--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-7B-Instruct tags: - axolotl - generated_from_trainer datasets: - medalpaca/medical_meadow_medqa model-index: - name: qwen-qlora-fsdp results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml base_model: Qwen/Qwen2.5-7B-Instruct trust_remote_code: true load_in_8bit: false load_in_4bit: true strict: false datasets: - path: medalpaca/medical_meadow_medqa type: alpaca dataset_prepared_path: val_set_size: 0.2 output_dir: ./outputs/out sequence_len: 2048 sample_packing: true eval_sample_packing: true pad_to_sequence_len: true adapter: qlora lora_model_dir: lora_r: 256 lora_alpha: 128 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 1 num_epochs: 3 optimizer: adamw_torch lr_scheduler: cosine learning_rate: 0.00002 train_on_inputs: false group_by_length: false bf16: true fp16: tf32: gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 10 xformers_attention: flash_attention: true warmup_steps: evals_per_epoch: 4 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: - full_shard - auto_wrap fsdp_config: fsdp_limit_all_gathers: true fsdp_sync_module_states: true fsdp_offload_params: true fsdp_use_orig_params: false fsdp_cpu_ram_efficient_loading: true fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP fsdp_transformer_layer_cls_to_wrap: Qwen2DecoderLayer fsdp_state_dict_type: FULL_STATE_DICT fsdp_sharding_strategy: FULL_SHARD special_tokens: hub_model_id: neginashz/qwen-lora-fsdp ```

# qwen-lora-fsdp This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the medalpaca/medical_meadow_medqa dataset. It achieves the following results on the evaluation set: - Loss: 0.1946 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 2 - total_eval_batch_size: 2 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 55 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.1208 | 0.2504 | 154 | 0.1264 | | 0.1361 | 0.5008 | 308 | 0.1208 | | 0.1211 | 0.7512 | 462 | 0.1133 | | 0.1154 | 1.0016 | 616 | 0.1119 | | 0.076 | 1.2504 | 770 | 0.1208 | | 0.0563 | 1.5008 | 924 | 0.1302 | | 0.0493 | 1.7512 | 1078 | 0.1320 | | 0.0678 | 2.0016 | 1232 | 0.1255 | | 0.0091 | 2.2504 | 1386 | 0.1796 | | 0.0216 | 2.5008 | 1540 | 0.1903 | | 0.0105 | 2.7512 | 1694 | 0.1946 | ### Framework versions - PEFT 0.14.0 - Transformers 4.47.0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0