Provide a longer summary of what this model is. -->
 
 
21
 
22
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
23
 
24
- - **Developed by:** [More Information Needed]
25
- - **Funded by [optional]:** [More Information Needed]
26
- - **Shared by [optional]:** [More Information Needed]
27
- - **Model type:** [More Information Needed]
28
- - **Language(s) (NLP):** [More Information Needed]
29
- - **License:** [More Information Needed]
30
- - **Finetuned from model [optional]:** [More Information Needed]
31
 
32
- ### Model Sources [optional]
33
 
34
- <!-- Provide the basic links for the model. -->
35
 
36
- - **Repository:** [More Information Needed]
37
- - **Paper [optional]:** [More Information Needed]
38
- - **Demo [optional]:** [More Information Needed]
39
 
40
- ## Uses
 
41
 
42
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
43
 
44
- ### Direct Use
45
 
46
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
47
 
48
- [More Information Needed]
 
49
 
50
- ### Downstream Use [optional]
 
 
 
 
 
 
51
 
52
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
 
 
 
 
53
 
54
- [More Information Needed]
55
 
56
- ### Out-of-Scope Use
 
 
57
 
58
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
59
-
60
- [More Information Needed]
61
 
62
  ## Bias, Risks, and Limitations
63
 
64
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
65
-
66
- [More Information Needed]
67
-
68
- ### Recommendations
69
-
70
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
71
-
72
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
73
-
74
- ## How to Get Started with the Model
75
-
76
- Use the code below to get started with the model.
77
-
78
- [More Information Needed]
79
-
80
- ## Training Details
81
-
82
- ### Training Data
83
-
84
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
85
-
86
- [More Information Needed]
87
-
88
- ### Training Procedure
89
-
90
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
91
-
92
- #### Preprocessing [optional]
93
-
94
- [More Information Needed]
95
-
96
-
97
- #### Training Hyperparameters
98
-
99
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
100
-
101
- #### Speeds, Sizes, Times [optional]
102
-
103
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
104
-
105
- [More Information Needed]
106
-
107
- ## Evaluation
108
-
109
- <!-- This section describes the evaluation protocols and provides the results. -->
110
-
111
- ### Testing Data, Factors & Metrics
112
-
113
- #### Testing Data
114
-
115
- <!-- This should link to a Dataset Card if possible. -->
116
-
117
- [More Information Needed]
118
-
119
- #### Factors
120
-
121
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
122
-
123
- [More Information Needed]
124
-
125
- #### Metrics
126
-
127
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
128
 
129
- [More Information Needed]
130
-
131
- ### Results
132
-
133
- [More Information Needed]
134
-
135
- #### Summary
136
-
137
-
138
-
139
- ## Model Examination [optional]
140
-
141
- <!-- Relevant interpretability work for the model goes here -->
142
-
143
- [More Information Needed]
144
-
145
- ## Environmental Impact
146
-
147
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
148
-
149
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
150
-
151
- - **Hardware Type:** [More Information Needed]
152
- - **Hours used:** [More Information Needed]
153
- - **Cloud Provider:** [More Information Needed]
154
- - **Compute Region:** [More Information Needed]
155
- - **Carbon Emitted:** [More Information Needed]
156
-
157
- ## Technical Specifications [optional]
158
-
159
- ### Model Architecture and Objective
160
-
161
- [More Information Needed]
162
-
163
- ### Compute Infrastructure
164
-
165
- [More Information Needed]
166
-
167
- #### Hardware
168
-
169
- [More Information Needed]
170
-
171
- #### Software
172
-
173
- [More Information Needed]
174
 
175
  ## Citation [optional]
176
-
177
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
178
-
179
- **BibTeX:**
180
-
181
- [More Information Needed]
182
-
183
- **APA:**
184
-
185
- [More Information Needed]
186
-
187
- ## Glossary [optional]
188
-
189
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
190
-
191
- [More Information Needed]
192
-
193
- ## More Information [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Authors [optional]
198
-
199
- [More Information Needed]
200
-
201
- ## Model Card Contact
202
-
203
- [More Information Needed]
 
5
  - msu
6
  - wiki
7
  - fine-tuned
8
+ datasets:
9
+ - RCC-MSU/collection3
10
+ language:
11
+ - ru
12
+ metrics:
13
+ - precision
14
+ - recall
15
+ - f1
16
+ base_model:
17
+ - Babelscape/wikineural-multilingual-ner
18
+ pipeline_tag: token-classification
19
  ---
20
 
21
  # Model Card for Model ID
22
+ Fine-tuned multilingual model for russian language NER.
23
+ This is the model card for fine-tuned [Babelscape/wikineural-multilingual-ner](https://huggingface.co/Babelscape/wikineural-multilingual-ner), which has multilingual mBERT as its base.
24
+ I`ve fine-tuned it using [RCC-MSU/collection3](https://huggingface.co/datasets/RCC-MSU/collection3) dataset for token-classification task. The dataset has BIO-pattern and following labels:
25
+ ```python
26
+ label_names = ['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC']
27
+ ```
28
 
29
 
30
  ## Model Details
31
 
32
+ Fine-tuning was proceeded in 3 epochs, and computed next metrics:
33
+ | Epoch | Training Loss | Validation Loss | Precision | Recall | F1 | Accuracy |
34
+ | 1 | 0.041000 | 0.032810 | 0.959569 | 0.974253 | 0.966855 | 0.993325 |
35
+ | 2 | 0.020800 | 0.028395 | 0.959569 | 0.974253 | 0.966855 | 0.993325 |
36
+ | 3 | 0.010500 | 0.029138 | 0.963239 | 0.973767 | 0.968474 | 0.993247 |
37
 
38
+ To avoid over-fitting due to a small amount of training samples, i used hight weight_decay = 0.1.
39
 
 
 
 
 
 
 
 
40
 
41
+ ## Basic usage
42
 
43
+ So, you can easily use this model with pipeline for 'token-classification' task.
44
 
45
+ ```python
46
+ import torch
 
47
 
48
+ from transformers import AutoModelForTokenClassification, AutoTokenizer, pipeline
49
+ from datasets import load_dataset
50
 
 
51
 
52
+ model_ckpt = "nesemenpolkov/msu-wiki-ner"
53
 
54
+ label_names = ['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC']
55
 
56
+ id2label = {i: label for i, label in enumerate(label_names)}
57
+ label2id = {v: k for k, v in id2label.items()}
58
 
59
+ tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
60
+ model = AutoModelForTokenClassification.from_pretrained(
61
+ model_ckpt,
62
+ id2label=id2label,
63
+ label2id=label2id,
64
+ ignore_mismatched_sizes=True
65
+ )
66
 
67
+ pipe = pipeline(
68
+ task="token-classification",
69
+ model=model,
70
+ tokenizer=tokenizer,
71
+ device=torch.device("cuda" if torch.cuda.is_available() else "cpu"),
72
+ aggregation_strategy="simple"
73
+ )
74
 
75
+ demo_sample = "Этот Иван Иванов, в паспорте Иванов И.И."
76
 
77
+ with torch.no_grad():
78
+ out = pipe(demo_sample)
79
+ ```
80
 
 
 
 
81
 
82
  ## Bias, Risks, and Limitations
83
 
84
+ This model is finetuned version of [Babelscape/wikineural-multilingual-ner](https://huggingface.co/Babelscape/wikineural-multilingual-ner), on a russian language NER dataset [RCC-MSU/collection3](https://huggingface.co/datasets/RCC-MSU/collection3). It can show low scores on another language texts.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86
 
87
  ## Citation [optional]
88
+ ```
89
+ @inproceedings{tedeschi-etal-2021-wikineural-combined,
90
+ title = "Fine-tuned multilingual model for russian language NER.",
91
+ author = "nesemenpolkov",
92
+ booktitle = "Detecting names in noisy and dirty data.",
93
+ month = oct,
94
+ year = "2024",
95
+ address = "Moscow, Russian Federation",
96
+ }
97
+ ```